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Abstract: The parameterization of hybrid-mechanistic storm damage models is largely based on the 
results of tree pulling tests. The tree pulling tests are used for imitating the quasi-static wind load 
associated with the mean wind speed. The combined effect of dynamic and quasi-static wind loads 
associated with wind load maxima is considered by either linearly increasing the quasi-static wind 
load by a gust factor or by using a turning moment coefficient determined from the relationship 
between maxima of wind-induced tree response and wind speed. To improve the joint use of infor-
mation on dynamic and quasi-static wind loading, we present a new method that uses the coupled 
components of momentum flux time series and time series of stem orientation of a plantation-grown 
Scots pine tree. First, non-oscillatory tree motion components, which respond to wind excitation, 
are isolated from oscillatory components that are not coupled to the wind. The non-oscillatory com-
ponents are detected by applying a sequence of time series decomposition methods including bi-
orthogonal decomposition and singular spectrum analysis. Then, the wind-excited tree response 
components are subjected to dynamic time warping, which maximizes the coincidence between the 
processed data. The strong coincidence of the time-warped data allows for the estimation of the 
wind-induced tree response as a function of the effective wind load using simple linear regression. 
The slope of the regression line represents the rate of change in the tree response as the effective 
wind load changes. Because of the strength of the relationship, we argue that the method described 
is an improvement for the analysis of storm damage in forests and to individual trees. 

Keywords: wind loading; tree sway; sway modes; turbulence factor; dynamic time warping 
 

1. Introduction 

In the past 70 years, more than 150 large-scale, high-impact winter storms have occurred over 
the North Atlantic-European region [1–3], causing major damage to European forests approximately 
every two years. Through their large extent and the extreme characteristics of their near-surface wind 
fields, winter storms currently pose the greatest threat to Europe's forests. In fact, they caused more 
than 50% of primary damage in the second half of the 20th century [4,5]. 

Because of the great importance of storms in the natural disturbance regime of forests, there is a 
strong interest in minimizing the negative impacts of storm damage on forests. Catastrophic storms 
affect forestry operations and forest management [5], and the unexplained inter-annual variability of 
the terrestrial CO2 balance can be explained partly by storm damage to forest [6]. The winter storm 
Lothar [7], which hit Europe on 26 December 1999, led to a 30% decline in the European net biome 
production [6]. It is not only in forests that attempts have been made to reduce damage. In cities great 
efforts have also been undertaken to maximize tree stability against severe wind loads to maintain 
the safety of people and property [8]. 

Among the methods used to analyze storm damage to forests are expert opinions, statistical 
models and hybrid-mechanistic models [9]. Whereas expert opinions provide basic information for a 
qualitative storm damage assessment at the local scale, they are not suitable for mapping the complex 
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physical processes that lead to storm damage. Further possibilities for analysis result from the use of 
statistical and hybrid-mechanistic models. They allow the quantification of the probability and the 
extent of storm damage using information on stand and site factors. While statistical models provide 
only general insights into storm damage formation, hybrid-mechanistic models enable the investiga-
tion of physical processes leading to storm damage. 

Over the past decades, various hybrid-mechanistic storm damage models have been developed 
and parameterized for different datasets. They start the estimation of the storm damage probability 
by calculating the critical wind speed (CWS). This is the minimum wind speed required to break or 
overturn trees within forests. The CWS calculations compare the combined impact of quasi-static and 
dynamic wind loads acting on individual trees to the resistive forces of the aerial tree parts and the 
roots [9]. Models applied for CWS calculations include HWIND [10], GALES [11], FOREOLE [12], 
and ForestGALES_BC [13]. The approaches used in these models are core modules of tools that assess 
storm damage risk to forests such as ForestGALES [11] or HWIND-Aquilon [14] and have inspired 
development of other systems for the assessment of storm damage risk [15–18]. Recently, approaches 
of GALES to estimate CWS were used to develop agent-based storm damage models [19]. The basic 
structure of all the previously mentioned models is similar, but they differ in the mapping of compo-
nent processes and the scope of application. 

The parameterizations of GALES and HWIND used in the CWS calculations are largely derived 
from destructive tree pulling tests [20–24], which mimic the quasi-static wind load component asso-
ciated with CWS. A winch and cable system is used to simulate forces required to break or overturn 
the pulled trees. This approach assumes that the tree is deflected to a point of no return due to the 
mean wind speed and a constant mean wind direction [25]. Site and species-specific resistance to 
stem breakage and overturning can be calculated based on a large number of tree pulling tests carried 
out at different sites and on different tree species [9]. 

Although pulling tests are applied to estimate destructive wind loads, they are not suitable for 
directly quantifying the resistance of trees to turbulent wind loads in their current configuration and 
execution. This is because both quasi-static and dynamic wind loads act together during the occur-
rence of damage. Therefore, the hybrid-mechanistic models consider the impact of turbulent wind 
loads by empirical gust factors or through a turning moment coefficient [26]. Gust factors represent 
the stand- and tree species-specific ratio between maximum and mean bending moments along the 
stem [11]. By multiplying the quasi-static wind load by the gust factor, the total wind load that causes 
maximum tree deflection is calculated. However, the use of empirical gust factors is seen as one of 
the most critical steps in the CWS calculations because it is a single term that represents the complex 
dynamic wind-tree-interactions in extreme situations [9]. To avoid the use of gust factors, the turning 
moment coefficient was derived for individual trees from the linear relationship between the maxi-
mum hourly turning moment of the stem and the square of the average hourly wind speed at canopy 
top. The maximum turning moment for each hour is obtained by dividing hourly intervals into 20 
periods of equal length for which the maximum absolute turning moment is identified. The mode of 
the 20 values is taken as the maximum turning moment for the hour [26]. 

A further field of application for tree pulling tests is the non-destructive inspection of urban tree 
stability against wind loading. This kind of pulling test is used as a diagnostic technique in the as-
sessment of the wind load bearing capacity of trees without causing damage to them [27,28]. The 
results from these tests are extrapolated to determine CWS. The approaches developed for hybrid-
mechanistic storm damage models in forests have recently been applied to urban trees [29]. 

Although dynamic components are an important part of the total tree response to wind loading 
[30–34], they are not yet directly included in the assessment of failure limits. The combination of 
dynamic and quasi-static tree response components for a more realistic estimation of damaging wind 
loads is still pending. A critical point here is that trees do not respond equally to the entire wind load 
spectrum. Although sway in the fundamental mode dominates the wind-induced response, recent 
investigations showed that trees in conifer forests [35–37] as well as two single open-grown decidu-
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ous broad-leaved trees [38,39] primarily react to frequencies below their fundamental sway fre-
quency. This means that not all components of airflow are effectively involved in the excitation of the 
tree response. 

Here, we report an approach suitable for assessing the response of a plantation-grown Scots pine 
tree to the effective combination of dynamic and quasi-static wind loads. We describe how to com-
pensate the measured data based on the findings from previous studies to enable the establishment 
of a strong association between dynamic and quasi-static wind loads. We argue that the effective 
wind-induced tree response can be better integrated in existing systems used for storm damage anal-
ysis. The further development of methods to estimate effective wind loads on trees is an urgent mat-
ter, because an increase in the frequency and intensity of storms is expected in large parts of Europe 
by the end of the 21st century [40,41]. It is therefore assumed that storm damage in forests will in-
crease [42–45] and reduce the CO2 sink associated with European forests [7,46]. 

2. Materials and Methods 

2.1. Workflow 

The data collection and analysis of the wind-induced tree response comprised the following 
main steps (Figure 1): (1) Measurement of orientation (sampling frequency 10 Hz) at seven heights 
along the stem of the sample tree; (2) measurement of the wind vector (sampling frequency 10 Hz) 
close to the canopy top; (3) segmentation of orientation time series into irregular intervals; (4) appli-
cation of the bi-orthogonal decomposition to the orientation time series; (5) calculation and segmen-
tation of momentum flux time series into the irregular intervals found in the orientation time series; 
(6) application of singular spectrum analysis to separate non-oscillatory from oscillatory orientation 
components; (7) low-pass filtering of momentum flux time series; (8) separation of non-oscillatory 
and oscillatory response components; (9) calculation of the turbulence factor; (10) dynamic time 
warping of non-oscillatory orientation components and low-pass filtered momentum flux; (11) re-
gression of dynamically time warped non-oscillatory orientation components and low-pass filtered 
momentum flux; (12) quantification of the effective tree response. 

 

Figure 1. Workflow for quantifying the effective wind-induced response of the sample tree to effective 
dynamic and quasi-static wind loads. The parts of the figure marked in red indicate the steps and 
data used to quantify the effective tree response to wind loading. 

2.2. Airflow and Stem Orientation Measurements 
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Airflow and stem orientation measurements (sampling frequency 10 Hz) were carried out on 30 
January 2019 in a planted Scots pine (Pinus sylvestris L.) forest located in the southern Upper Rhine 
Valley (47°56′04″ N, 7°36′02″ E, 201 m a.s.l.) in the border area between France and Germany. On that 
day, wind speed had a pronounced diurnal cycle and 3 s gust speed reached values of 15.0 m/s at the 
canopy top, which is exceptional for this part of the Upper Rhine Valley. At the time of the measure-
ments, the Scots pine forest at the research site had a mean stand density of 580 trees per hectare and 
a mean stand height of 18.3 m. The sample tree’s height and its diameter at breast height were 16.8 m 
and 21.5 cm, respectively. The damped fundamental sway frequency of the stem (𝑓 ) was determined 
at 0.74 Hz using Fourier analysis developed in a previous study [34]. 

From a vertical profile of five (S1 to S5) ultrasonic anemometers (R.M. Young Company, USA, 
Type 81000VRE), which were mounted on a 30 m high scaffold tower (Figure 2), data from S3 in-
stalled close to canopy top was used to analyze airflow properties. The airflow data from this height 
was chosen because it allows a close relationship to the dynamics of the tree reactions to be estab-
lished and the effective wind load components to be estimated [36,37]. The dominant above-canopy 
wind direction sectors at the research site are south and southwest [47]. 

The wind-induced, multimodal response of the stem of a Scots pine tree growing at 4.0 m to the 
southwest of the tower was measured using seven micro electro-mechanical systems (MEMS) mo-
tion-tracking devices (MPU-6050TM Motion TrackingTM, InvenSense, USA). The motion tracking de-
vices (D1 to D7) are combinations of 3-axis gyroscopes and accelerometers. While the gyroscopes 
measured the wind-induced rotational motion as angular velocity (°/s), the accelerometer measured 
the wind-induced acceleration (𝑔) along the stem. To monitor the wind-induced response behavior 
of the stem, D1 to D7 were mounted at heights ℎ  = 0.1 m, ℎ  = 2.0 m, ℎ  = 4.0 m, ℎ  = 6.0 m, ℎ  = 8.0 
m, ℎ  = 10.0 m, and ℎ  = 12.0 m to it. The orientation measurements were carried out at several 
heights to capture the multimodal vibration behavior of the stem. In an earlier study [34], it was found 
that the Scots pine trees at the measurement site have at least four measurable modes of vibration. 

A Kalman filter implemented in the Sensor Fusion and Tracking Toolbox of Matlab software, 
version 2019a (The MathWorks, Inc., Natick, MA, USA) was used to calculate stem orientation (𝑂) by 
fusing the signals from the gyroscopes and accelerometers. From the fusion of the signals, infor-
mation on the offsets of the gyroscopes and accelerometers was obtained and used to calibrate D1 to 
D7. After sensor fusion, the accuracy of D1 to D7 was tested in the laboratory. In the rest position, it 
was quantified at ±0.1° up to the 99th percentile. All devices used to measure airflow and stem orien-
tation were pointed northward to define equally aligned coordinate systems. D1 to D7 were installed 
in white, reflective, 3D-printed housings to minimize unwanted sensor heating and sampled via Wi-
Fi. 

 

Figure 2. System to measure canopy airflow and tree motion dynamics at the Hartheim research site. 
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The total number of points for each of the analyzed time series was 864000 values (24 h × 36000 
values per hour). As done in previous studies [36,37], the time series measured at ℎ  to ℎ  were 
divided into irregular intervals based on variance changes [48], because the segmentation into irreg-
ular intervals allows better representation of short-time wind-tree-interaction dynamics induced by 
organized turbulence (sweeps and ejections) with dominant periods of 20 s to 40 s at the measurement 
site. To ensure comparability with previous studies where spectral analysis was used to study the 
wind-induced tree response behavior, a minimum interval length of 4500 values (≙ 7:30 min) was 
defined. This minimum interval length allows a maximum of 192 intervals given equidistant variance 
changes. However, after the segmentation, the number of measurement device-specific intervals var-
ied between 154 for D5 and 164 for D3 indicating multi-modal response behavior and noise in the 
stem orientation time series [34,36,37]. 

2.3. Analysis of Wind-Induced Tree Response 

The momentum flux at canopy top (𝑀) was used to approximate the wind load acting on the 
sample tree. As in previous studies [36,37], this approximation was preferred over more sophisticated 
mechanistic wind load modeling because knowledge on important variables involved in wind-tree-
interactions, such as instantaneous changes in the drag coefficient and the frontal area projected to 
the wind, is still incomplete under real, turbulent canopy wind conditions. 

Wind vector data available from S3 was used to calculate 𝑀 ,  separately for orientation meas-
ured with D1 to D7 as 𝑀 , = 𝑢 , 𝑤 , + 𝑣 , 𝑤 , , (1)

where 𝑢 , , 𝑣 , , and 𝑤 ,  are the fluctuations of the horizontal wind vector components 𝑢 ,  (east-
west), 𝑣 ,  (north-south) and the vertical wind vector component 𝑤 , . The fluctuations were calcu-
lated by applying the Reynolds decomposition. The subscripts i = 1, …, 7 are indices for D1 to D7 and 
j is an indicator of the irregular, device-specific intervals. 

The wind-induced tree reactions were quantified as orientation vectors (𝑂 , ) whose fluctuations 𝑥 ,  and 𝑦 ,  in the horizontal 𝑥 (east-west) and 𝑦 (north-south) directions were calculated accord-
ing to 𝑂 , = 𝑥 , + 𝑦 , . (2)

To highlight central tendencies of the wind-induced tree response, data from the D1- to D7-
specific intervals were assigned according to the corresponding mean momentum flux (𝑀 , ) to four 
(k = 1, …, 4) classes (𝑀i,1: 𝑀i,j < 1.0 m²/s², 𝑀i,2: 1.0 m²/s² ≤ 𝑀 ,  < 2.0 m²/s², 𝑀i,3: 2.0 m²/s² ≤ 𝑀 ,  < 3.0 
m²/s² and 𝑀i,4: 𝑀i,j ≥ 3.0 m²/s²). 

2.4. Bi-Orthogonal Decomposition 

From a previous study carried out at the measurement site it is known that the wind-induced 
response behavior of the Scots pine trees shows at least four vibration modes [34]. Multimodal re-
sponse behavior requires stem orientation measurements at multiple heights. To quantify the share 
of common variance in the orientation measurements along the stem, the bi-orthogonal decomposi-
tion (BOD) was applied to the stem orientation data. The BOD [49,50] was used to decompose the 
stem response into a set of seven modes in the time-space domain. To apply the BOD, 𝑂 ,  to 𝑂 ,  
were compiled into one matrix, as described in a previous study [34]. Significant BOD-modes, which 
explain most of the variance (𝑉𝐵) in the wind-induced stem response, were separated from noise 
using the Kaiser criterion [51]. Ignoring the modes with negligible importance for wind-induced stem 
motion, the significant modes were then used to reconstruct wind-induced orientation along the 
stem. Because of the nature of the BOD, the reconstruction led to an adjustment and homogenization 
of the temporal dynamics in the 𝑂 ,  time series. 
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2.5. Singular Spectrum Analysis 

To separate oscillatory (𝑂𝑆) from non-oscillatory (𝑁𝑂𝑆) sway components in the BOD-adjusted 𝑂 ,  time series, the singular spectrum analysis (SSA) was used. The SSA combines embedding of time 
series with the singular value decomposition [52,53]. In previous studies [35,36], it was demonstrated 
that the SSA enables the tree-individual separation of fundamental oscillatory sway from a nonlinear 
trend in the stem response to wind excitation. It was furthermore demonstrated that sway of the Scots 
pine trees at the measurement site in the fundamental mode, together with the nonlinear trend com-
ponent, may contain more than 85% of the total SSA-extracted signal variance (𝑉𝑆). 

Following a previous study [35], the embedding dimension (𝐿) was determined by producing 
trajectory matrices in the range 𝐿 = 10 to 𝐿 = 30. The final 𝐿 value was selected when (1) at least one 
significant non-oscillatory component could be separated from significant oscillatory components 
and noise, (2) the difference between the relative variance explained by two of the significant oscilla-
tory components was at a minimum, and (3) the temporal equivalent of 𝐿 was in the range of ±0.4 s 
around the damped fundamental sway period of the sample tree stem. 

The decomposition of stem motion into 𝑂𝑆 and 𝑁𝑂𝑆 is a crucial step in the detection of the tree 
response components that are effectively coupled with dynamic wind loads [36,37]. 

2.6. Dynamic Time Warping 

Although 𝑀 ,  and 𝑂 ,  share common features, results from numerous studies demonstrate that 
the correlation between their temporal dynamics is low [32,35,54,55]. In these studies, values of the 
corresponding correlation coefficient vary between -0.2 and 0.70. This is due to the nonlinearity of 
the instantaneous tree response behavior to wind excitation. The nonlinearity is mainly caused by 
different, concomitant damping processes including aerodynamic damping [56], friction between 
trees and tree parts [57], multiple mass damping [58], multiple resonance damping [59], damping by 
branching [59], and viscoelastic damping within above- and below-ground tree parts [60]. 

To reinforce the instantaneous covariation of wind loading and dynamic tree response (event 
synchronization), the similarity of 𝑀 ,  and 𝑂 ,  were quantified using dynamic time warping [61,62]. 
Dynamic time warping turned 𝑀 ,  and 𝑂 ,  values into a common linear sequence (warping path) 
such that the sum of Euclidean distances between corresponding values is smallest and the coinci-
dence between the warped 𝑀 ,  and 𝑂 ,  sequences is maximized. To align 𝑀 ,  and 𝑂 ,  sequences, 
their elements were repeated as often as necessary to highlight their similarities. 

If 𝑀 ,  and 𝑂 ,  have 𝑝 = 1, …, 𝑃 and 𝑞 = 1, …, 𝑄 samples, the warping algorithm uses the Eu-
clidean distance 𝑑 (𝑀 , , 𝑂 , ) between the 𝑝th sample of 𝑀 ,  and the 𝑞th sample of 𝑂 ,  to stretch 𝑀 ,  and 𝑂 ,  onto the common linear sequence so that the global signal-to-signal distance measure is 
at a minimum [63]. The algorithm arranges all possible values of 𝑑 (𝑀 , , 𝑂 , ) into a lattice of the 
form: 𝑑    ⋯    𝑑  ⋱           ⋮    𝑑       ⋮ 𝑑 𝑑     ⋱     𝑑 𝑑 ⋯      𝑑  

(3)

Then, it searches a path (𝑑) through the lattice that is parameterized by the two sequences 𝑖𝑥 
and 𝑖𝑦 of the same length so that 𝑑 , = 𝑑 (𝑀 , , 𝑂 , )∈∈

  
(4)
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is at a minimum. The algorithm starts at 𝑑 (𝑀 , , 𝑂 , ) and ends at 𝑑 (𝑀 , , 𝑂 , ). The changes of 
the warping path are used to find the minimum distance between 𝑀 ,  and 𝑂 ,  are combinations of 
vertical ((𝑝,𝑞) → (𝑝 + 1,𝑞)), horizontal ((𝑝,𝑞) → (𝑝,𝑞 + 1)), and diagonal moves ((𝑝,𝑞) → (𝑝 + 1,𝑞 + 1)). 

The Signal Processing Toolbox of the Matlab software, version 2019a (The MathWorks, Inc., Na-
tick, Massachusetts) was used to dynamically warp 𝑀 ,  and 𝑂 , . 

2.7. Turbulence Factor Calculation 

To compare the impact of maximum effective dynamic wind loading to the impact of median 
wind loading on the effective tree response, the turbulence factor (𝑇) was calculated as 𝑇 , = ,, , (5)

with 𝑁𝑂𝑆 ,  being the measuring height- and interval-specific 98th percentile of 𝑁𝑂𝑆 that ap-
proximates the maximum wind load; 𝑁𝑂𝑆 ,  is the median measuring height- and interval-specific 
wind load representing central tendencies in the effective wind excitation of the sample tree. 

The gust factor 𝐺, which was based on maximum 3 s gust speed in earlier studies [64,65], was 
not used and evaluated here, because it cannot be calculated because of the kind of data processing 
in this study. 

3. Results and Discussion 

3.1. Mean Momentum Flux-Induced Tree Response 

The 𝑀 , -dependent mean orientation at ℎ  to ℎ  is displayed in Figure 3. At the stem base, 𝑂 ,  
is close to zero over the entire 𝑀 ,  range. With increasing measuring height, 𝑂 ,  increases along the 
stem toward the crown reaching maximum 𝑂 ,  values of 2.2°. To quantify the statistical dependence 
between 𝑀  and 𝑂 , second order polynomials were fitted by the least squares approach. The result-
ing coefficients of determination (𝑅 ) are very high at ℎ  to ℎ  and vary in the range 0.95 to 0.97. 
The marginal variation of 𝑅  from ℎ  to ℎ  may result from the multimodal response behavior of 
the stem to wind loading. A much lower 𝑅  value was calculated from the orientation measurements 
made at ℎ . As will be confirmed later, the low 𝑅  value at the stem base results from very weak 
wind excitation of the stem part closest to the ground. 

The use of irregular intervals led to higher 𝑅  values compared to intervals of equal length. The 
differences between irregular and fixed-length 10 min intervals were assessed by the difference in 𝑅  
(∆𝑅 ). The largest ∆𝑅  value was quantified at ℎ  being ∆𝑅  = 0.38. At ℎ , ∆𝑅  = 0.06; at ℎ , ∆𝑅  
= 0.04. Higher up, at ℎ  to ℎ , ∆𝑅  decreased further to 0.02. The larger differences in 𝑅  in the 
lower parts of the stem are because the wind loads caused a weaker response than in higher parts of 
the stem. In the lower parts of the stem, only the highest wind loads were able to excite a distinct 
response. Thus, it can be concluded that the importance of the selection of irregular intervals shows 
a dependence on the impact of wind loading in different parts of the stem. 



Forests 2020, 11, 145 8 of 21 

 

 
Figure 3. Mean orientation (𝑂 ,  to 𝑂 , ) during irregular intervals (j) at measuring heights (a–g) ℎ  
to ℎ  plotted against mean momentum flux at canopy top (𝑀 ,  to 𝑀 , ) on 30 January 2019. 𝑅2 is the 
coefficient of determination. 

The corresponding temporal behavior of 𝑀 ,  and 𝑂 ,  is shown Figure 4a. From this, it is clear 
that 𝑂 ,  closely follows 𝑀 ,  over the course of the analyzed day. The 𝑀 -related tree response 
shows increasing mean deflection at ℎ  to ℎ  with increasing wind load (Figure 4b). At low wind 
loading in 𝑀 , , the entire stem is only slightly deflected. In this momentum flux class, the orientation 
values mostly varied in the range of the measurement uncertainty. For 𝑀 , , 𝑂 ,  = 1.7° at ℎ  = 12 m. 

 

Figure 4. (a) Mean momentum flux at canopy height (𝑀 , ) and mean orientation at ℎ  = 12 m (𝑂 , ) 
in 156 irregular intervals on 30 January 2019; (b) mean orientation (𝑂 , ) at ℎ  = 0.1 m to ℎ  = 12 m in 
four classes of mean momentum flux calculated at canopy height (𝑀 , : 𝑀 ,  < 1.0 m²/s², 𝑀 , : 1.0 m²/s² 
≤ 𝑀 , < 2.0 m²/s², 𝑀 , : 2.0 m²/s² ≤ 𝑀 ,  < 3.0 m²/s² and 𝑀 , : 𝑀 ,  ≥ 3.0 m²/s²). 
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3.2. Bi-Orthogonal Decomposition 

As can be expected from a previous study into plantation-grown Scots pine [34], results from 
the BOD demonstrate that orientation measurements at ℎ  to ℎ  strongly covary. The largest part 
of the variance in the interval-specific orientation matrices was assigned to the first BOD component 
with 𝑉𝐵  varying between 75 and 93% as a function of 𝑀 ,  (Figure 5a). Much less of the variance in 
the orientation matrix was explained by the second BOD component, with 𝑉𝐵  values ranging wind, 
load-dependent, from 7 to 23% (Figure 5b). In addition, it becomes clear that 𝑉𝐵  increases with in-
creasing wind load while 𝑉𝐵  decreases as the wind load increases. The opposing tendencies in the 
behavior of 𝑉𝐵  and 𝑉𝐵  become particularly evident when their ratio (𝑉𝐵 𝑉𝐵⁄ ) is calculated (Fig-
ure 5c). Whereas at the lowest wind loads 𝑉𝐵 𝑉𝐵⁄  ≈ 4, its value increases at least to 8 for the highest 
wind loads. The remaining variance in the orientation matrices, which was assigned to BOD compo-
nents 3 to 7, ranged between 0 and 2%. 

When 𝑀 ,  > 0.85 m²/s², the first component was the only significant BOD component. In all in-
tervals where 𝑀 ,  ≤ 0.85 m²/s², two significant BOD components were detected. The presence of only 
one significant BOD component, even at very low wind loads, indicates that the kinetic energy trans-
ferred to the tree was mostly converted into elastic energy that drove the sway of the stem in one 
mode. Small amounts of kinetic energy contained in the airflow at canopy top were enough to induce 
movement in the stem down to ℎ . Damping processes such as multiple mass damping in the crown 
and friction with neighboring trees that can be assigned to the second BOD component [34], were only 
of minor importance for overall tree motion damping. 

 

Figure 5. Explained variance associated with (a) the first (𝑉𝐵 ) and (b) the second (𝑉𝐵 ) bi-orthogonal 
decomposition (BOD) component resulting from wind-induced stem motion; (c) ratio 𝑉𝐵 𝑉𝐵⁄ ; all 
as a function of mean momentum flux at canopy top (𝑀 , ). 

3.3. Singular Spectrum Analysis 

Except for the stem base, the wind-induced stem motion was dominated by 𝑁𝑂𝑆 , . As examples, 
the temporal evolution of 𝑉𝑆 ,  associated with 𝑁𝑂𝑆 ,  (𝑉𝑆1 , ) over the course of the analyzed day is 
shown in Figure 6 for 𝑀 ,  at ℎ , ℎ , ℎ , and ℎ . From the 𝑉𝑆1 , , 𝑉𝑆1 , , and 𝑉𝑆1 ,  curves illus-
trated in Figure 6a,c,e, respectively, it can be deduced that the importance of 𝑁𝑂𝑆 ,  to wind excita-
tion in the upper stem parts grows with increasing wind load, a behavior similar to the behavior 
reported in a previous study [36]. In intervals, where only very weak wind loading of less than 0.59 
m²/s² occurs, 𝑉𝑆1 ,  is about 25%, with 𝑀 ,  = 0.59 m²/s² being the estimated change point from a 
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two-phase regression model [66]. The change point clearly indicates the change in the tree response 
behavior to wind excitation. The change points are also drawn as dashed blue lines in Figure 6a,c,e 
to emphasize once again that the tree response behavior to wind loading is very quickly dominated 
by sway in the non-oscillatory SSA mode after the blue line has been crossed. At higher wind loads, 𝑉𝑆1 , , 𝑉𝑆1 , , and 𝑉𝑆1 ,  steeply increase and reach values up to 75%. This increase documents the 
rapid and strong growth of the importance of 𝑁𝑂𝑆 ,  for the total tree response in the upper parts of 
the stem. 

In contrast to the other stem sections, 𝑉𝑆1 ,  changed to a lesser extent during the day (Figure 
6g). It fluctuated between 25% and 50% with a much weaker dependence on 𝑀 , . Therefore, a two-
phase regression model could not be fitted to the point cloud shown in Figure 6h. Instead, the red 
curve is the result from fitting a second order polynomial model to the 𝑉𝑆1 ,  point cloud. However, 
there is an increasing tendency in 𝑉𝑆1 ,  with increasing wind load. 

An opposite pattern to 𝑉𝑆1 ,  is found in the variance explained by 𝑂𝑆 ,  (𝑉𝑆2 , ). At low wind 
loading of 𝑀 ,  < 0.70 m²/s², more than 20% of the variance contained in the 𝑂 ,  time series was as-
signed to stem motion in the fundamental mode (Figure 7a). With increasing wind load, 𝑉𝑆2 ,  rap-
idly drops to just over 10%. Again, the value of 𝑀 ,  < 0.70 m²/s², where the distribution of signal 
energy on the response components changes, corresponds to the change point of the results from a 
two-phase regression model (Figure 7b). The dashed blue line in Figure 7a reinforces the impression 
on the wind load-dependent drop of 𝑉𝑆2 ,  further. Similar changes as in 𝑉𝑆2 ,  can also be found 
in 𝑉𝑆2 ,  (Figure 7c) and 𝑉𝑆2 ,  (Figure 7e). At the stem base, 𝑉𝑆2 ,  is almost independent of 𝑀 ,  
(Figure 7g). It varies at about 40% over the course of the day with decreasing tendency at higher wind 
loading. 

The change point values associated with the wind load-dependent drop of 𝑉𝑆2 ,  are in the same 
wind loading range as the change point values of 𝑉𝑆1 , . This is a clear indication that the importance 
of 𝑂𝑆 ,  in the fundamental mode for the total wind-induced motion decreases whereas 𝑁𝑂𝑆 ,  gains 
considerably in importance with increasing wind load. Moreover, it can be ruled out that wind-in-
duced resonance boosted tree motion. These findings are in line with results from previous studies 
[36,37,67] and have important implications for the interpretation of wind-induced tree sway in the 
fundamental mode. Since sway in the fundamental mode is largely decoupled from the canopy air-
flow, it is an efficient way to dissipate kinetic energy that was transferred from the airflow into tree 
motion [59]. 

Although upper stem parts reacted strongly to the wind excitation, the wind loads were not 
strong enough to cause pronounced reactions at the stem base. Therefore, it is assumed that the an-
choring of the tree in the ground was sufficient and that there was no acute risk of the tree being 
damaged by the wind. 

The increasing importance of 𝑁𝑂𝑆 ,  in dependence of the wind load has implications for the 
significance of the dynamic excitation in the estimation of storm stability by static tree pulling tests. 
It is very likely that sway in the fundamental mode does not severely affect the tree resistance against 
wind loading. In addition to the quasi-static wind load, it is the occurrence of exceptionally strong 
organized turbulence structures such as sweeps or ejections to which forest trees respond that cause 
damage [68]. 
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Figure 6. (a, c, e, g) Explained variance associated with the non-oscillatory (𝑁𝑂𝑆 , ) singular spectrum 
analysis (SSA) component (𝑉𝑆1 ,  with i = 1, 3, 5, 7) as a function of mean momentum flux at canopy 
top (𝑀 , ) on 30 January 2019. The red lines that are shown in the subplots in the right column of the 
figure were calculated with (b, d, f) two-phase regression models and (h) a second-order polynomial 
regression model. 
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Figure 7. (a, c, e, g) Explained variance associated with the oscillatory (𝑂𝑆i,j) singular spectrum anal-
ysis (SSA) component (𝑉𝑆2 ,  with i = 1, 3, 5, 7) in dependence of mean momentum flux at canopy top 
(𝑀 , ) on 30 January 2019. The red lines that are shown in the subplots in the right column of the figure 
were calculated with (b, d, f) two-phase regression models and (h) a second-order polynomial regres-
sion model. 

3.4. Dynamic Time Warping 

Based on the findings from SSA, further analysis was focused on the non-oscillatory tree re-
sponse component. Since it has been demonstrated that this component is most strongly coupled with 
components in 𝑀i,j consisting only of frequencies below 𝑓  [36,37], 𝑀i,j time series were low-pass 
filtered using a cut-off frequency of 0.2 Hz. The applied fourth order Butterworth filter attenuated all 
variations of 𝑀i,j shorter than 5.0 s. Figure 8 shows an example of low-pass filtered momentum flux 
and 𝑁𝑂𝑆 , . In the presented 68th interval with an original length of 5553 values, maximum low-
pass filtered 𝑀 ,  values exceeded 31 m²/s² and 𝑁𝑂𝑆 ,  reached values of 12° (Figure 8a). It is evi-
dent that the temporal variation of 𝑁𝑂𝑆 ,  does not always match the temporal variation of low-
pass filtered 𝑀 ,  although there are only a few meters distance between the sample tree and the 
airflow measurement at the canopy top. 

After the feature alignment by dynamic time warping that synchronizes all strong wind load 
events with the highest 𝑁𝑂𝑆 ,  values, the interval length increased to 9309 values. To enable the 
comparison to the original time series, time warped 𝑀 ,  and 𝑁𝑂𝑆 ,  were downsampled to the 
original interval length. Although the dynamic time warping considerably modifies low-pass filtered 𝑀 ,  and 𝑁𝑂𝑆 , , it cannot achieve a perfect match of the temporal dynamics in the two time series 
(Figure 8b). However, the alignment significantly improves their coincidence. More importantly, the 
approach includes all dynamic and quasi-static wind load components that effectively deflect the 
stem of the sample tree. A scatter plot of the aligned 𝑀 ,  and 𝑁𝑂𝑆 ,  time series (Figure 8c), can 
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visualize this. Most of the values are tightly grouped along the regression line. The highest 𝑁𝑂𝑆 ,  
point density occurs at the lowest 𝑀 ,  values. 

The values from the time series segments in which the adjustments are not optimal appear as 
arrays of column- and bar-like constant values (less than 10% of the total number of values) because 
they are filled up with constant values. Ignoring these values, the robust fitting (with 95% confidence 
bounds) of the points yields 𝑅  = 1.00, which stands for an excellent fit. The slope of the regression 
line (𝑆𝑙) indicates the rate of change in 𝑁𝑂𝑆 ,  (0.37 °/(m²/s²)) in dependence of low-pass filtered 𝑀 , . 

The high 𝑅  values obtained in this study are well in the range of 𝑅  values (0.79–0.97) re-
ported in previous studies where interval maxima of tree response were compared to interval max-
ima of wind speed [69] and wind speed squared [26]. On the other hand, the calculation of 𝑅  of the 
relationship between hourly maximum tree response and the square of the hourly canopy-top wind 
speed as described in a previous study [26], yielded values between 𝑅  = 0.51 at ℎ  to 𝑅  = 0.84 at ℎ  which is also in the range of 𝑅  values reported in [26] but clearly lower than the 𝑅  values ob-
tained using the approach proposed in this study. 

 

Figure 8. (a) Low-pass filtered momentum flux (𝑀 , ) and non-oscillatory SSA component (𝑁𝑂𝑆7,68) 
related to measurements at ℎ  = 12 m in the device-specific, irregular interval 68; (b) series of dynam-
ically time warped 𝑀 ,  and 𝑁𝑂𝑆 , ; (c) scatter plot of dynamically time warped 𝑀 ,  and 𝑁𝑂𝑆 , . The color bar indicates the density of the points. 𝑅2 is the coefficient of determination. 

The dynamic time warping resulted in a strong linear dependence of 𝑁𝑂𝑆 ,  on low-pass fil-
tered 𝑀 ,  over the entire 𝑁𝑂𝑆 ,  range. Because of this dependence, the impact of effective dy-
namic and quasi-static wind loading on tree deflection can be directly estimated. Compared to static 
tree pulling tests and maximum tree response vs. maximum wind speed approaches, this kind of 
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response assessment incorporates all turbulent and quasi-static components effectively involved in 
the occurrence of the maximum wind-induced tree response. 

A summary of all 𝑆𝑙 ,  values calculated from linear regression analysis between low-pass fil-
tered 𝑀 ,  and 𝑁𝑂𝑆 ,  is presented in Figure 9 by boxplots. Median slope values as indicated by a red 
vertical line, increase from 0.00 °/(m²/s²) at ℎ  to 0.32 °/(m²/s²) at ℎ . In the upper parts of the trunk, 
the dispersion of the 𝑆𝑙 , -values also increases, which expresses the range of possible stem reactions 
to the effective wind loads. In contrast to previous approaches, this type of analysis provides proba-
bilistic estimates of the wind load-dependent effective tree response instead of providing fixed 𝑆𝑙 
values. 

 

Figure 9. Boxplots of device- and interval-specific slope (𝑆𝑙 , ) values of the regression line calculated 
from low-pass filtered momentum flux at canopy top (𝑀 , ) and non-oscillatory SSA component 
(𝑁𝑂𝑆 , ) for all intervals where 𝑀 ,  > 1.0 m²/s². The whiskers include all values that lie within a dis-
tance from the first and third quartiles that is less than 1.5 times the interquartile range. 

Since 𝑂 ,  was always very close to zero and did not increase after the impact of the highest 
wind loads, it is assumed that the root plate resisted all wind loads. In the previous quasi-static tree 
pulling studies [27,28], root plate inclination less than a benchmark of 0.25° was considered to be 
sufficiently low to stay in the elastic deformation range below the limit of proportionality in stem 
bending (Figure 10) and to prevent primary failure in the roots. If this benchmark is transferred to 
this study, one can assume that the tree response at the stem base was always in the range of elastic 
deformation and did not cause any plastic deformation in the roots. 

Although this study allows only limited portability using only one plantation-grown Scots pine 
tree, there is a great potential to transfer the described approach to more complex structured trees. 
Previous studies have already shown for other trees and other tree species that non-oscillatory tree 
response strongly depends on the effective wind loading [34–36,38,39]. However, for now the results 
can only be interpreted over the range of non-destructive wind loading. 
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Figure 10. Idealized dependence of tree response at stem base to wind loading. The relationship is 
based on examples provided in previous studies [24,27,28]. 

3.5. Turbulence Factor 

Boxplots depict the variation of 𝑇 ,  along the stem in all intervals, where low-pass filtered 𝑀 ,  
> 1.0 m²/s² (Figure 11). The median of 𝑇 ,  = 6.5 is significantly (95% confidence) higher than at all 
other heights. The medians of 𝑇 ,  = 5.4 to 𝑇 ,  = 4.8 vary in a narrow range with no significant differ-
ences as indicated by the overlap of the notches in the boxes. That 𝑇 ,  is not a constant value can be 
deduced from the displayed interquartile ranges. At ℎ , 𝑇 ,  shows the greatest variability. There, it 
varies by 2.1 between 𝑇 ,  = 5.8 and 𝑇 ,  = 7.9. From ℎ  to ℎ , the interquartile ranges span 1.3 to 1.7. 
Since 𝑇 ,  is not a constant along the stem and is dependent on the wind load, it would therefore not 
be appropriate to use 𝑇 ,  as a fixed value in systems for storm damage analysis, but to implement it 
probabilistically. 

The significantly higher median 𝑇 ,  value at stem base may be explained by the strength of the 
effective wind load. It was sufficient to excite the upper part of the stem in a similar way, but mostly 
too low to stimulate stem reactions at ℎ . Only the highest wind loads were able to excite a pro-
nounced response at the stem base. This implies that the height, at which the turbulence factor, the 
gust factor and the turning moment coefficient are quantified as a function of the wind load, affects 
their value, and thus also the assessment of the storm hazard. 

The comparison of the 𝑇 ,  values determined here shows that they deviate from the gust factors 
reported in previous papers [64,65]. These papers report both lower and higher gust factors from 
field and wind tunnel experiments. Thus, it can be concluded that there is still great uncertainty in 
the quantification of the impacts of maximum and quasi-static wind loading on the tree response. 
These differences are certainly largely due to the different approaches chosen in the studies. One 
advantage of the approach applied here is that only effective wind loads and tree response compo-
nents were considered and not the entire range of wind loads and response components, which in-
cludes ineffective components such as oscillatory sway in the fundamental mode. We therefore argue 
that the consideration of oscillatory components leads to biased relationships between response max-
ima and wind maxima. 
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Figure 11. Turbulence factor 𝑇i,j at heights ℎ  to ℎ  for all intervals where mean momentum flux at 
canopy top 𝑀 ,  > 1.0 m²/s². The red vertical line indicates medians of 𝑇 , . The whiskers include all 
values that lie within a distance from the first and third quartiles that is less than 1.5 times the inter-
quartile range. 

4. Conclusions 

In contrast to previous approaches, the proposed method uses only effective wind loads to quan-
tify wind-induced reactions of the sample tree. It excludes sway at the damped fundamental fre-
quency that is only to a small extent directly caused by wind loads. The linearization of the relation-
ship between effective wind loading and non-oscillatory tree response allows the direct quantifica-
tion of the resistance of the tree to wind-induced deflection. Separating effective from ineffective 
wind loading improves the estimation of the impact of maximum loads from turbulence under high 
wind conditions. Under high wind loads, the separation is particularly important and necessary be-
cause trees are exposed to a preload, which is caused by the quasi-static load associated with high 
mean wind speed. We argue that the combined assessment of the impacts of high quasi-static wind 
loads and high dynamic wind loads improves the of quantification of the damage probability. This 
is because the proposed method can be used to localize the limits of elastic stem deformation by 
extrapolating the observed linear relationships of effective wind-tree coupling. Because of the ex-
pected changes in the dependence of the tree response on wind loading in the range of plastic defor-
mation until tree failure, the method is certainly capable of better delimiting the plastic deformation 
range. The proposed approach also enables probabilistic estimates of the wind load-dependent tree 
response to effective wind loading using slope values of the regression calculated from low-pass fil-
tered momentum flux at canopy top and non-oscillatory SSA components instead of using absolute 
tree response measures that are very likely to fluctuate under real conditions. 

Since the sampled Scots pine is a simply structured tree whose wind-induced response is clearly 
dominated by vibrations of the stem in the first mode, it is to be expected that there are not only 
differences in the parameterization of the observed linear relationships specific to different trees and 
tree species, but also differences caused by stand structure and site diversity. Therefore, further work 
needs to be carried out to determine these relationships for many more trees in order to prepare their 
implementation in existing systems used for storm damage analysis. With the implementation in 
these systems, the effective impact of wind load on trees can be better estimated and thus improve 
the estimation of critical wind speeds. Further investigations must also be carried out regarding the 
comparability between the proposed method and tree pulling tests. Since this study has shown that 
the quasi-static, and not the dynamic tree reaction in the range of the fundamental sway frequency 
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dominates the maximum wind-induced response of the sample tree, there is certainly a great poten-
tial for connecting the results from both approaches in future studies on wind damage to trees. 
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Nomenclature 

Acronyms  
BOD bi-orthogonal decomposition 
CWS critical wind speed 
D1-D7 seven MEMS motion-tracking devices installed at ℎ  to ℎ  
MEMS micro electro-mechanical systems 
S1-S5 five ultrasonic anemometers installed on the meteorological measurement tower 
S3 ultrasonic anemometer installed close to canopy top 
SSA singular spectrum analysis 
Symbols  𝑑 Euclidean distance 𝑓  fundamental sway frequency of the stem (Hz) 𝑔 gravity acceleration (m/s²) 𝐺 gust factor ℎ  mounting heights (i = 1, …, 7) of D1-D7 along the stem of the Scots pine tree (m) 𝐿 embedding dimension 𝑀 ,  momentum flux in height i and interval j (m²/s²) 𝑀 ,  interval mean of 𝑀 ,  (m²/s²) 𝑀 ,  mean of 𝑀 ,  assigned to four classes (m²/s²) 𝑁𝑂𝑆 ,  non-oscillatory sway component determined with SSA in height i and interval j (°) 𝑁𝑂𝑆 ,  50th percentile (median) of 𝑁𝑂𝑆 ,  (°) 𝑁𝑂𝑆 ,  98th percentile of 𝑁𝑂𝑆 ,  (°) 𝑂 ,  orientation in height i and interval j (°) 𝑂 ,  interval mean of 𝑂 ,  (°) 𝑂 ,  mean of 𝑂 ,  assigned to four 𝑀 ,  classes (°) 𝑂𝑆 ,  oscillatory sway component determined with SSA in height i and interval j (°) 𝑅  coefficient of determination 𝑆𝑙 ,  slope of regression line calculated between 𝑁𝑂𝑆 ,  and low-pass filtered 𝑀 ,  

(°/(m²/s²)) 𝑇 ,  turbulence factor calculated in height i and interval j 𝑢 ,  wind vector component in east-west direction in height i and interval j (m/s) 𝑢 ,  fluctuation of 𝑢 ,  (m/s) 𝑣 ,  wind vector component in north-south direction in height i and interval j (m/s) 𝑣 ,  fluctuation of 𝑣 ,  (m/s) 𝑉𝐵  variance explained by BOD components in interval j (%) 𝑉𝑆 ,  variance explained by SSA components in height i and interval j (%) 
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𝑉𝑆1 ,  variance explained by 𝑁𝑂𝑆 ,  (%) 𝑉𝑆2 ,  variance explained by 𝑂𝑆 ,  (%) 𝑤 ,  vertical wind vector component in height i and interval j (m/s) 𝑤 ,  fluctuation of 𝑤 ,  (m/s) 𝑥 ,  orientation component in east-west direction in height i and interval j (°) 𝑥 ,  fluctuation 𝑥 ,  (°) 𝑦 ,  orientation component in north-south direction in height i and interval j (°) 𝑦 ,  fluctuation of 𝑦 ,  (°) 

Subscripts  i index for MEMS motion tracking devices 𝑖𝑥 index for horizontal moves in dynamic time warping 𝑖𝑦 index for vertical moves in dynamic time warping j index for irregular, device-specific analysis intervals  k index for mean momentum flux class 𝑝 index for momentum flux sample in dynamic time warping 𝑃 maximum of 𝑝 𝑞 index for orientation sample in dynamic time warping 𝑄 maximum of 𝑞 
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