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Abstract: Seedling and sapling spatial patterns are important in community regeneration, and
understanding the natural regeneration mechanisms of tree species in relation to spatial patterns will
help improve forest management and community restoration efficiency. Based on data from three
fixed plots established in birch forests (BF), coniferous and broadleaved mixed forests (CBMF) and
coniferous mixed forests (CMF) in the central Greater Khingan Mountains in Heilongjiang Province,
China, in 2017, we used the univariate and bivariate O-ring functions of the point pattern analysis
method to evaluate the spatial patterns and associations of the main tree species in these three forest
types at different development stages and identified the community successional stages according
to the interspecific associations between dominant tree species and other tree species. The results
showed that Betula platyphylla and Larix gmelinii in BF exhibited identical spatial distribution patterns
and had a tendency to transition from an aggregated to a random distribution from saplings to adult
trees, whereas every tree type in CBMF generally showed a random distribution. Adult trees of the
main tree species in CMF, i.e., L. gmelinii and Picea koraiensis, mainly showed a random distribution,
but P. koraiensis at other size classes generally showed an aggregated distribution. The intraspecific
associations of the main tree species in BF and CMF at different development stages were constrained
by the spatial scale within a given scope, while those in CBMF at different development stages were
not significantly constrained by spatial scale. The results also show that the density of the three
forest types was affected by the distance between the individuals of the various tree classes and
adult trees, with different levels of influence. We analyzed the interspecific associations between
dominant tree species and other tree species and then assessed community succession progress and
found that the BF and CMF exhibited medium-term community succession, while the CBMF was in
the primary stage. Our results further show that the spatial distribution patterns of the tree species
in the small-diameter classes were jointly affected by adjacent habitats and diffusional limitations
and that scale dependence existed in the intraspecific and interspecific associations. The analysis of
the natural regeneration of spatial distribution and interspecific associations represents an efficient
way to explore the stability of forest communities and dynamic changes in interspecific relationships
during succession. The study results thus provide a theoretical basis for developing rational forest
management measures.

Keywords: spatial associations; spatial patterns; regeneration; O-ring statistics; birch forest; coniferous
and broadleaved mixed forest; coniferous mixed forest
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1. Introduction

A natural secondary forest is forest that has regenerated as a result of natural processes after the
original forest vegetation has been significantly disturbed at some point in time or, over a longer period
of time. As a result, a secondary community forms through secondary succession, and degradation
of the ecological system of the original forest occurs [1,2]. Having the characteristics of multiple tree
species and a wide distribution scope [3], a natural secondary forest is not only an important production
base of forest byproducts, timber and fuelwood but also plays an important role in water conservation,
climate regulation and the maintenance of ecological balance [4,5]. A natural secondary forest is an
integral component of forest resources. Due to fire, plant diseases, insect pests, and extreme weather in
1990–2015, the area of natural secondary forest around the world increased by 2.315 billion ha (56.08%)
to 2.330 billion ha (58.27%) [6]. Simultaneously, according to the results of the Eighth National Forest
Resource Inventory Survey, the area of China’s secondary forest was approximately 46.2% of the total
national forest area and approximately 23.3% of the total amount of growing stock of national forest [7].
The secondary forest represents a large proportion of the total forest area, but the forest stands to
experience lower dynamic succession stability due to different disturbance factors [8–11]. Therefore, a
comprehensive plan is needed to improve forest quality, promote the positive succession of secondary
forest and make it an important forest resource.

Natural regeneration is a natural biological process of the reproduction of forest resources of a
natural secondary forest [12–14], which is a means of forest ecological systems for self-breeding and
self-restoration and the basis of the maintenance of the dynamic stability and sustainable development
of forest [15,16]. Natural regeneration has a profound influence on the continuous extension and
succession of phytocoenosis over time and space and the structure of the forest community and its
biodiversity in the future [17–20]. The composition and spatial patterns of seedlings and saplings
will directly affect the number of plant populations in the forest community and ultimately affect
the succession process of the forest community [21], the effectiveness of forest management can be
improved by analyzing the pattern of seedlings or saplings and making corresponding management
strategies [22].

The spatial distribution patterns and the spatial correlation of the community are two expression
forms of the population’s ecological relations to the spatial patterns and are two major aspects of
the study of plant spatial patterns [23]. In forest communities, plant populations have different
biological characteristics and are affected by different intraspecific and interspecific relationships. The
regeneration of plants in forests, especially tree species, in the successional process of forests has a
decisive impact on the future growth and development of forest stands [24,25]. In the process of natural
succession, the ideal spatial distribution pattern of a secondary forest is random distribution. At this
time, the positive associations are the main correlations among species, and the natural succession,
which have reached a relatively good state. The analysis of the distribution patterns of forest species
and their correlations using spatial point patterns can help us to better evaluate the successional
direction of forests [26–28]; additionally, it has important significance in disclosing the regeneration
and maintenance mechanisms of populations [29–31].

There are widely distributed natural secondary forests on a large scale in the Greater Khingan
Mountains, but they are simultaneously accompanied by various problems, such as a lack of target tree
species, an unstable structure, poor regeneration, and low stand quality and ecological function [32].
Previous studies have frequently been carried out to describe the community distribution patterns
of natural secondary forest in the Greater Khingan Mountains area in the quantitative form by using
different analytical methods [33–35], but few have focused on the community distribution patterns
and intraspecific and interspecific associations at different spatial scales, and there are also few studies
on judging forest succession process by interspecific associations. For these reasons, the purpose of our
research is to explore the internal mechanism of the formation of these patterns through the study of
the distribution patterns and interspecies correlations of tree species under different growth stages, to
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clarify the stages of natural succession of different forest types, and to provide theoretical support for
the formulation of reasonable forest management planning in the future.

2. Materials and Methods

2.1. Study Area

The forest region of the Greater Khingan Mountains area is the largest forest region in China; it is
not only the natural cover for defense against the Hulunbuir Grassland and the Song-Nen Plain but
also plays an important role in conserving and regulating water resources in the Heilongjiang River
and Nenjiang River [36]. The study was conducted at Cuigang Forest Farm in the central part of the
Greater Khingan Mountains in Heilongjiang Province, China (124◦16′–125◦10′E, 51◦43′–52◦15′N). The
climate is classified as frigid-temperate zone continental monsoon. The annual precipitation in this
area is 514 to 646 mm. The mean annual temperature is 2.6 ◦C, with a maximum temperature of 37.9
◦C and a minimum temperature of −46.9 ◦C. The elevation of the study area varies from 415 to 858 m.
The soils are mostly Umbri-Gelic Cambosols, according to the Chinese taxonomic system [37].

The vegetation in this area belongs to the flora of the Greater Khingan Mountains, and the
representative vegetation type is the bright conifer forest of the cool temperate zone of China. As a
result of large-scale logging, this region is dominated by natural secondary forests. The main natural
species are Larix gmelinii and Betula platyphylla; other species include a small number of Populus
davidiana, Pinus sylvestris var. mongolica, and Picea koraiensis. The major shrubs in this region are
Rhododendron dauricum, Lespedeza bicolor, Ledum palustre and Vaccinium vitis-idaea. Alnus sibirica occur as
small, widely distributed subordinate trees in this region.

2.2. Plot Design and Survey

In August 2017, we established three 1-ha plots (100 × 100 m) in different forest types, these
sampling sites were located in birch forest (BF), coniferous and broadleaved mixed forest (CBMF), and
coniferous mixed forest (CMF) in Cuigang Forest Farm and were the main forest types in this area.
CMF were clear-cut in the 1960s, and a secondary forest at this stage was formed through natural
recovery. BF and CBMF were severely harvested in the 1990s; the trees with larger DBH (diameter at
the breast height) were harvested, and the cutting intensity was about 50%. All three types of forests
were during the middle-aged forest stage. We further subdivided each plot into 100 contiguous 10 × 10
m quadrats. For all trees in the quadrats, information regarding the species, states (alive, dead and
downwood, etc.), DBH, tree height, crown width (for trees with DBH ≥ 5 cm), ground diameter (GD <

5 cm above ground level) and coordinate position were recorded. DBH and GD was measured with
a tape meter, the height of trees was measured with an ultrasonic altimeter (Vertex IV), the position
of trees and the crown width were measured with a laser range finder (LDM-100H). All species in
the three forest types were classified according to the following grades: seedlings (<30 cm in height);
saplings (≥30 cm and <2 m in height); small trees (≥2 m in height and <5 cm in DBH); medium-sized
trees (5 cm ≤ DBH < 15 cm); and adult trees (≥15 cm in DBH).

2.3. Spatial Pattern Analysis

Point pattern analysis regards individual plants as a point in two-dimensional space and then
analyses of their quantity and spatial characteristics. This method overcomes the shortcoming of the
traditional method that the spatial distribution patterns at only a single scale can be analyzed and
makes the best use of the spatial information for the different points [38,39]. The Ripley K and Ripley L
functions are the most commonly used methods in spatial point pattern analysis of vegetation, but
they have obvious scale accumulative effects and are prone to edge effects [40–42]. O-ring statistics can
effectively eliminate the accumulation effect of scale in the Ripley K function by separating the grades
of specific distances [38,43].
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In this study, the univariate O-ring function O(r) was used to analyze the spatial distribution
patterns of species at different stages at multiple scales, and the bivariate O-ring function O12(r) was
used to analyze the spatial associations of species at different development stages in the three forest
types. We used a null model with complete spatial randomness (CSR) to assess the univariate point
patterns. The appropriate null model for bivariate analysis must be selected carefully based on the
biological hypothesis to be tested. Considering the time sequence of the different development stages,
we adopted the antecedent condition null model, namely, the large-diameter fixed model and the
small-diameter random model [23,31,44].

Programita software, was used for the abovementioned point pattern analysis of tree spatial
distributions [45]. The analyses were performed up to 50 m with a 1 m lag distance, not larger than
half the length of the plot side, to eliminate the edge effects. Detailed method for eliminating the
edge effects can be found in the reference [38,39]. To evaluate departures from the null model, we
compared the O(r) functions and O12(r) functions of the observed spatial patterns with approximately
95% simulation envelopes, which were the fifth lowest and highest values of the O(r) functions and
O12(r) functions of the data created by 99 Monte Carlo simulations of the appropriate null models [30].

3. Results

3.1. Population Structure

Of all tree species in the BF, B. platyphylla represented the largest proportion, and their basal area
accounted for 90.9% of the total basal area, while other species, including L. gmelinii, P. davidiana, A.
sibirica and Salix triandra, occurred infrequently (Table 1). The two main tree species in the CBMF, B.
platyphylla and L. gmelinii, comprised 98.2% of the basal area of all species, while other stems, including
P. sylvestris var. mongolica, P. koraiensis and P. davidiana, accounted for a very small proportion (Table 1).
In the CMF, L. gmelinii, P. sylvestris var. mongolica and P. koraiensis comprised 86.6% of the basal area of
all species, of which L. gmelinii accounted for the largest proportion (62%) of the total, while the basal
area of two other broadleaved species, B. platyphylla and P. davidiana, accounted for 13.4% of all woody
stems (Table 1). Mortality across the three forest types was mainly concentrated within the smallest
size class and decreased in terms of density for larger-diameter grades (Figure 1). The plot for CMF
exhibited the only reversed J-shaped diameter distribution in the three forest types (Figure 1).
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 Al 11 0 6 5 0 0 0 0 
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 Qm 26 22 4 0 0 0 0 0 
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broadleaved mixed forest, respectively. A, B, C, D and E denote seedlings, saplings, small trees, 
medium-sized trees and adult trees, respectively. BA denote Basal area. Lg, Bp, Ps, Pi, Po, Al, Sa and 
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davidiana, Alnus sibirica, Salix triandra and Mongolian oak, respectively. 
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3.2. Spatial Distribution Patterns of Species in Three Forest Types 

In the BF, seedlings of B. platyphylla showed an aggregated distribution at scales from 1 to 7 m, 
exhibited a dominant uniform distribution at 8 to 39 m scales and returned to an aggregated 
distribution at scales from 40 to 47 m (Figure 2, Bp1). Saplings and small trees of B. platyphylla 
presented an aggregated distribution at scales from 1 to 32 m and 1 to 29 m, respectively, while at 
larger scales, the proportion of small trees showing a random distribution was larger than that of 
saplings (Figure 2, Bp2, Bp3). Within all scales, the proportion of medium-sized trees displaying a 
random distribution was larger than that of the first three growth stages (Figure 2, Bp4), and adult 
trees of B. platyphylla showed a random distribution at other scales in addition to a uniform 

Figure 1. DBH size-class distributions of three forest types. Black bars = dead trees; gray bars = live trees.

3.2. Spatial Distribution Patterns of Species in Three Forest Types

In the BF, seedlings of B. platyphylla showed an aggregated distribution at scales from 1 to 7
m, exhibited a dominant uniform distribution at 8 to 39 m scales and returned to an aggregated
distribution at scales from 40 to 47 m (Figure 2, Bp1). Saplings and small trees of B. platyphylla presented
an aggregated distribution at scales from 1 to 32 m and 1 to 29 m, respectively, while at larger scales,
the proportion of small trees showing a random distribution was larger than that of saplings (Figure 2,
Bp2, Bp3). Within all scales, the proportion of medium-sized trees displaying a random distribution
was larger than that of the first three growth stages (Figure 2, Bp4), and adult trees of B. platyphylla
showed a random distribution at other scales in addition to a uniform distribution at the 2 m scale
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(Figure 2, Bp5). Saplings, small trees and medium-sized trees of L. gmelinii showed a relatively obvious
aggregated distribution at a small scale, while at larger scales, L. gmelinii showed a random distribution
at all stages (Figure 2, Lg2–Lg4). Saplings and small trees of A. sibirica showed similar distribution
patterns; with an increase in scale, the distribution characteristics of an aggregated distribution, a
random distribution, and a uniform distribution were presented, in turn (Figure 2, Al2, Al3). Small
trees of P. davidiana showed an aggregated distribution at scales from 1 to 26 m. At the other scales,
the distribution patterns alternated between a uniform distribution and a random distribution, and
the proportion of small trees showing a random distribution was slightly higher than that showing a
uniform distribution (Figure 2, Po3)

Table 1. Number of species and basal area in the three forest plots.

Types Species Total Stems A B C D E BA (m2/ha) BA (%)

Lg 282 1 123 98 46 14 0.935 6.8
Bp 1926 62 538 322 791 213 12.552 90.9

BF Po 108 0 10 83 14 1 0.117 0.8
Al 1285 0 795 464 26 0 0.182 1.3
Sa 8 0 1 3 4 0 0.022 0.2

Total 3609 63 1467 970 881 228 13.808 100.0

Lg 970 4 74 54 612 226 11.434 58.5
Bp 728 9 105 37 404 173 7.762 39.7
Ps 8 0 0 0 4 4 0.247 1.3

CBMF Pi 2 0 0 0 1 1 0.042 0.2
Po 75 0 64 5 4 2 0.067 0.3
Al 695 2 590 103 0 0 0 0
Sa 4 0 3 1 0 0 0 0

Total 2482 15 836 200 1025 406 19.6 100.0

Lg 2720 12 531 527 1537 113 13.005 62.0
Bp 644 6 251 132 243 12 1.577 7.5

CMF Ps 351 48 115 30 111 47 2.424 11.6
Pi 1789 546 841 136 223 43 2.728 13.0
Po 133 1 27 23 56 26 1.226 5.9
Al 11 0 6 5 0 0 0 0
Sa 125 2 105 18 0 0 0 0

Qm 26 22 4 0 0 0 0 0
Total 5797 637 1880 871 2170 241 20.960 100.0

Notes: BF, CBMF, and CMF denote birch forest, coniferous mixed forest and coniferous and broadleaved mixed
forest, respectively. A, B, C, D and E denote seedlings, saplings, small trees, medium-sized trees and adult trees,
respectively. BA denote Basal area. Lg, Bp, Ps, Pi, Po, Al, Sa and Qm denote Larix gmelinii, Betula platyphylla, Pinus
sylvestris var. mongolica, Picea koraiensis, Populus davidiana, Alnus sibirica, Salix triandra and Mongolian oak, respectively.

In CBMF, B. platyphylla were mainly randomly distributed at each growth stage (Figure 3,
Bp2–Bp5). Saplings, small trees and medium-sized trees of L. gmelinii showed similar distribution
patterns, presenting an aggregated distribution at small scales. With the increase in scale, the random
distribution became dominant (Figure 3, Lg2–Lg4), and adult trees of L. gmelinii showed a completely
random distribution (Figure 3, Lg5). Saplings of A. sibirica showed an aggregated distribution at
scales from 1 to 17 m and generally a random distribution at scales from 18 to 39 m, with the
restoration of the aggregated distribution at scales from 40 to 50 m. Small trees of A. sibirica showed an
aggregated distribution at scales from 1 to 5 m and mainly a random distribution at the remaining
scales (Figure 3, Al2, Al3). Saplings of P. davidiana showed an aggregated distribution at scales from
1 to 21 m and alternated between a random distribution and uniform distribution at the remaining
scales (Figure 3, Po2).

.
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Figure 2. Spatial distributions of tree species in BF. O(r) values indicate the spatial aggregation degree
of tree species, thin dashed lines indicate the upper and lower limits of the 95% simulation envelope
of the univariate toroidal shift null model. Points above the upper envelope indicate an aggregated
distribution, points between the envelopes indicate a random distribution, and points below the lower
envelope indicate a uniform distribution (From Figure 2 to Figure 4). Bp1, Bp2, Bp3, Bp4, and Bp5
denote seedlings, saplings, small trees, medium-sized trees and adult trees of B. platyphylla, respectively.
Other tree species at different growth stages were also expressed in this way (From Figure 3 to Figure
10).
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Figure 3. Spatial distributions of tree species in CBMF.

In the CMF, seedlings, saplings, small trees, and medium-sized trees of P. koraiensis mainly
presented aggregated distributions (Figure 4, Pi1–Pi4), and the distributions of adult trees were mainly
clustered and random scales from 1 to 20 m and 21 to 50 m, respectively (Figure 4, Pi5). Saplings and
medium-sized trees of P. sylvestris var. mongolica mainly showed aggregated distributions scales from
1 to 30 m scales (Figure 4, Ps2, Ps4), while seedlings, small trees and adult trees mainly showed a
random distribution scales from 10 to 50 m scales (Figure 4, Ps1, Ps2, Ps5). B. platyphylla were mainly
randomly distributed in the sapling and medium-sized tree growth stages (Figure 4, Bp2, Bp4), while
the distributions of small trees of B. platyphylla were mainly clustered and random at the 1 to 18 and 19
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to 50 m scales, respectively (Figure 4, Bp3). Saplings and small trees of L. gmelinii presented similar
distribution trends, both showing an aggregated distribution at a wide range of scales (saplings, 1 to 31
m; small trees, 1 to 35 m), a random distribution at intermediate scales, and finally an even distribution
at a large scale (Figure 4, Lg2, Lg3). Medium-sized trees of L. gmelinii were mainly aggregated at scales
from 1 to 25 m, and at scales from 26 to 50 m, a random distribution was dominant (Figure 4, Lg4).
Adult trees of L. gmelinii were mainly randomly distributed (Figure 4, Lg5). Small trees of S. triandra
showed an aggregated distribution at scales from 1 to 20 m and a random distribution at scales from
21 to 50 m (Figure 4, Sa2). Medium-sized trees of P. davidiana predominantly showed an aggregated
distribution at scales from 1 to 30 m, the random distribution was dominant at scales from 31 to 45 m,
and the uniform distribution was found at the remaining scales (Figure 4, Po4).Forests 2020, 11, 152 8 of 18 
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Figure 4. Spatial distributions of tree species in CMF.

3.3. Intraspecific Spatial Associations in Three Forest Types

In the BF, seedlings and saplings of B. platyphylla were positively associated at the scales from 1
to 12 m (Figure 5, Bp2–Bp1). In addition, seedlings and saplings of B. platyphylla presented positive
associations with small trees of the same species at scales from 1 to 7 m and 1 to 32 m, respectively,
and their densities significantly decreased with distance from the small trees of B. platyphylla at small
scales (Figure 5, Bp3–Bp1, Bp3–Bp2). The density of seedlings decreased with increasing distance from
saplings of B. platyphylla at small scales (Figure 5, Bp2–Bp1). Seedlings, saplings, and small trees of B.
platyphylla showed similar associations with medium-sized trees of B. platyphylla at all scales; they all
presented negative associations, no associations, and positive associations in turn. Furthermore, the
densities of seedlings, saplings and small trees of B. platyphylla gradually increased with increasing
distance from medium-sized trees, and there was no obvious decline (Figure 5, Bp4–Bp1, Bp4–Bp2,
Bp4-Bp3). The results showed that there were no associations between seedlings and adult trees of B.
platyphylla at scales from 1 to 30 m (Figure 5, Bp5–Bp1), saplings and small trees of B. platyphylla were
not associated with adult trees of B. platyphylla at scales from 1 to 20 m (Figure 5, Bp5–Bp2, Bp5–Bp3),
and medium-sized trees of B. platyphylla were not associated with adult trees of B. platyphylla at scales
from 2 to 50 m (Figure 5, Bp5–Bp4). The results also showed that densities of saplings and small trees
of B. platyphylla tended to increase at increasing distance from adult trees of B. platyphylla and that
the range of increase tended to stabilize after the intermediate scales (Figure 5, Bp5–Bp2, Bp5–Bp3).
In general, the density of medium-sized trees did not significantly change with increasing distance
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from adult trees (Figure 5, Bp5–Bp4). Saplings and small trees of L. gmelinii were mainly positively
associated at the 1 to 15 m scale, and the density of saplings of L. gmelinii tended to decrease first and
then increase, with increasing distance from small trees of the same species and generally changing into
a V-shape (Figure 5, Lg3–Lg2). Saplings and small trees of L. gmelinii presented significantly positive
associations with medium-sized trees of L. gmelinii at the 1 to 6 m and 1 to 3 m scales, respectively, but
were mainly unassociated at subsequent scales. The densities of saplings and small trees of L. gmelinii
showed similar patterns, both tending to decrease with increasing distance from medium-sized trees
of L. gmelinii, reaching a minimum at approximately the 17 m scale, and then increasing slightly and
generally stabilizing with increasing distance from medium-sized trees L. gmelinii (Figure 5, Lg4–Lg2,
Lg4–Lg3). Saplings of A. sibirica were positively associated at the 1–34 m scale, and the densities
of saplings of A. sibirica decreased with increasing distance from small trees of A. sibirica (Figure 5,
Al3–Al2).Forests 2020, 11, 152 9 of 18 
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Figure 5. Spatial associations of tree species in BF. O12(r) values indicate the spatial associations
between the same tree species or different tree species at different stages, thin dashed lines indicate
the upper and lower limits of the 95% simulation envelope of the bivariate toroidal shift null model.
Points above the upper envelope indicate positive associations, points between the envelopes indicate
no associations, and points below the lower envelope indicate negative associations (From Figure 5 to
Figure 10).

In the CBMF, the results showed that there was a positive association between small trees and
saplings of B. platyphylla at small scales (1–2 m), and they were not associated at the subsequent scales,
while the density of saplings gradually decreased and stabilized with an increasing distance from
the small trees of B. platyphylla and increased slightly at larger scales (45–50 m, Figure 6, Bp3–Bp2).
Saplings and small trees of B. platyphylla were generally not associated with medium-sized trees of the
same species (Figure 6, Bp4–Bp2, Bp4–Bp3), while the density of saplings decreased at small scales
and tended to stabilize with increasing distance from medium-sized trees of B. platyphylla (Figure 6,
Bp4–Bp2). Furthermore, the density of small trees changed in an M-shaped pattern with increasing
distance from medium-sized trees of B. platyphylla at scales from 1 to 15 m, and the range of this
change decreased after 16 m (Figure 6, Bp4–Bp3). Saplings, medium-sized trees and small trees of B.
platyphylla presented no associations with adult trees of B. platyphylla at all scales (Figure 6, Bp5–Bp2,
Bp5–Bp3, Bp5–Bp4), while the densities of saplings and small trees of B. platyphylla showed a fluctuating
distribution that first decreased and then increased with an increasing distance from the adult trees of
B. platyphylla (Figure 6, Bp5–Bp2, Bp5–Bp3). The density of medium-sized trees of B. platyphylla also
showed a fluctuating distribution, first increasing and then decreasing with an increasing distance
from the adult trees of B. platyphylla (Figure 6, Bp5–Bp4). The results also showed that there were
positive associations between saplings and small trees of L. gmelinii at the scales from 1 to 2 m, but
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there were generally no associations at the remaining scales, while the density of saplings of L. gmelinii
gradually decreased with an increasing distance from the small trees of L. gmelinii at small scales and
then tended to stabilize (Figure 6, Lg3–Lg2). Saplings and small trees of L. gmelinii were not associated
with medium-sized trees of L. gmelinii at any scale, and their densities also did not significantly change
with an increasing distance from the medium-sized trees of L. gmelinii across the overall range (Figure 6,
Lg4–Lg2, Lg4–Lg3). Saplings, small trees, medium-sized trees and adult trees of L. gmelinii were not
associated at any of the scales (Figure 6, Lg5–Lg2, Lg5–Lg3, Lg5–Lg4), while the densities of saplings
and small trees of L. gmelinii showed an M-shaped pattern, first increasing and then decreasing with an
increasing distance from the adult trees of L. gmelinii (Figure 6, Lg5–Lg2, Lg5–Lg3). In addition, the
density of medium-sized trees of L. gmelinii changed slightly overall with increasing distance from
adult trees of L. gmelinii (Figure 6, Lg5–Lg4). Saplings of A. sibirica were positively associated at the
scale from 1 to 20 m, and the density of saplings of A. sibirica decreased with increasing distance from
small trees of A. sibirica and then tended to stabilize at intermediate scales (Figure 6, Al3–Al2).Forests 2020, 11, 152 10 of 18 
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Figure 6. Spatial associations of tree species in CBMF.

In the CMF, seedlings of P. koraiensis presented significantly positive associations with saplings
of the same species at all scales, and the density of seedlings gradually decreased with increasing
distance from saplings of P. koraiensis at small scales. (Figure 7, Pi2–Pi1). Seedlings and saplings of P.
koraiensis were mainly positively associated with small trees of P. koraiensis (Figure 7, Pi3–Pi1, Pi3–Pi2),
the density of seedlings increased first and then decreased with increasing distance from small trees of
P. koraiensis (Figure 7, Pi3–Pi1), and the density of saplings decreased with increasing distance from
small trees of P. koraiensis (Figure 7, Pi3–Pi2). Across all scales, seedlings, saplings and small trees of P.
koraiensis were generally positively associated with increasing distance from medium-sized trees of P.
koraiensis (Figure 7, Pi4–Pi1, Pi4–Pi2, Pi4–Pi3). The densities of seedlings and saplings of P. koraiensis
tended to first slightly increase and then decrease with increasing distance from medium-sized trees of
P. koraiensis (Figure 7, Pi4–Pi1, Pi4–Pi2). The density of small trees of P. koraiensis gradually decreased
with increasing distance from medium-sized trees of P. koraiensis (Figure 7, Pi4–Pi3). Seedlings and
medium-sized trees of P. koraiensis showed similar associations with adult trees of P. koraiensis; they
presented positive associations, no associations, and negative associations in turn, their densities
gradually decreased with increasing distance from adult trees of P. koraiensis, and the range of variation
also increased (Figure 7, Pi5–Pi1, Pi5–Pi4). Saplings and small trees of P. koraiensis presented the
characteristics of positive associations and no associated mutual transformation with adult trees of
P. koraiensis at all scales. The densities of saplings and small trees changed slightly with increasing
distance from adult trees of P. koraiensis (Figure 7, Pi5–Pi2, Pi5–Pi3).
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Figure 7. Spatial associations of tree species in CMF.

Seedlings and saplings of P. sylvestris var. mongolica were mainly positively associated at 132-
m scales, and the density of seedlings of P. sylvestris var. mongolica gradually decreased and then
stabilized with increasing distance from saplings of P. sylvestris var. mongolica (Figure 7, Ps2–Ps1).
Seedlings and small trees of P. sylvestris var. mongolica were positively associated at scales of 715- m and
28 to 34 m, respectively (Figure 7, Ps3–Ps1). Saplings and small trees of P. sylvestris var. mongolica were
generally positively associated at scales from 1 to 25 m, with the density of saplings of P. sylvestris var.
mongolica tending to decrease with increasing distance from small trees of P. sylvestris var. mongolica
(Figure 7, Ps3–Ps2). Seedlings, saplings and small trees of P. sylvestris var. mongolica were mainly
positively associated with medium-sized trees of P. sylvestris var. mongolica at the scales from 1 to
38 m, 2 to 32 m, and 1 to 31 m, respectively, and their densities gradually decreased with increasing
distance from medium-sized trees of P. sylvestris var. mongolica at small scales and tended to stabilize
at the remaining scales (Figure 7, Ps4–Ps1, Ps4–Ps2, Ps4–Ps3). Seedlings, saplings and small trees of
P. sylvestris var. mongolica were mainly unassociated with adult trees of P. sylvestris var. mongolica at
all scales, and their densities did not significantly change with increasing distance from adult trees
of P. sylvestris var. mongolica (Figure 7, Ps5–Ps1, Ps5–Ps2, Ps5–Ps3). Medium-sized and adult trees of
P. sylvestris var. mongolica presented positive associations at the 1 to 25 m scale, and the density of
medium-sized trees gradually decreased with increasing distance from adult trees of P. sylvestris var.
mongolica and tended to stabilize at the 45 to 50 m scales (Figure 7, Ps5–Ps4).

Saplings and small trees of L. gmelinii presented positive associations at the 1 to 35 m scales, and
the density of saplings decreased with increasing distance from small trees of L. gmelinii and tended to
stabilize at the scales from 46 to 50 m (Figure 7, Lg3–Lg2). Saplings of L. gmelinii presented positive
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associations with medium-sized trees at intermediate scales (14 to 36 m), small trees of L. gmelinii
mainly presented negative associations with medium-sized trees, and the densities of saplings and
small trees of L. gmelinii did not change significantly with increasing distance from medium-sized
trees of the same species (Figure 7, Lg4–Lg2, Lg4–Lg3). Saplings and adult trees of L. gmelinii were
generally not associated at the scales from 1 to 40 m (Figure 7, Lg5–Lg2), and small trees and adult
trees of L. gmelinii were generally not associated at all scales (Figure 7, Lg5–Lg3). Medium-sized trees
and adult trees of L. gmelinii were generally not associated at the scales from 1 to 30 m (Figure 7,
Lg5–Lg4), and the densities of saplings, small trees and medium-sized trees of L. gmelinii increased
with increasing distance from adult trees of L. gmelinii at all scales, while the range of the increase was
small (Figure 7, Lg5–Lg2, Lg5–Lg3, Lg5–Lg4). Saplings and small trees of B. platyphylla were mainly
positively associated at scales from 1 to 17 m, and the density of saplings of B. platyphylla decreased
with increasing distance from small trees of B. platyphylla at all scales (Figure 7, Bp3–Bp2). Saplings and
small trees of B. platyphylla were generally not associated with medium-sized trees of B. platyphylla at
all scales, and their densities did not significantly change with increasing distance from medium-sized
trees of the same species (Figure 7, Bp4–Bp2, Bp4–Bp3).

3.4. Interspecific Associations of Dominant Tree Species with Other Trees at Different Stages in Three Forest
Types

In the BF, the dominant species of B. platyphylla showed similar associations with all individuals,
saplings and small trees of L. gmelinii across the different spatial scales, i.e., positive associations were
found at the scales from 1 to 15 m, and no positive associations were found at the remaining scales
(Figure 8, Bp–Lg, Bp–Lg2, Bp–Lg3). B. platyphylla and P. davidiana were mainly negatively associated,
but generally presented no associations with A. sibirica (Figure 8, Bp–Po, Bp–Al).
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Figure 8. Spatial associations between B. platyphylla and other tree species in BF.

In the CBMF, L. gmelinii, the dominant tree species, was not associated with all individuals, sapling
trees, small trees, medium-sized trees, and adult trees of B. platyphylla (Figure 9, Lg–Bp, Lg–Bp2,
Lg–Bp3, Lg–Bp4, Lg–Bp5) and was mainly positively associated with P. davidiana and A. sibirica
(Figure 9, Lg–Po, Lg–Al).

In the CMF, L. gmelinii (the dominant species) and P. koraiensis were negatively associated at small
scales, not associated at intermediate scales, and positively associated at large scales (Figure 10, Lg–Pi).
L. gmelinii was mainly not associated, and negatively associated with seedlings and small trees of P.
koraiensis at scales from 1 to 20 m, respectively, while these groups presented positive associations and
no associations at other scales, respectively. L. gmelinii and saplings of P. koraiensis mainly presented
no associations (Figure 10, Lg–Pi1, Lg–Pi2, Lg–Pi3). With increasing size, negative associations, no
associations, and positive associations were found, in order, between L. gmelinii and medium-sized
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trees and adult trees of P. koraiensis (Figure 10, Lg–Pi4, Lg–Pi5). L. gmelinii mainly showed positive
associations with seedlings and the whole trees of P. sylvestris var. mongolica at all scales (Figure 10,
Lg–Ps, Lg–Ps1), L. gmelinii were mainly positively associated with saplings and adult trees of P. sylvestris
var. mongolica at scales from 1 to 20 m (Figure 10, Lg–Ps2, Lg–Ps5), respectively, and were mainly
positively associated with small trees and medium-sized of P. sylvestris var. mongolica at 135- m scales,
respectively (Figure 10, Lg–P3, Lg–Ps4). L. gmelinii mainly showed no associations with saplings, small
trees, medium-sized trees, and all individuals of B. platyphylla (Figure 10, Lg–Bp, Lg–Bp2, Lg–Bp3,
Lg–Bp4). P. davidiana and S. triandra presented negative associations with L. gmelinii at scales from 1
to 25 m and 1 to 20 m, respectively, and all showed no associations at other scales (Figure 10, Lg–Po,
Lg–Sa).
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Figure 9. Spatial associations between L. gmelinii and other tree species in CBMF.
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Figure 10. Spatial associations between L. gmelinii and other tree species in CMF.
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4. Discussion

In the natural secondary forest, the overall spatial distribution patterns of trees of different species
experienced a gradual reduction in the degree of aggregation from young forest to old-growth forest
with the size increase. In general, the transition tendency of a community’s spatial patterns is from
“aggregated” to “random” or “uniform” [40,46,47], and in the development process of a community
from containing individuals with a small diameter to those with a large diameter, the distribution
patterns show a tendency to transition from aggregated to random [48]. The main reasons for the
aggregated distribution are diffusional limitation, adjacent habitats and the combination of both [49–51].
In this study, the saplings, small trees, and medium-sized trees of L. gmelinii in the three types of forest
showed an aggregated distribution at a small scale, which is related to the dispersal properties of its
seeds; the seeds are mainly affected by the force of gravity since they have a large mass, therefore,
a significantly aggregated distribution occurred at locations near the mother tree at a small scale.
Interspecific competition was not substantial at early developmental stages; as intraspecific competition
intensified, the population’s aggregated distribution gradually weakened and became random in adult
trees in this species. P. koraiensis and P. sylvestris var. mongolica showed a distribution similar to that
of L. gmelinii at every stage in the CMF, and the distribution pattern of the seeds of both of these
species was identical to that of L. gmelinii seeds. This finding was consistent with research results from
coniferous forest in the cold temperate zone [33,36]. The seeds of B. platyphylla are small and winged,
so they are dispersed mainly by wind and have strong diffusion capacity. During the process of seeds
dispersal, the seeds can quickly occupy forest gaps and bare land for regeneration and thus tend to
be randomly distributed. In this study, B. platyphylla in CBMF and CMF at all levels predominantly
showed a random distribution, but in BF, the saplings and small trees of B. platyphylla predominantly
showed an aggregated distribution at the scales from 1 to 35 m. These patterns were observed because
there is a large area (area greater than 100 ha) of pure BF near the sample site and some gaps in BF, as
the seeds of this species easily assume an aggregated distribution in the local area due to their diffusion
process. Furthermore, the forest surrounding the other two sample sites was mainly mixed forest,
signifying that adjacent habitats had some influence on the spatial patterns of saplings and small trees
of B. platyphylla. The variation in the distribution patterns of a single species in different communities
provides information on the formation and maintenance mechanisms of different communities [52,53].

Our results showed that in the BF (Figure 5), B. platyphylla at large diameter classes showed a
positive correlation within a certain scale range relative to trees at smaller diameter classes (Figure 5,
Bp5–Bp3, Bp5–Bp2, Bp4–Bp3, Bp4–Bp2), signifying that the former could play the role of promoting
the latter. Moreover, the individual density of B. platyphylla at small diameter classes increased with
distance between trees at larger diameter class within a certain scale range, indicating that a distance
constraint effect took place at the seedling and sapling stages [54,55]. In addition, the dominant tree
species, B. platyphylla, showed positive associations with all individuals, seedlings and saplings of
L. gmelinii at small scales (1–15 m, Figure 8, Bp–Lg, Bp–Lg2, Bp–Lg3), suggesting that B. platyphylla
took the lead in entering the forest area as a pioneer tree species, creating a favorable and reliable
environment for the regeneration and growth of L. gmelinii in the BF, which also provides support for
our forest management planning, as we can plant L. gmelinii around the B. platyphylla to promote its
growth. In addition, the dominant tree species did not show obvious associations with the other main
tree species at different growth and development stages at a large scale, which also reflects the scale
dependence of the spatial patterns of the populations. This finding indicates that associations occur
between individual trees within a certain scale range, while these associations will be greatly weakened
beyond this range [40,56,57]. In the CMF (Figure 10), the dominant tree species L. gmelinii showed
negative associations with all P. koraiensis individuals at a small scale, signifying that L. gmelinii plays a
role in suppressing the growth of P. koraiensis. However, L. gmelinii showed positive associations with
all P. koraiensis individuals at a large spatial scale; in this case, appropriate cutting should be taken to
improve the negative associations between L. gmelinii and P. koraiensis and promote the growth of P.
koraiensis. (Figure 10, Lg–Pi).



Forests 2020, 11, 152 14 of 18

In the CMF (Figure 7), the positive associations between the P. koraiensis in the large-diameter
size class and the P. koraiensis in the small-diameter size class within a certain scale range signified
that the latter was suitable to survive under the canopy of the former. The positive associations
generally observed between all stages of the dominant tree species (L. gmelinii) and all P. sylvestris
var. mongolica individuals and trees in the four growth stages signified that L. gmelinii promoted the
growth of P. sylvestris var. mongolica (Figure 10, Lg–Ps, Lg–Ps1, Lg–Ps2, Lg–Ps3, Lg–Ps4). Based on this
association, we can use L. gmelinii as the protective tree species of P. sylvestris var. mongolica to increase
the tree species diversity in the future forest management decision. However, the negative associations
between all individuals of L. gmelinii and the broadleaf species of P. davidiana within a certain scale
range occurred because the interspecific competition intensity between these species was correlated to
the community’s dynamic change, the pioneer species of P. davidiana showed the strongest competitive
intensity at the initial stage of community formation, which gradually decreased over the process of
succession [58], and the pioneer species promoted the establishment, growth and development of
species in the latter periods of community succession [59].

We can evaluate successional stages according to the associations between the dominant tree
species and other main tree species [60–62]. At the initial stage of community development, species
tend to be stochastic. In the CBMF in this study, the dominant tree species L. gmelinii showed no
associations with the main tree species B. platyphylla at every development stage at large spatial scales,
signifying that there were no specific interspecific relations between the main tree species in this
community. All of them occurred at the initial stage of community succession. However, in the BF
and CMF, the dominant tree species and the main tree species presented stronger positive associations
or negative associations with the main tree species of different diameter classes at a certain scale
because the interspecific relations in the community showed complex changes as intraspecific and
interspecific competition intensified as community succession moved into the middle phase [63,64].
With an increasing number of dominant tree species, the dependence of the population greatly declined,
resulting in positive or negative associations. As community succession continued, the community
structure and type position tended to become stable and reach a climax condition, and the interspecific
relations at the time were dominated by positive associations [65,66]. The analysis of spatial patterns
and interspecific correlations is an effective way to identify the existence of latent processes in forest
communities [67,68].

5. Conclusions

Our study focused on the spatial distribution patterns and intraspecific associations of the main
tree species during their different growth and development stages and the community characteristics
of three forest types and simultaneously analyzed the interspecific associations of the main tree species
across different diameter classes and the dominant tree species in every forest type. The spatial
distribution patterns were influenced by adjacent habitats and diffusion limitation. On the basis of the
evaluation of the community succession process through the analysis of the interspecific associations
between dominant tree species and other main tree species, the CMF and the BF were considered to be
in the middle stage of succession, and the CBMF was considered to be in the initial stage.

As the local government in the Greater Khingan Mountains area prohibits deforestation, the
appropriate tending and intermittent cutting of forest and undergrowth cleaning work would promote
the regeneration and stability of the communities in these three forest types. Many factors affect the
spatial pattern of communities: early cutting disturbance, natural disasters, soil and landform [69,70].
Moreover, the different ages of the different forest storeys within a single community showed different
spatial distribution patterns, but this requires further investigation and research [71,72].
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