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Abstract: The potential groundwater-dependent vegetation (pGDV) in the Iberian Peninsula (IP)
was mapped, with a simple method, hereafter referred to as SRS-pGDV, that uses only Normalized
Difference Vegetation Index (NDVI) time series retrieved from the Moderate-Resolution Imaging
Spectroradiometer (MODIS) Terra V6 product, covering the period February 2000 to April 2018.
NDVI was standardized, to minimize the effect of the different land cover types. The extreme drought
event of 2004/2005 was used to perform the classification. Considering the water scarcity that affected
vegetation in the IP during this event, it was postulated that vegetation showing a high standardized
NDVI should be classified as pGDV. Irrigated vegetation and areas with sparse vegetation were
eliminated. A cluster analysis was performed, in order to classify the pixels as more/less likely to be
pGDV. The results obtained were compared with modeled water table depth, and a propensity of
pixels identified as pGDV in areas with low water table depth was clearly observed. However, based
on CORINE Land Cover types, some areas identified as pGDV are likely irrigated, such as fruit-tree
plantations; this inference is in line with the postulated criterion of vegetation access to sources of
water other than precipitation. SRS-pGDV could also be applied to regional studies, using NDVI
with a higher spatial resolution.

Keywords: phreatophytes; remote sensing; drought; aridity; groundwater; water table depth;
land cover

1. Introduction

Vegetation photosynthetic activity depends and may be limited by water availability, temperature,
and radiation, among other factors [1]. In arid and semi-arid areas, water scarcity can exist due to
precipitation seasonality or the frequent occurrence of droughts [2]. To overcome surface water scarcity,
some species can rely on different water sources. Groundwater-dependent ecosystems are those whose
biotic composition, structure, and function rely on groundwater. These ecosystems may depend on the
surface expression of groundwater, such as base-flow springs and rivers, and wetlands [3], or they
may access deep groundwater, through the root system of the trees [3]. Such phreatophyte trees have
been identified in semi-arid areas of the Iberian Peninsula [4–14].

The climate in the Iberian Peninsula (IP) ranges from humid to semi-arid [15], due to the high spatial
variability of the precipitation regime in this territory [16,17], but the aridity classification is not static
and has changed from the past to the present [18]. These modifications follow changes in precipitation
and evapotranspiration [19,20], which also contributed to the increase in drought frequency and
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intensity observed in some areas of the IP [19,20]. In addition, precipitation in the IP occurs mostly
in the period from October to March, and the summer months are usually dry [17,21]. Under such
conditions, surface water availability can be low, due to the negative water balance [22], which can lead
to a decrease in photosynthetic activity [23,24], crop yields [25,26], and tree growth [27,28]. Nonetheless,
the existence of groundwater in the IP enables the occurrence of groundwater-dependent vegetation
(GDV) in areas not yet analyzed with in situ methods [29].

The identification of GDV has been performed using several distinct methods, which include
direct and indirect methods [30]. Examples of direct methods are the fluctuation in groundwater
depth, indicative of water uptake by plants [31,32]; the analysis of stable isotopes, which allows the
identification of water sources used by plants based on the isotope composition of the available water
sources [8,33–35]; and the use of remote-sensing (RS) data, to characterize green vegetation [36]. Indirect
or inference methods consist of the identification of resources or patterns that are shown by GDV [37].

Although not as accurate as in situ methods, the use of RS data is cost-effective and has the
advantages of being much faster and less laborious [3,38]. Besides, the global coverage of high-resolution
RS data allows the identification of potential GDV (pGDV) in locations for which there is no other type
of information, as well as the monitoring of these ecosystems over time. Although it is not possible to
identify GDV on a field level by using RS, it is suitable to study pGDV on a regional or national spatial
scale [38,39]. Vegetation indices obtained using RS data have been used to identify pGDV in several
regions across the world [36,40,41]. Considering its ability to access water from sources other than
precipitation, Eamus et al. (2006) [3] defined criteria to identify GDV, such as the likelihood of GDV
to remain green and physiologically active even during dry periods and to present smaller seasonal
changes in leaf area index. Vegetation indices, such as NDVI, are able to capture vegetation greenness
and its seasonal variation, being used to identify pGDV [40,41] based on the abovementioned criteria
presented by Eamus et al. (2006) [3]. Nonetheless, meeting these criteria is not a sufficient condition
to be GDV, since non-GDV may also present this pattern. In addition, the methods proposed by the
abovementioned authors rely on classifications based on the differences between NDVI values that
may be unreliable in areas with a large variability of land cover types, where differences in NDVI
values may be related to the land cover type and not to the water constraints on the photosynthetic
activity of the vegetation.

The main goal of this work is to identify pGDV in the IP, using the vegetation index NDVI
calculated from satellite data. We propose a simple method that can identify pGDV in large areas
where the vegetation can present contrasting patterns of greenness and seasonal variation. The lack of
greenness shown by vegetation experiencing water scarcity is reflected by negative NDVI anomalies,
i.e., deviations from the mean NDVI value. This feature has been used to identify stressed vegetation
and also to map the spatial extension of a drought event [24,42–45]. The identification of pGDV
was based on the hypothesis that, during drought events, non-GDV likely presents negative values
of NDVI anomalies, whereas GDV presents less negative or positive values of NDVI anomalies.
Considering the high number of land cover types present in the IP [15], with contrasting NDVI seasonal
patterns, mean monthly values, and high interannual variability [43,46,47], the NDVI monthly time
series was standardized in order to allow a comparison of NDVI anomalies for different land cover
types. In accordance with the data and procedures used, the method is referred to here as SRS-pGDV
(standardized remote-sensing data of potential groundwater-dependent vegetation).

2. Material and Methods

2.1. Study Area, Aridity Index, and Land Cover

This study was performed in the Iberian Peninsula, specifically in the regions where the climate
classification ranges from dry to arid, in areas that face water scarcity regularly. Aridity conditions
were assessed by using the aridity index (AI), which was computed as the mean ratio between annual
precipitation (P) and annual evapotranspiration (ET), as shown on Equation (1), where n is the number
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of years considered. Precipitation and evapotranspiration were retrieved from the Weather Research
and Forecasting (WRF) model simulations with a 9 km spatial resolution, for the period 1971–2000 [48].

AI =

∑n
i=1

Pi
ETi

n
, (1)

Due to the increasing trends observed in evapotranspiration in the Iberian Peninsula [19,20], it is
likely that the aridity index depends on the period considered, but with negligible impact on the present
assessment. Moreover, the spatial resolution of the WRF dataset is advantageous, since precipitation
is very sensitive to topography. Precipitation and evapotranspiration were available with a Lambert
projection, but the aridity index was resampled to match the NDVI sinusoidal projection, using a bilinear
interpolation. The results were then grouped in seven aridity classes, following Spinoni et al. (2015) [49],
namely humid, sub-humid, dry, semi-arid, arid, hyper-arid, and desert, as shown in Figure 1a.
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Figure 1. (a) Aridity classification of the Iberian Peninsula (IP) and (b) selected CLC 2006 land cover
types occurring in the study area. Land cover labels are shown in Table 1.

Table 1. Land cover types and corresponding area occurring in the study area, in dry, semi-arid, and
arid areas, and code (numeric and color) used in Figure 1b and Figure 7.

Land Cover Type Area (% of
the Total)

Area (% of
Dry Area)

Area (% of
Arid Area)

Area (% of
Semi-Arid Area) Code

Non-irrigated arable land 8.18 0.09 4.79 6.78 12
Vineyards 2.76 0.27 2.87 2.87 15

Fruit trees and berry plantations 4.22 66.03 6.61 1.50 16
Olive groves 5.72 0.08 7.70 4.74 17

Pastures 1.06 1.46 0.82 0.95 18
Annual crops associated with permanent

crops 0.54 0.08 0.56 0.47 19

Complex cultivation patterns 3.40 15.34 3.60 3.07 20
Land principally occupied by agriculture,

with significant areas of natural vegetation 3.38 2.71 2.74 4.14 21

Agro-forestry areas 13.49 0.00 15.17 10.90 22
Broad-leaved forests 13.35 0.00 13.10 15.41 23

Coniferous forests 10.60 2.54 10.40 12.34 24
Mixed forests 3.07 0.00 2.32 4.45 25

Natural grasslands 6.21 4.37 4.81 6.66 26
Moors and heathland 0.43 0.00 0.19 0.70 27

Sclerophyllous vegetation 13.68 2.73 13.72 14.57 28
Transitional woodland-shrub 9.21 3.37 10.05 9.56 29

Beaches, dune, sand 0.03 0.00 0.04 0.02 30
Bare rocks 0.20 0.00 0.15 0.26 31

Sparsely vegetated areas 0.28 0.92 0.21 0.36 32
Burnt areas 0.20 0.00 0.16 0.25 33

Glaciers and perpetual snow 0.00 0.00 0.00 0.00 34



Forests 2020, 11, 147 4 of 17

The land cover classification for the study area is based on the information from the CORINE
land cover (CLC) map for the year 2006, version 18, and after removing humid and sub-humid areas
(Figure 1b). This map was produced with information obtained from satellite data from 2005 to
2007 [50], allowing the characterization of the surface conditions during the drought year of 2005
(see Section 2.5). CLC contains 44 land cover types, including artificial surfaces, agricultural areas,
forest and semi-natural areas, wetlands, and water bodies. The original Lambert azimuthal equal
area projection with a 250 m spatial resolution was resampled to match the NDVI MODIS sinusoidal
projection, by applying a nearest neighbor interpolation. Areas identified as artificial surfaces, wetlands,
and water bodies were discarded, since they do not represent vegetation. Permanently irrigated areas
and rice fields were also discarded, as the irrigation decreases the water stress caused by water scarcity,
and the vegetation could be wrongfully identified as GDV. Dry or nonexistent vegetation were masked
based on NDVI values, as explained in the next section. The remaining area is mostly semi-arid
(54.98%) and dry (44.78%), while only a small area located in the southeast is classified as arid (0.24%).

The area occupied by each land cover type in the study area is shown in Table 1, as well as the
code representing each cover class used in the Figure 1b and Figure 7. The classes more frequent in the
study area are sclerophyllous vegetation (13.68%), agro-forestry areas (13.49%), broad-leaved (13.35%)
and coniferous (10.60%) forests, and transitional woodland shrub (9.21%). The regions classified as
arid and semi-arid presented a similar composition of land cover types, whereas dry areas are much
less diverse. The former showed a predominance of fruit-tree and berry plantations, although this may
be related with the very small area occupied in the study area by this aridity class.

2.2. Normalized Differences Vegetation Index

NDVI time series were retrieved from the MODIS Terra V6 product, covering the period February
2000 to April 2018. Time series MODIS 16-day (MOD13Q1) were used with a spatial resolution of
250 m. In order to exclude contaminated pixels, only data with the highest reliability classification
were used. A monthly time series was built, choosing the maximum value of each month. The median
monthly value was computed over the abovementioned period (February 2000 to April 2018), and areas
showing a median NDVI value lower than 0.3 in August were discarded, since it was considered that
this value points to the vegetation being dry or nonexistent, and therefore not GDV.

2.3. Water Table Depth

Water table depth (WTD) modeled on a global scale and made available by Fan et al. (2013) [51]
was used. Fan et al. (2013) [51] compiled data from state-owned groundwater-monitoring networks at
national and regional scales. WTD was obtained by using a groundwater model forced with climate,
terrain, sea level, and WTD observations. Only time series longer than 4 years and declining trends
smaller than 0.6 m per year were used in the model [51]. Considering the uneven distribution of
the groundwater-monitoring stations, it is possible that the observed and modeled WTD are biased,
as mentioned by Fan et al. (2013) [51], and this should be taken into consideration. In the IP, the number
of monitoring stations used to model WTD was 1640. The modeled deepest WTD in this territory
reached 448 m, although, in ≈25% of the area, it was shallower than 20 m. The dataset had a spatial
resolution of 30 arc-second (≈1 km) and was resampled to match the NDVI MODIS resolution and
sinusoidal projection, using a bilinear interpolation.

2.4. Identification of Potential Groundwater-Dependent Vegetation

The drought event of 2004/2005 was one of the driest events in the Iberian Peninsula since
1865 [21]. From January to July 2005, monthly precipitation was below the 10th percentile [44], and the
accumulated precipitation from October 2004 to June 2005 reached only 40% of the average of the
period 1961–1990 [21]. The entire Iberian Peninsula was deeply affected by the severe drought of
2004/2005 [19], which affected vegetation in most of the territory, as assessed by NDVI [43]. Therefore,
this extreme event was used for the identification of pGDV.
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Precipitation in the IP occurs mostly between the months of September and June [17,52]. In central
and southern regions, 90% of rainfall occurs between October and June [21]. Moreover, precipitation in
June was found to be very important in the IP to vegetation growth, as shown by the high correlation
between the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration
Index (SPEI) drought indices and tree-ring widths in this month [53–55]. Since the month of June 2005
followed several months with lower precipitation, the soil moisture was likely very low in the study
area [56], and thus the vegetation photosynthetic activity did not depend on this water source [41].
For these reasons, the month of June was chosen to identify pGDV.

The monthly time series of NDVI for the month of June was then standardized, as shown in
Equation (2), where NDVIstd is the standardized NDVI, NDVI is the monthly NDVI value, NDVI is the
mean value of the monthly time series, and SNDVI is the standard deviation of the monthly time series.

NDVIstd =
NDVI −NDVI

SNDVI
(2)

A k-means cluster analysis was performed on the standardized NDVI (NDVIstd) in the month
of June of 2005. This method iteratively chooses the centroids (output) by minimizing the sum of
squares of data and the candidate points. Initially, the data were clustered in 6 to 10 groups (input of
k-means), and we present here the results obtained with 8 clusters. The identification of pGDV made
with SRS-pGDV is based on the hypothesis that clusters more likely to represent GDV should present
centroids with high values of NDVIstd, whereas clusters less likely to represent GDV should present
centroids with low values of NDVIstd.

2.5. Validation and Statistical Analysis

In order to assess the overall quality of the pGDV identification made with SRS-pGDV (described
in Section 2.4), a comparison was made between the results obtained here and the modeled WTD and
land cover types. Therefore, vegetation identified as pGDV predominantly occurring in areas with a
shallow WTD is an indicator of the good performance of the method. Since information regarding the
actual existence of GDV in the IP is scarce, land cover information was used to analyze the NDVIstd

clusters. Land cover types do not provide information regarding the occurrence of particular species,
and therefore it is not possible to make a straightforward validation of SRS-pGDV. Nonetheless, NDVI
values represent all the vegetation occurring in the corresponding pixel, and for this reason, land cover
types offer significant information to help interpret the results of the pGDV identification.

The results were also analyzed in more detail in areas where GDV are known to exist. In recent
years, several authors have used in situ methods to prove the occurrence of phreatophytes in the
IP [4,6,7,12–14], such as in the study areas listed in Table 2. The areas analyzed in this work are centered
in the coordinates of the study areas provided (Table 2) and include the surrounding area of up to
±0.1 degree in latitude and longitude. In these areas where GDV is recognized to exist, the pGDV
identification was compared with the WTD.

Table 2. Locations where groundwater-dependent vegetation (GDV) was identified in the IP, using in
situ methods. Labels refer to regions shown in Figure 6.

Label Location Latitude Longitude Reference

A1 Herdade das Lezírias, Belmonte 38◦52′55” −8◦47′49” Mendes et al., 2016 [12]
A1 Herdade das Lezírias, Caro Quebrado 38◦50′9” −8◦49′2” Mendes et al., 2016 [12]
A2 Herdade dos Leitões, Montargil 39◦8′00” −8◦11′00” Costa et al., 2016 [13]
A3 Herdade da Mitra 38◦32′0” −8◦1′ David et al., 2004 [6]
A4 Herdade de Barradas da Serra, Grândola 38◦11′ −8◦37′ Costa et al., 2016 [13]
B1 Sardon 40◦59′24” −6◦6′14” Lubczynski et al., 2005 [7]
B2 Biological Reserve of Doñana 36◦59′2” −6◦29′23” Antunes et al., 2018 [14]
B3 Rambla Honda 37◦08′ 2◦22′ Haase et al. 1996 [4]
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3. Results

3.1. Identification of Potential GDV

The NDVI and NDVIstd values in June 2005 are shown in Figure 2. There are several areas of
very high NDVI values, despite the extreme drought conditions observed in this month (Figure 2a).
NDVI values higher than 0.6 occupy 2.25% of the study area. In contrast, there is a high number of
very low NDVI values in the southwestern area of Portugal, corresponding to the Alentejo region.
Despite the elimination of pixels with median NDVI value in August lower than 0.3, NDVI values
lower than 0.3 observed in June 2005 still occupy 26% of the study area, indicating the extreme
intensity of the 2004/2005 drought event. The remaining area (71.71%) presents NDVI values ranging
from 0.3 to 0.6, reflecting the high variability of land cover types in the IP, as shown in Figure 1b.
Figure 2b further shows that most of the vegetation in the study area presents negative NDVIstd (91%),
pointing to a generalized decrease in vegetation photosynthetic activity driven by the extreme dry
conditions in June 2005. It is also possible to observe fire scars in areas that burned in 2004 in Southern
Portugal [57], where the vegetation has not yet recovered and therefore presents a very low NDVIstd

value. In Figure 3, we show the boxplot of NDVIstd on NDVI intervals. Although the median value of
NDVIstd increases with NDVI (from −1.90 to 0.96), all except the first NDVI interval present negative
and positive NDVIstd values.
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The results of the cluster analysis are shown in Figure 4, while the centroids and the area occupied
by each cluster are presented in Table 3. The centroids ranged from −2.65 to 1.04. Based on the
hypothesis that pGDV shows higher values of NDVIstd, we assumed that the probability of a cluster
representing pGDV increases with the value of its centroid. The results shown in Figure 4 are similar
to those shown in Figure 2b. Therefore, it is possible to spot the clusters identified as highly likely to be
pGDV in areas that present higher NDVIstd values, and clusters not likely to be pGDV in areas that
present lower NDVIstd values.

Table 3. Centroids of the eight clusters obtained using NDVIstd and respective area (%).

C1 C2 C3 C4 C5 C6 C7 C8
Centroid −2.65 −2.08 −1.62 −1.22 −0.81 −0.36 0.20 1.04
Area (%) 5.97 13.11 17.79 19.67 17.88 13.33 8.54 3.70
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Figure 5 presents a boxplot of NDVI values for the pixels included in each cluster. Similar to the
relation between NDVI and NDVIstd, the median NDVI values increased from C1 to C8, with median
values ranging from 0.33 to 0.48. The median NDVI value increase is steeper from C5 to C8. These
low median values are probably due to the negative impact of the extreme drought on vegetation
photosynthetical activity, also highlighted by the strong NDVI decrease reported by Gouveia et al.
(2012) [43]. However, the small difference in the range of values along the clusters is indicative of a
diversity of responses of the vegetation to drought, since each cluster represents different magnitudes
of NDVI anomalies. Besides, outliers corresponding to high values of NDVI occurred in all clusters,
whereas outliers associated with low NDVI values only occurred in clusters C1 to C4, which are
considered less likely to be GDV.

The distribution of the pixels associated with each cluster for different aridity classes is shown in
Table 4, as a percentage of the area of each aridity class. In the case of semi-arid and dry classes, the
occurrence of the clusters is very similar to the occurrence in the entire study area (Table 3), pointing to
the nonexistence of a relation between the NDVI pattern for the vegetation types included in the different
clusters and the aridity classes for the different regions. However, in the case of the arid class, the area
occupied by the clusters C6 to C8 is much larger than in the study region, whereas the remaining clusters
occupy a much smaller area. Nonetheless, as previously mentioned, the arid class occupies only a very
small fraction of the study area (0.24%), and these results should be interpreted with caution.
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Table 4. Area of pGDV clusters occurring in each aridity class (% of the area of each aridity class).
The likelihood of being GDV increases from C1 to C8.

C1 C2 C3 C4 C5 C6 C7 C8
Arid 0.22 1.40 3.81 8.56 14.58 23.35 27.88 20.20

Semi-arid 6.72 13.63 17.54 19.19 18.14 13.52 8.21 3.05
Dry 5.09 12.91 19.27 21.96 19.25 13.21 6.73 1.57

3.2. Validation with Water Table Depth

In order to assess the reliability of SRS-pGDV, we compared information regarding WTD in the IP
with our results. For each cluster, Table 5 shows the area corresponding to each WTD interval, as well
as the area of each WTD interval in the study area. The area of the WTD interval increases with depth,
with the exception of the shallowest interval considered. For each cluster, the areas on each WTD
interval follow this pattern, but there are significant differences between the clusters. For the first five
WTD intervals, up to 20 m depth, in each WTD interval, the area is largest in C8. On the following
four deeper intervals, from 20 to 50 m depth, the area is largest in C1. C1 also presents the smallest
area on the first two WTD intervals, and for WTD deeper than 25 m, the minimum area occurs in C8.
This pattern is in agreement with the hypothesis that pGDV shows higher NDVIstd values: the clusters
with positive NDVIstd values present a larger area of shallower WTD, when compared to clusters
with negative NDVIstd. These results point to the existence of groundwater that can be accessed by
vegetation, most likely by the deep roots of some tree/shrub species. The smaller areas found on
clusters C1 to C6 suggest that, even though water is available, the vegetation is not reaching it, and
hence the centroids of these clusters present negative values (Table 3). Furthermore, although the areas
on each cluster follow the pattern observed on the entire study area, their respective values are not
proportional: for instance, the areas accounted for in the first and second WTD intervals (lower than 1.5
and 5 m, respectively) on C8 are, respectively, 2.66 and 2.64 times larger than the areas obtained when
considering the entire study area, whereas on C1 the areas are smaller. Considering that C8 presents
the highest area in the WTD intervals lower than 20 m, we show in Table 5, for each cluster, the area of
WTD lower than 20 m and higher than 20 m. The areas of the clusters C1 to C6 are very similar to the
areas shown for the entire study area, suggesting that the WTD is not playing an important role in the
classification of these clusters. By contrast, the areas of the cluster C7 and C8 are considerably different
than those found for the study area, which points to a dependence on the WTD.
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Table 5. Area of water table depth (WTD) classes occurring in the study area and in each cluster (% of
the area of each cluster). ++ Denotes the largest area on each WTD interval, and – denotes the smallest.
The likelihood of being GDV increases from C1 to C8.

WTD (m) Study
Area (%)

Area (% of Each Cluster)
C1 C2 C3 C4 C5 C6 C7 C8

WTD < 1.5 5.94 4.94 – 5.11 5.13 5.27 5.52 6.36 8.99 15.79 ++

1.5 < WTD < 5 3.49 2.94 – 3.02 3.11 3.14 3.20 3.72 5.06 9.22 ++

5 < WTD < 10 4.92 4.91 4.88 4.73 4.59 4.52– 4.90 5.93 9.36 ++

10 < WTD < 15 5.23 5.85 5.50 5.30 5.13 4.91 4.82– 5.24 7.06 ++

15 < WTD < 20 5.48 6.23 5.88 5.62 5.44 5.21 5.05– 5.14 6.25 ++

20 < WTD < 25 5.84 6.85 ++ 6.49 6.06 5.76 5.55 5.33– 5.37 5.45
25 < WTD < 30 6.11 6.81 ++ 6.53 6.36 6.18 5.94 5.74 5.42 5.32 –

30 < WTD < 40 11.92 13.33 ++ 12.66 12.33 11.86 11.74 11.48 10.79 9.27 –

40 < WTD < 50 10.88 11.39 ++ 11.10 10.97 11.06 11.00 10.71 10.19 8.19 –

WTD > 50 40.20 36.77 38.83 40.40 41.56 42.40 ++ 41.89 37.86 24.09 –

WTD < 20 25.05 24.86 24.39 23.88 23.57 23.37 24.84 30.36 47.68
WTD > 20 74.95 75.14 75.61 76.12 76.43 76.63 75.16 69.64 52.32

Figure 6 shows the areas classified as C7 and C8 and divided into WTD shallower (red) and
deeper (blue) than 20 m (Table 5). Some areas shown in Figure 6 with WTD deeper than 20 m are
located in high-altitude regions, such as the Sierra Morena, in the south and the province of Valencia in
the east (arrows on Figure 6). In these regions, on most months, the mean temperature is lower and the
precipitation is higher than in the lower altitudes [58]. At high altitudes, vegetation photosynthetic
activity may be limited by temperature or radiation [1]. Additionally, it has been observed that drought
events may have positive effects on vegetation at higher altitudes, due to the increase in temperature
or radiation, associated with the decrease of cloud cover [59].

The areas marked by boxes in Figure 6 correspond to locations previously studied, using in situ
methods (Table 2), and are analyzed with more detail in Section 3.4.
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Figure 6. Areas identified as C7 or C8 and where WTD is lower than (red) and higher than (blue) 20 m.
The arrows point to two regions of high altitude where WTD is higher than 20 m: Sierra Morena, in the
South, and the province of Valencia, in the East. The boxes correspond to the Locations listed in Table 2.
The labels of the boxes are also listed in Table 2.

3.3. Land Cover Analysis

Here, the hypothesis used for pGDV identification does not exclude the possibility of non-GDV
presenting high values of NDVIstd during a dry period. An erroneous positive identification is possible
because different vegetation types can respond differently to water scarcity, and because there may
be irrigated vegetation that was not excluded, using information from CLC 2006. The occurrence
of the land cover types for each cluster is shown in Figure 7. On clusters C1 to C7, around 60% of
the area is covered by forest, which is in agreement with the land cover distribution in the study
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area (Table 1). Nonetheless, there is a clear decrease of the area of broad-leaved forests (25.39% to
10.83%) and transitional woodland shrub (13.83% to 7.30%), and an increase of coniferous forests
(3.12% to 17.85%), from C1 to C7. The area of sclerophyllous vegetation does not change significantly
in these clusters. Some of the agricultural classes also show an increasing area from C1 to C7, namely
non-irrigated arable land (3.8% to 6.11%), vineyards (1.75% to 3.76%), fruit-tree and berry plantations
(0.85% to 11.70%), and complex cultivation patterns (2.93% to 5.10%). On the other hand, agro-forestry
classes show a marked decrease (15.02% to 6.46%). There is a clear difference between the previously
considered clusters and C8, mostly occupied by agricultural classes (58.11%). This large component
is mainly due to a higher occurrence of the fruit-tree and berry plantations, although non-irrigated
arable land, vineyards, and complex cultivation patterns are also occurring more in cluster C8 than in
the remaining clusters. Although the class of irrigated arable land was excluded from the analysis,
the remaining agricultural classes may also include irrigated vegetation [60].
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3.4. Comparison with in Situ GDV Identification

In this section, only the regions A1 to A4, shown in Figure 6, are considered. The regions B1 to B3
were not considered for the analysis, since most of the pixels in these areas were previously excluded,
due to a high AI value (B1 and B2), or a low NDVI value in August (B3).

Since GDV is known to occur in the regions A1 to A4, we wanted to analyze in more detail the
results obtained with the NDVIstd cluster classification. We show in Figure 8a the pixels in these
regions classified as C7 or C8 (with positive centroids) in red, and the pixels classified as C1 to C6
(with negative centroids) in dark gray. The WTD is also shown, for the pixels identified as C1 to C6
(Figure 8b) and for the pixels identified as C7 and C8 (Figure 8c). C7 and C8 pixels occur in all four of
the regions where GDV has been previously identified (using in situ methods) [4,6,7,12–14], pointing to
a good performance of SRS-pGDV. The corresponding maximum, median, and minimum WTD values
are shown in Table 6. The region where the WTD is deeper is A4, and on the others, the median WTD
is lower (A1) or very close to 20 m, pointing to a higher likelihood of GDV occurrence. Nonetheless,
it is clear on Figure 8 that pixels with a deeper WTD were consistently removed when showing C7
or C8 pixels only, as is best illustrated in the region A4. This result meets the necessary condition of
groundwater availability to the occurrence of GDV. The maximum and median WTD values on C7 and
C8, when compared to C1 to C6, are in agreement with the results shown in Table 5.
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Table 6. Maximum and Minimum water table depth (WTD) in the pixels identified as C7 or C8 (white
cells) and C1 to C6 (gray cells), in the areas A1, A2, A3, and A4 (shown in Figure 6).

Label Cluster Maximum WTD Minimum WTD Median WTD

A1 C7-C8 34.76 0.03 6.71
C1-C6 37.06 9.89

A2 C7-C8 58.97 0.08 21.84
C1-C6 80.99 25.09

A3 C7-C8 74.69 0.16 20.98
C1-C6 96.69 21.53

A4 C7-C8 97.26 5.75 37.19
C1-C6 110.68 53.26Forests 2020, 11, 147 12 of 18 
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Figure 8. (a) Pixels identified as C7 and C8 (red) and as C1 to C6 (dark gray). (b) Water table depth in
the areas classified as C1 to C6 and (c) as C7 to C8. Pixels shown as light gray were previously excluded
from the study area.
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4. Discussion

The exceptional character of the drought episode of 2004/05 in the IP and its impacts on vegetation
photosynthetic activity [43] were also observed by using NDVI MODIS (2000–2018), by means of both
NDVI and NDVIstd, which reinforced the water scarcity occurring in June 2005 in the IP. Therefore,
June 2005 was selected in order to identify vegetation that remains green and active in the absence of
precipitation, due to its access to other water sources [41].

SRS-pGDV relies on one single criterion, which states that vegetation presenting high NDVIstd

during a very dry period is likely GDV. This criterion is similar to one of the criteria defined by Eamus
et al. (2006) and already applied by some authors [40,41], which states that vegetation presenting
high NDVI values during a dry period is likely GDV. These authors also defined low seasonal and
interannual variability as criteria to identify GDV, but the standardization of NDVI made these criteria
inapplicable. However, the standardization allows comparison of land cover types with typically
different NDVI values, and also an interannual comparison. Our results show that the NDVI value
was not the adequate discriminant factor for characterizing the different clusters obtained, since some
pixels presenting relatively high values were assigned to clusters very unlikely to be GDV. Moreover,
although the median NDVI values increase from C1 to C8, C8 presents a median value lower than 0.5,
which is a value lower than some land cover types, like coniferous forests, present during drought
conditions [43].

Nonetheless, and similarly to Barron et al. (2014) [40], the NDVI value at the end of the dry season
was taken into account, which led to the exclusion of pixels showing a median value lower than 0.3 in
the month of August. This exclusion amounts to the criterion of the seasonal variability, since it is
discarding vegetation that presents a decreased photosynthetic activity on the dry season, compared
to the wet season. This type of vegetation is common in the study area, as in other Mediterranean
regions [22,46], due to the dryness of the summers.

We assumed that a predominant identification of pGDV in areas with a shallow WTD indicated the
good performance of SRS-pGDV. Therefore, in order to validate the method, the cluster classification
was compared with modeled WTD presented at global scale by Fan and co-authors (2013) [51].
The WTD dataset used is possibly biased, but this is highly related with the bias observed in the
location of the observation points [51]. Marques et al. (2019) [29] modeled groundwater depth in
the region of Alentejo, located in the Southern Portugal, using data from the Portuguese national
inventory (also included in Fan et al., 2013 [51]) and from an in situ campaign performed in the area.
The sampling points are evenly distributed in the territory, and their results show a similar pattern to
the dataset used in this work, namely groundwater shallow enough to be accessible by GDV in most of
the territory, as well as high WTD values along the coast. This feature indicates a good quality of the
dataset in this region, but it was not feasible to compare the modeled WTD in the remaining study area.
Despite the possible bias of the WTD dataset, a clear dependence between NDVIstd and WTD was still
noticeable. The large areas of C7 and C8 occurring at WTD lower than 20 m are in agreement with the
deepest rooting systems that have been reported in the study area, namely the case of Quercus ilex that
was shown to reach 13 m deep in Portugal [6]. Although Retama sphaerocarpa reached 28 m in Spain [4],
the majority of the results found in the literature for the IP is lower than 20 m [61,62]. The occurrence
of non-GDV in areas where groundwater exists is not surprising, since groundwater availability is a
necessary but not a sufficient condition for the existence of GDV. Several other factors condition the
occurrence of vegetation, such as soil properties, climate, and human intervention [63], particularly in
an extensively managed region, such as the IP. Marques et al. (2019) [29] estimated the occurrence of
two known and one possible GDV species in the Alentejo region, in Southern Portugal (Quercus suber,
Quercus ilex, and Pinus pinea, respectively), and in many areas where WTD allowed their existence,
the density of these species was very low, making it unlikely to be identified by NDVI with a spatial
resolution of 250 m. On the other hand, the pGDV occurrence in areas where groundwater was too
deep may be associated with the availability of other water sources, such as irrigation, or also with
a response of vegetation to water scarcity different than it was here postulated. Recent results have
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also highlighted that, in areas where temperature and/or radiation are limiting factors to vegetation
photosynthetic activity, the occurrence of a drought event may imply an increase in these variables,
namely radiation, allowing an increase (and not the assumed decrease) in vegetation photosynthetic
activity [59], as water availability is not limiting. This has already been reported for some areas of the
IP, such as mountain areas, as observed using NDVI and other vegetation indices by Gouveia et al.
(2012) [43].

Taking into account that the CLC 2006 classes were not defined as aiming to separate between
the different plant species included in the 44 classes, a clear discrimination between species that are
GDV or non-GDV is not expected. However, as far as we know, the CLC classification is the best land
cover map available for the entirety of Europe and the IP in terms of spatial resolution and land cover
discrimination. Despite the sometimes-unclear relationship between CLC classes and NDVIstd in each
pGDV cluster, relevant information is still obtained. For instance, the three tree species considered
by Marques et al. (2019) fall on two different CLC classes: broad-leaved and coniferous forests [60].
Moreover, a CLC class is generally a mixture of several vegetation types, and both the NDVI value and
the NDVIstd will depend on the relative frequency of the vegetation types on a given pixel. Nonetheless,
the results of the present study show a preference of some CLC classes for clusters more likely to be
GDV. The agricultural classes present in the pGDV cluster 8 clearly point to the occurrence of irrigation
during this drought episode. In particular, citrus fruit trees are known to be irrigated in some areas of
the IP, particularly in the Autonomous Community of Valencia (East Spain), responsible for more than
half of the irrigated area occupied by citrus fruit trees in Spain in 2005 [64], and also in the Algarve
(south of Portugal) [65]. In these areas, CLC clearly shows a prevalence of the class fruit trees and
berry plantations. It is likely that the irrigation was adjusted to the severe water scarcity that occurred
during the drought event, to avoid vegetation stress. For this reason, the NDVI values in these irrigated
areas did not show the expected decrease. Therefore, the use of CLC information allows us to discard
the classification of vegetation as pGDV in these areas, although SRS-pGDV correctly identified it
as non-stressed.

Costa et al. (2016) [13] noted that, in some areas, the access of the trees to groundwater occurs on
steep slopes, and steep slopes were given a lower likelihood to host pGDV by Marques et al. (2019) [29],
since steep slopes promote higher runoff levels and therefore lower groundwater recharge. This is the
case in area A4 of the present study (Figure 6), explaining the localization of some pixels classified
here as pGDV by SRS-pGDV in areas identified as not suitable in the study of Gomes Marques et al.
(2019) [29]. On the other hand, some areas identified as more suitable in the Marques et al. (2019) [29]
study were eliminated from the present analysis, using the criterion of low median NDVI on August,
since the main land cover was likely annual crops, which are harvested before the summer. In such
areas, some tree species with access to groundwater may exist, but with a density likely too low to be
captured by the NDVI spatial resolution obtained from the MODIS sensor, or they are mixed with
other types of vegetation, such as shrubland, grassland, and complex cultivation patterns. This might
explain the patterns obtained when analyzing the areas B1, B2, and B3.

Besides its sensitivity to drought impacts on vegetation photosynthetic activity, NDVI time
series may present structural breaks due to land cover changes and, in particular, the occurrence
of wildfires [66]. Actually, low NDVI anomalies have been used to identify burned areas in the IP,
and consequently our results also show some areas that were burned during the fire seasons of 2003 to
2005 [24,57]. Therefore, the NDVI breaks observed may artificially increase the NDVI and NDVIstd

values, leading to an erroneous classification as pGDV, and vice versa.

5. Conclusions

A simple method to identify potential GDV by using standardized NDVI obtained from remote
sensing data was proposed in this paper and applied to the IP. The standardization of NDVI values
allowed us to minimize the effect of the large variety of land cover types occurring in the study
area. NDVI anomalies have been previously used to identify the impacts of drought on vegetation,
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based on the fact that water scarcity can negatively affect vegetation photosynthetic activity and thus
the corresponding NDVI value. In this work, the same principle was used to identify vegetation
that potentially had access to a water source other than precipitation, such as groundwater (pGDV).
This vegetation pattern is better observed during a severe drought episode.

Our results showed a clear affinity of pixels to be identified as pGDV in areas where the WTD was
predominantly shallow enough to be accessible by vegetation, which is a necessary condition for the
existence of pGDV. A more detailed analysis of locations where GDV have been previously identified
showed that the SRS-pGDV systematically excluded pixels with a deeper WTD. Although the use of
land cover types did not allow us to sharply identify pGDV, the presence of pixels corresponding to
irrigated cultures was obvious and consequently did not show a reduction of photosynthetical activity.
On the other hand, in areas of the IP with very low tree density, pGDV may not have been captured by
the SRS-pGDV, due to the spatial resolution of the dataset used in this work.

SRS-pGDV was able to identify pGDV in an extensive area, with varied climate conditions and
different vegetation types, even with a moderate spatial resolution. This method could also be applied
by using remote-sensing datasets with higher a resolution, allowing us to obtain a more detailed
mapping of pGDV, on regions of interest. The use of additional information from inventories about
irrigated species and/or discrimination between forest species, together with soil moisture data, may
increase the accuracy of SRS-pGDV. Nonetheless, the effect of structural brakes on NDVI time series
should be assessed in future work.
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