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Abstract: Coarse woody debris (CWD, parts of dead trees) is an important factor in forest management,
given its roles in promoting local biodiversity and unique microhabitats, as well as providing carbon
storage and fire fuel. However, parties interested in monitoring CWD abundance lack accurate
methods to measure CWD accurately and extensively. Here, we demonstrate a novel strategy for
mapping CWD volume (m3) across a 4300-hectare study area in the boreal forest of Alberta, Canada
using optical imagery and an infra-canopy vegetation-index layer derived from multispectral aerial
LiDAR. Our models predicted CWD volume with a coefficient of determination (R2) value of 0.62
compared to field data, and a root-mean square error (RMSE) of 0.224 m3/100 m2. Models using
multispectral LiDAR data in addition to image-analysis data performed with up to 12% lower RMSE
than models using exclusively image-analysis layers. Site managers and researchers requiring reliable
and comprehensive maps of CWD volume may benefit from the presented workflow, which aims
to streamline the process of CWD measurement. As multispectral LiDAR radiometric calibration
routines are developed and standardized, we expect future studies to benefit increasingly more from
such products for CWD detection underneath canopy cover.

Keywords: woody debris; woody material; boreal forest; remote sensing; GEOBIA; random forest;
machine learning; LiDAR

1. Introduction

Woody debris is a vital component in forested environments, affecting the biochemistry and
physical structure of an ecosystem [1]. Coarse woody debris (CWD) is defined here as dead wood,
intact or partially decomposed, with a diameter at the largest end of at least 7 cm and length of at
least 1 m, lying horizontally or leaning with an angle less than 45 degrees relative to the horizon.
In the literature, CWD, following this definition, is commonly referred to as “logs”, and standing dead
trees are commonly referred to as “snags” [2]. The survival and success of many types of organisms,
including plants, fungi, insects, birds, reptiles, amphibians, and mammals, is directly or indirectly
dependent on the presence and quality of CWD [3–5]. Conversely, CWD logs in excessive quantities
constitute a fire hazard which historically has been removed from forest worksites to prevent wildfires
and only recently reincorporated in forest restoration programs to promote biodiversity and soil
productivity [6,7].

Extensive and accurate estimates of CWD quantities over large forested areas are difficult to
achieve due to its high variability within and between regions [1]. Traditional methods to study
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CWD rely solely on field data collection, which is an expensive and time-consuming endeavor usually
highly constrained by accessibility to the sampling sites. Since the advent of high-speed, large-data
computing, a variety of automated remote-sensing solutions have been implemented to identify and
measure forest structure and components through the analysis of imagery collected with aircraft and
satellites. Remote sensing of CWD has been achieved with variable degrees of success on satellite
data [8,9] and high-resolution piloted and unpiloted aircraft imagery [10–12]. These studies commonly
use pixel-based or geographical object-based image analysis (GEOBIA) solutions to process aerial
images using linear models, classification trees, and machine learning to extract information regarding
CWD objects. However, aside from studies on post-fire forests where the canopy is reduced, canopy
cover as well as superimposed vegetation present in the understory and forest floor occlude low-lying
CWD and therefore represent an important limiting factor to remote sensing methods using optical
data. Inoue et al. [13] detected from 80% to 90% of CWD larger than 30 cm in diameter or 10 m in length
on 1-cm ground sampling distance (GSD) aerial photos of a deciduous forest in Japan during the fall
season (i.e. leaf-off conditions) by manually identifying and delineating objects. If human interpreters
could identify at most 90% of relatively large CWD during leaf-off, which represents good visibility
conditions, one would expect automated detection to perform worse on more difficult conditions or
smaller CWD. Some of the most successful recent studies of automated detection of CWD on forests,
such as those of Duan et al. [11], Stereńczak et al. [14], and Lopes Queiroz et al. [12], have developed
sophisticated methods for the detection of visible CWD on aerial images, but have based their accuracy
metrics of what is visible in aerial photos and not from field data, and therefore their efficacy based on
ground truth remains unknown.

Light detection and ranging (LiDAR) technologies have been widely used for forest measurement,
especially for canopy height, forest structure, and volume measurements [15]. LiDAR is valuable for
CWD studies since it provides information from the forest floor and understory. Terrestrial LiDAR can
provide detailed point clouds of the understory and ground surface, but aerial LiDAR sensors, carried
by surveying aircraft, are more commonly used for modeling extensive study areas. Mücke et al. [16]
detected CWD with diameter larger than 30cm with good accuracy, 75% completeness and 90%
correctness, by analyzing dense LiDAR point clouds (29.4 returns/m2) on a small study area (~6 ha) in
Hungary. Sumnall et al. [17] estimated various forest variables on plots located in a 2200-ha study area
in southern England, containing semi-natural and plantation forests, by modelling LiDAR variables
and considered their CWD (larger than 10cm at largest end) volume results to be moderately accurate
(0.51 R2, 2.74 m3 RMSE). These studies have proven the potential of LiDAR in aiding CWD estimates
but have acknowledged that further studies are required to improve their results and have not been
tested in boreal forests.

Multispectral LiDAR (ML) is an emerging technology which uses LiDAR sensors capable of
capturing returns from multiple wavelengths on the same platform, as opposed to traditional LiDAR
sensors which only capture returns from a single near-infrared wavelength. ML has been applied
to classify forests [18,19] as well as to calculate vegetation indices [20,21], but has not yet been used
to predict CWD quantities occluded by canopy. Chasmer et al. [20] successfully derived an active
normalized burn ratio on boreal peatlands and suggested that ML data could be used to quantify
understory and lower canopy features. Okhrimenko et al. [22] demonstrated that ML intensity data
retain unique information at each spectral channel down to the forest ground level, which supports
our assumption that low-lying CWD may impact the response of ML. Therefore, we anticipated
that infra-canopy vegetation indices derived from ML data could improve predictive models of
CWD volume.

There have been few studies attempting to estimate CWD volumes, including debris as small
as 7 cm, accurately and extensively in both visible and occluded areas. The present study aims to
address this gap in the literature by developing models which use both GEOBIA-layers and ML
information to extract accurate CWD volumes and can be applied to an extensive study area in a
boreal forest of northeastern Alberta, Canada. We expected this approach to be able to accurately
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quantify CWD volume based on field data and we believed that ML data would be beneficial to
predictions on occluded areas. Variables we predicted would have a relationship with occurrence and
quantities of CWD include the height of trees, active and passive vegetation indices, canopy cover,
presence of visible CWD, shadows, water, and wetlands. We tested our models both in a calibration
area, where the models were developed, and in a verification area 4 km from the calibration area,
and compared the best models using ML variables with the best models without ML variables to assess
the impact of infra-canopy information on volume estimation accuracy. We then generated a series of
CWD-volume maps designed to illustrate the utility of our approach to aid forest restoration efforts
and fire-hazard assessments.

2. Materials and Methods

We used 5-cm ground sampling distance (GSD) aerial photos in a geographic object-based image
analysis (GEOBIA) workflow to produce a visible CWD layer and then processed multispectral LiDAR
(ML) point clouds to produce ground-level vegetation indices layers that allowed for better estimates
of occluded CWD quantities. By joining the GEOBIA-derived and ML-derived datasets together,
we achieved CWD-volume models with better predictive power than what was possible with GEOBIA
alone. Our workflow is summarized in Figure 1 and described in the following subsections.
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Figure 1. Workflow chart of this study with the sub-section numbers where each step is explained in this
document. We mapped non-occluded coarse woody debris (CWD) via a geographic object-based image
analysis (GEOBIA) workflow. Occluded CWD quantities were estimated using multispectral LiDAR
(ML) vegetation indices from underneath the canopy. We selected potential models for CWD volume
using the small sample Akaike information criterion (AICc) as an indicator for model predictive power.

2.1. Study Area

The 4300-hectare study area (Figure 2) is located in the mixed-wood natural subregion of the
boreal forest [23] in northeastern Alberta, Canada. The rolling terrain can be divided into two distinct
environments: uplands and lowlands (i.e., wetlands). The tree population in the upland areas is
mostly composed of jack pine (39.5%; Pinus banksiana Lamb.), black spruce (32.6%; Picea mariana (Mill.)
B.S.P.), and trembling aspen (22.2%; Populus tremuloides Michx.) trees. Uplands are composed of 56%
coniferous, 12% broadleaf, and 32% mixed forest stands [24] while lowlands are mostly composed of
fens (83%), but also include swamps (12%), bogs (2%), and marshes (2%) [25]. Wetlands are dominated
by black spruce (64.8%) and tamarack (26.0%; Larix laricina (Du Roi) K. Koch) [24] but can also be
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mostly composed of shrubs, grasses and moss [26]. There are approximately 342 km of seismic lines
(i.e. petroleum exploration corridors; manually digitized) within this area, most of which are visible
from aerial images as seen in Figure 2. There are a few (less than 2% of the study area) deactivated
timber-harvest sites in the area from the last two decades. Some water bodies and human-made
features such as power-lines, constructions, and roads also exist within the study area.
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Figure 2. Location of the calibration and verification areas within the 4300-hectare study area as well as
the location of the field plots where CWD volume was surveyed. The background image is a false-color
image using near infrared, red and green spectral bands. Upland broadleaf stands dominated by
trembling aspen appear as lighter shades of red; conifer-dominated lowlands and mixed-wood uplands
appear as darker tones. Roads, seismic lines (petroleum-exploration corridors), and petroleum well
pads appear as lines and geometric features.

An estimate of canopy closure on the study area, obtained using a LiDAR-derived CHM, revealed
that forest stands are much denser on uplands (68.4% average canopy closure) than lowlands (27.2%
average canopy closure), as seen in Table 1.

Table 1. Mean canopy closure on vegetated portions of the study area (averaged stands within
the 4300-hectare area). Uplands are divided into forest stand types [24] and lowlands into wetland
classes [25].

Type Area % Mean Canopy Closure

Upland Forest
Broadleaf 7% 87%

Mixed 19% 74%
Coniferous 33% 61%

Lowland

Swamp 5% 38%
Fen 35% 27%
Bog 1% 11%

Marsh 1% 1%
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CWD is present in variable quantities on the undisturbed forest and is usually absent on
seismic lines. This is the case because historically seismic lines have been constructed by tractors as
vegetation-free corridors and all CWD were removed in order to prevent wildfires, only recently CWD
have been reincorporated to seismic line management due to their ecological value [7,27]. Many of
the seismic lines in the region have not received any restoration treatment, and consequently have
low quantities of CWD or no CWD at all. Some seismic lines have been subjected to CWD treatment
designed to limit the movement of humans and predators of threatened woodland caribou (Rangifer
tarandus caribou) across the landscape [7], which usually can be encountered with isolated piles of
CWD and occasionally with entire sections covered by CWD (i.e. complete rollback). This study area
was selected for being a representative portion of its natural subregion, with a variety of coniferous,
deciduous and mixed forest stands, as well as lowlands containing fens and bogs [25].

We selected two smaller areas for sampling within the 4300-hectare study area, which we
denominated calibration and verification areas, respectively (Figure 2). The selection process was
mainly based on accessibility and on a representative sample of the forest composition of the overall
study area. The calibration area is a 246-hectare area designed to provide training data for our CWD
volume models. The verification area is a 209-hectare area designed to provide independent testing
data to assess the extensibility of models developed with calibration area data.

2.2. CWD Survey

During the summer of 2018, a field survey was performed within the study area to acquire CWD
volume information on both the calibration and verification areas. Given the interest in quantifying
CWD in a disturbed environment, with and without restoration efforts, as well as in the unaffected
forest, we selected study sites based on the location of seismic lines. Based on this strategy sampling
plots could be located within the disturbed line and in the adjacent forest. To collect a representative
sample of CWD in the study area under various natural and artificial conditions, we adopted a
stratified-random sampling strategy to select study sites based on the following variables: seismic-line
treatment type, surrounding forest tree composition according to Alberta’s vegetation inventory [24],
and crown closure. The authors note that despite efforts to achieve a representative sample, given the
difficulty in accessing remote portions of the study area and limited time and resources, the site-selection
process was constrained by accessibility. The following paragraphs describe overall sampling design
and strategy; for more details and figures see Appendix A.

We expected to collect about 100 samples, four from each site, but included more potential sites
(35 total) in case there was spare time to collect additional samples or if there were any problems with
the visited sites. For each site, we selected four 100 m2 plots for sampling CWD volume. To obtain data
in both natural and altered sites, while avoiding transitions between either, two plots were located on
the seismic line and two plots were located in the surrounding forest. We call the plots in the seismic
line “disturbance plots”, and they were designed to be rectangular areas limited by the footprint of the
disturbance, with width equal to the seismic line’s width and variable length to obtain a 100 m2 area.
The plots in the surrounding natural environment were denominated “forest plots”, and they were
circular areas with a radius of 5.64 meters. We positioned the disturbance plots systematically, one of
them starting 15 meters away from the beginning of the line, and the other positioned starting 75 meters
away from the end of the former disturbance plot. Finally, the forest plots were positioned randomly,
with their center point located within a minimum distance of 12 meters and a maximum distance of
36 meters away from the center of the seismic line. By the end of the field season, we had sampled a
total of 108 plots: 76 plots (19 sites) in the calibration area and 32 plots (8 sites) in the verification area.

Each plot was located and positioned using a real-time kinematic (RTK) global navigation satellite
system (GNSS, Trimble R8 - Trimble, Sunnyvale, United States) with average horizontal precision of
4.57 cm, then every piece of CWD present within the plot was examined and measured for volume.
In each plot, the volume measurements were restricted by the extent of the plot boundaries, and any
CWD crossing a boundary was considered as if it ended at the edge of the plot. CWD was defined as
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dead wood, either intact or partially decomposed, with at least 7 cm of diameter at the largest end and
at least 1 meter of length. The 7-cm diameter threshold was chosen for being a common choice in the
literature and given that the majority of woody debris, especially those encountered in the lowland
portions of the study area, did not surpass 10 cm in diameter. Any CWD positioned horizontally
or leaning with an angle larger than 45◦ relative to vertical surface was classified as a log and was
measured as part of the total CWD volume per plot presented in this study. Any CWD positioned
vertically or leaning with an angle smaller than 45◦ was classified as a snag and was also measured
but is not considered for the CWD volume per plot presented in this study, since the map products
presented here mainly target seismic line restoration and fire-hazard assessment studies, which usually
show little interest for snags.

Log volume was derived from three diameter measurements, one obtained at each end and one
obtained in the center of the extent of the log, as well as the total stem length in meters. Volume was
calculated using Newton’s formula, which accounts for the tapering shape of the log [28]:

V =
L
6

π(dL

2

)2

+ 4π
(

dM

2

)2

+ π

(
dS
2

)2 (1)

where V is the volume of the main stem, dL is the diameter measured at the largest end, dM is the
diameter at the middle, dS is the diameter at the smallest end, and L is the length of the stem.

Additional data recorded per CWD piece within each plot included: state of decay, species,
azimuth, and inclination. Furthermore, canopy closure was recorded at the center of each plot via
hemispherical photography. Initial tests with these variables did not yield any particularly useful
insights or predictions. For the purposes of this study, these metrics were discarded save to confirm
that our sample of CWD volume was representative of a good variety of states of decay, species,
and canopy closure.

Once data were collected in the study area, the volume per plot was calculated by summing up the
total volumes of all pieces measured within. Every plot was integrated into a geodatabase according to
its size, position, and orientation obtained in the field with RTK measurements, and its respective total
CWD volume. We had to remove three plots from the verification area from analysis since one of them
could not be positioned properly with the RTK and two of them changed significantly since the remote
sensing data were captured: one was a forest in aerial images and became clear-cut when sampled,
and the other contained a recently felled, large tree not captured in the remote sensing data.

2.3. Remote Sensing and Pre-Processing

Two different data collection missions were performed to obtain the remote sensing data over the
study area: one during the summer of 2017, which captured high resolution (5-cm pixel-size) visible and
near-infrared spectrum images as well as a dense LiDAR point cloud (40 pts/m2), and another during
the summer of 2018, which captured multispectral LiDAR (ML) data with lower point density (raw
11 pts/m2). The data collected during the 2017 mission were used in a geographic object-based image
analysis (GEOBIA) workflow to locate visible CWD objects (vCWD), and the 2018 ML data was used
to generate infra-canopy vegetation indices useful as indicators for occluded CWD quantity. GEOBIA
consists of subdividing georeferenced input images into segments denominated “image-objects”:
relatively internally homogenous segments of the image usually defined by contrasts around their
edges, which are intended to represent distinct parts of real-world objects [29]. We acknowledge the
temporal disconnect between the dates of the field work and first LiDAR mission (2017) and second
LiDAR mission. It is our assumption that any changes in CWD volume within that time period were
minor and had no significant impact on our study.
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2.3.1. Orthomosaics and Dense LiDAR Point Cloud

The remote-sensing datasets used in the GEOBIA portion of this study were obtained prior to field
data collection via a piloted aircraft mission performed by OGL Engineering of Calgary (Orthoshop
Geomatics Ltd., Calgary, AB, Canada) between August 2 and 4, 2017. The Cessna 210T aircraft used in
this mission, flying at 67 m/s 850 m above ground, carried an optical sensor, a LiDAR sensor, a GNSS,
and an inertial measurement unit. The flight path obtained 5.5 cm ground sampling distance (GSD)
images with 80% forward overlap and 60% side overlap. We deployed 250 visible ground control
points (GCP, 60 cm squares with a bullseye marking) prior to the flight and measured their locations
with an RTK GNSS (8 mm horizontal and 15 mm vertical precision). We used 100 of these targets for
georeferencing purposes and the remaining 150 for accuracy assessment. The final products had X, Y,
and Z had accuracies of 5, 10, and 11 cm, respectively.

OGL Engineering treated the raw LiDAR point cloud, with a point density of approximately
40 pts/m2, for noise removal and ground-point classification using Terrasolid software. Using ESRI
(Environmental Systems Research Institute) ArcMAP (version 10.6.1; ESRI, Redlands, CA, USA),
we gridded the elevation of the ground points into a 25cm GSD digital terrain model (DTM), and of
the first return points into a 25 cm GSD digital surface model (DSM). A canopy height model (CHM)
was obtained by subtracting the DSM by the DTM. We generated a 5 cm GSD orthomosaic of the
study area by processing the air photos in Pix4Dmapper [30,31], using standard procedures for photo
alignment, georeferencing and adjustments using a photogrammetric point cloud. A normalized
difference vegetation index (NDVI) raster layer was generated using the near-infrared (NIR) and red
bands of the orthomosaic.

2.3.2. Multispectral LiDAR Acquisition and Processing

Since the study area is densely vegetated, much of the CWD measured in field plots was not visible
in aerial images. For this reason, multispectral LiDAR (ML) data were used to obtain the intensity
information of locations under the canopy, which were then used to derive sub-canopy vegetation
indices. ML-derived vegetation indices have been shown to approximate passive imagery vegetation
indices such as NDVI and normalized burn ratio (NBR) [20]. In the following sections, LiDAR-derived
vegetation indices will be referred to as active vegetation indices.

ML data were collected over the study area by the University of Lethbridge ARTEMiS lab
(Advanced Resolution Terradynamics Monitoring System Laboratory), during a piloted flight mission
performed on July 23th of 2018, concurrently to the field data collection. The ML sensor used was a Titan
(Teledyne Optech, Toronto, ON, Canada) unit, which simultaneously captures three wavelengths: 1550,
1064, and 532 nm, hereby referenced as short-wave infrared (SWIR), near infrared (NIR), and green
channels, respectively. The Piper Navajo aircraft used in this mission flew at 65 m/s, 1000 m above
ground, with a planned side overlap of 50% and planned pulse density of 3 pts/m2 per channel. The raw
LiDAR data were calibrated using LiDAR Mapping Suite [32] by the ARTEMiS lab, who reported
12 cm horizontal and 5 cm vertical RMSE strip-to-strip accuracy. The ML datasets for all three channels
was supplied in 54 separate tiles of the study area.

The following procedures were performed with LAStools [33] and ArcMap [30] software. Overall
point density and number of points per return of the ML datasets on the study area were calculated
using the lasinfo tool: 1.51 pts/m2, 4.49 pts/m2 and 5.00 pts/m2 for the Green, NIR and SWIR channels
respectively. The percentage of single returns was of 99.7%, 33.5%, and 27.5% respectively for these
channels. Rain previous to the flight and wet ground likely caused attenuation losses on all channels,
most notably the green channel, which is obtained with a larger beam divergence and higher tilt
angle than the other channels and is expected to have higher losses below the canopy [21]. Point
height relative to ground was obtained on each channel with lasground (wilderness setting), which
is a tool based on Axelsson’s [34] triangular irregular network filtering algorithm. Then, to avoid
outliers, the maximum intensity of the ground points was set to three standard deviations plus the
mean, according to the intensity distribution of each channel. Points with an estimated height smaller
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than 1 meter were exported in “shapefile” (SHP) format using las2shp. The point intensity of each
SHP file was gridded into raster images using the inverse distance weighted (IDW) tool in ArcMap,
with a cell-size of 50 cm, a fixed search radius of 1 meter and minimum of 2 sample points. IDW were
used to reduce some of the bias of gridding and cell spatial attribution and was selected over simpler
averaging methods because it preserved some of the variance of the raw datasets. IDW also was useful
in reducing the effect of noise and banding, which was especially observed in the NIR channel, where
the intensity distribution was offset between scanline directions due to internal hardware misalignment
issues with the sensor (2.3%, 3.4%, and 0.2% average banding for the SWIR, NIR, and green channels
respectively). Due to the small percentage of single returns, mostly observed in vegetated areas, all
returns were considered in this study despite the fact that this introduces noise in the data [21]. Using
the intensity raster images for each ML channel, active NDVI (aNDVI) and active NBR (aNBR) layers
were calculated using the raster calculator tool in ArcMap. The green channel was used for aNDVI
as a visible-spectrum substitute for the traditionally used red channel on passive NDVI calculations.
Both aNDVI and aNBR layers were later used to derive vegetation-indices metrics per 100 m2 plots,
which were included in CWD volume models as predictor variables. The individual ML channels
were not included in the analysis as it was assumed that active vegetation indices represented more
parsimonious variables, likely to retain the information of multiple spectral layers.

2.4. Geographic Object-Based Image Analysis

We created a visible-CWD (vCWD) raster image over the study area by processing aerial images as
well as LiDAR data via a GEOBIA workflow, involving machine-learning “random forest” supervised
classification. This process was described in detail by Lopes Queiroz et al. [12]. All spectral bands from
the orthomosaic and the NDVI layer, generated with the 2017 mission data, were used to segment
the study area into image-objects using eCognition [35]. We used the following parameters: scale 10,
shape 0.6, and compactness 0.4. All layers used to segment the study area, as well as the CHM layer,
were used to train a random forest (RF) machine-learning classifier.

Random forest supervised classification involves providing a set of training samples, in this case
CWD image-objects as well as other broad types of features present in the landscape, to a RF classifier
which uses the training data as reference to create a set (forest) of classification trees, each tree with
randomly selected input variables [36]. A trained RF was applied to classify all image-objects in the
study area and identify the CWD objects visible on aerial images.

Classifier Training and Application

To create a reference dataset for RF classification, 5000 randomly selected image-objects over the
calibration area were manually classified into five distinct classes: log, snag, water, dirt, and other.
The selection of the reference objects was stratified around NDVI: 20% of samples from objects with
NDVI greater than −0.1 in the NDVI image and 80% of samples from objects with NDVI smaller than
−0.1. This strategy was adopted given that the clear majority of identified CWD objects had an NDVI
lower than that threshold and that CWD are very infrequent when compared to the other object classes.
A portion of these reference objects could not be classified due to being indistinct.

The reference dataset on the calibration area had a total of 3710 classified objects, of which 364
were logs. The spatial, spectral and height attributes of these objects were used as predictor variables
to train a RF classifier, which was applied to the whole study area in three processing chunks that were
later merged together. More details of the reference dataset, as well as about the process used to test
and apply the classifier can be found in Lopes Queiroz et al. [12], who reported completeness between
76.9% and 81.5% and correctness between 75.8% and 87.0% for logs in the study area. Completeness is
defined as the percentage of true positives relative to all positives in reference data and correctness is
defined as a percentage of true positives relative to all positives in testing data.

After the RF classifier was applied to the whole study area, a planimetric map layer of visible CWD
was generated by marking all 5 cm raster cells within image-objects classified as log. Some groundcover
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features not included in training the classifier but present in the larger study area, such as water bodies,
construction, and parking lots, were manually removed from the final product. This layer was later
used to derive visible CWD area per 100 m2 plots, which was included in CWD volume models as a
predictor variable.

2.5. Additional Layers

Aside from the vCWD layer generated from GEOBIA, and the aNDVI and aNBR layers
generated from ML, we produced additional layers for consideration as predictor variables in CWD
volume models.

The main factors we associated to occlusions of CWD on aerial images were canopy cover,
tall grass, and heavy shadow. In an attempt to account for these factors, we generated canopy cover
(CC), passive NDVI (pNDVI), and brightness layers, respectively. The CHM used in GEOBIA was
classified into canopy and non-canopy pixels by selecting all cells with heights greater than 2m above
the ground. This layer was later used as a proxy for canopy cover in the CWD volume models.
The pNDVI layer used in GEOBIA was considered as a candidate predictor variable in the CWD
volume models. A brightness layer was generated by averaging the visible-spectrum (RGB) intensities
of the orthomosaic used in GEOBIA.

Factors we associated to broad-scale CWD volume variance and distribution on the study area were:
the spatial distribution of wetlands and uplands, and of the height of the alive trees. A visible-water
area (vWater) layer was generated by selecting the image-objects classified as water by the RF classifier.
Another proxy for wetland distribution we used was a wetland probability (WP) layer obtained from
ABMI [37]. Finally, the CHM used in GEOBIA was selected to extract metrics of tree height per
100 m2 plots.

2.6. Model Selection

Each of the 108 field-plot polygons were attributed with variables from the following layers:
vCWD, aNBR, aNDVI, CC, pNDVI, Brightness, vWater, WP and CHM. Using the zonal statistics
tool from ArcMap the following statistics were extracted for each layer on each plot: minimum,
maximum, range, mean, standard deviation and sum. Given that there were many potential predictor
variables, six metrics for each one of eight layers, a model selection strategy was adopted using
Akaike’s Information criterion (AIC), while discarding highly correlated variables (R > 0.6). Summary
statistics of all remaining variables, after the correlated variables were discarded, are presented in
Table 2. All procedures for model selection and validation we performed in R (version 3.5.1; R Core
Team, 2018).
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Table 2. Description and summary statistics of all variables used in model selection, each variable
summarized with: mean, standard deviation (Std Dev), minimum (Min) and maximum (Max).
The response variable was coarse woody debris (CWD) volume measured in the field, and the predictor
variables were derived from a variety of remote sensing products. Visible CWD (vCWD) and water
(vWater) area were derived from the results of geographical object-based image analysis (GEOBIA)
on aerial orthophotos obtained over the study area. A wetland probability raster was obtained from
ABMI [37]. Canopy closure (CC) was derived from a canopy height model (CHM). Passive normalized
difference vegetation index (NDVI) was derived from the orthophotos used in GEOBIA, while active
NDVI and normalized burn ratio (NBR) were derived from multispectral LiDAR datasets.

Variable Definition Mean Std Dev Min Max

Response Response variable: total ground-truth CWD volume
(m3). 0.25 0.34 0.00 1.50

vCWD Total visible CWD area (m2) on orthophotos,
obtained with GEOBIA.

1.50 2.63 0.00 11.89

vWater Total visible water area (m2) on orthophotos
obtained with GEOBIA.

1.31 3.00 0.00 14.40

Brightness Average visible-spectrum reflectance on orthophotos.
Scaled 0–255. 99.06 10.24 75.33 122.11

WP Average wetland probability, scaled from 0 to 1. 0.28 0.30 0.02 0.92

CC Canopy closure, obtained as proportion of cells with
CHM > 2 m. 0.45 0.31 0.01 0.96

CHMmax
Maximum CHM value within plot (i.e. height of

tallest tree). 14.97 5.47 2.72 30.82

pNDVIr Passive NDVI range within plot. 0.99 0.17 0.57 1.37
pNDVIsd Passive NDVI standard deviation within plot. 0.14 0.04 0.06 0.27
aNDVIr Active NDVI range within plot. 0.95 0.24 0.00 1.72
aNBRr Active NBR range within plot. 1.49 0.18 0.51 1.82
aNBRsd Active NDVI standard deviation within plot. 0.26 0.07 0.09 0.43

2.6.1. CWD Volume Modelling

CWD quantities are known to be positively skewed and not normally distributed [1]. Since we
found CWD volume distribution on 100 m2 plots to follow this pattern, as well as zero-inflated, CWD
volume was modeled in two parts: a binomial distribution for the presence/absence of CWD, and a
continuous distribution for volume on the plots where CWD was present. A binary response variable
was created for the binomial models by treating all plots where CWD was absent as zero and all
plots where CWD was present as one. The continuous model was trained on plots where CWD was
present and used CWD volume as response variable. Candidate models were selected separately for
the binomial and continuous parts, then combined into two-part CWD volume models. The final
predicted CWD volume according to two-part models equals the predicted binomial component times
the predicted continuous value. Given that the distribution of CWD volume in our study plots was
positively skewed as well as zero-inflated, zero-adjusted gamma (ZAGA) distribution models were
used to incorporate the best continuous and binomial models. We used the generalized additive models
for location, scale and shape (GAMLSS) library in R to generate and test our ZAGA models [38,39].
Generalized additive models (GAMs) allow for the response variable to be modelled with Gaussian as
well as numerous non-Gaussian distributions, as opposed to traditional linear modelling, and allow
for link functions to model the relationship between the response variable and the predictors [40].
Additionally, GAMs are well suited for modeling non-linear relationships between the response and
predictor variables because they are built based on the structure of the reference datasets instead of
assuming a previously selected linear distribution [41]. The main assumptions of GAMs are that the
samples are statistically independent, the variance and link functions are selected correctly, and that
there are no outliers influencing the fit [42]. The stratified-random sampling strategy adopted in this
study, as well as statistical tests and investigation performed with the raw data in R ensured the
selected ZAGA models follow these assumptions.
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Small-sample AIC (AICc) is a useful indicator for model selection when dealing with multiple
potential models created with a small sample-size [43]. Early tests with regular AIC revealed that CWD
volume models using our field data were consistently overfitted, and therefore AICc was used instead.
Model selection tables were generated for CWD volume two-part linear models using the candidate
variables as predictor variables. Models were candidates only if their delta AICc (∆AICc, calculated as
AICc difference from the model with the smallest AICc) was smaller than 2, which is commonly used
as a threshold for model selection in the literature [43]. Many of the predictor variables were highly
correlated, with Pearson’s R greater than 0.6. In these cases, only the variable that was most often
present in candidate models was maintained, and other correlated variables were discarded. Candidate
models were selected with and without ML variables for comparison. All possible combinations of
candidate binomial and candidate continuous models were tested as ZAGA models, of which only the
models with ∆AICc smaller than 2 were considered as our final candidate models for CWD volume.

2.6.2. Keep-One-Out Cross-Validation and Verification Tests

To test the accuracy and extensibility of the candidate models, the predicted CWD volume
according to the two-part model was regressed against the actual CWD volume measured in the field
plots to calculate R2 and RMSE values. A keep-one-out cross validation test was performed in the
calibration area by training the models once for every plot in the area using all the calibration data
except for each plot where a CWD volume prediction was generated. Another test was executed by
training the models using the calibration area data and applying them to predict CWD volume on the
verification area plots. Finally, we tested the accuracy of predicted CWD ground cover (m2) derived
from the vCWD layer versus CWD measured ground cover per plot, without any additional modelling,
to assess the potential and limitations of GEOBIA of CWD.

2.7. Map Production

Among all candidate models for CWD volume, we selected a two-part model with the greatest
predictive power as a preferred model. The preferred model included both image analysis and
multispectral LiDAR (ML)-derived variables and is described in the following sections of this document.
Given that the ML layers contained a few void cells, the preferred model was only applied on 100 m2

cells containing at least 50% coverage of the aNBR layer, which accounts for 99.3% of the study area
(excluding water bodies and human-made features). On cells with less than 50% coverage on the aNBR
layer (0.7% of the study area), we used the best model not containing ML variables.

Given the best models selected for CWD volume estimation according to the tests and specifications
previously discussed, we generated two map products of CWD volume per hectare (m3/ha) on the
entire 4300-hectare study area: one map dedicated to comprehensive CWD volume across all land
cover types, and another dedicated to seismic line CWD density. Since the ML layers contained many
gaps due to lower ground return density on closed canopy areas, the best-performing model using ML
layers was used as a preferred model to generate these maps, and the best performing model without
ML layers was used as a fallback model.

2.7.1. Overall CWD Volume Layer

The 4300-hectare study area was gridded into 10 × 10 m cells using the fishnet tool in ArcMap,
and each cell was attributed with values from all relevant predictor layers using the zonal statistics tool.
Water bodies and human-made features accounted for 7.5% of the study area. These were removed
from further analysis, given that these land-cover types were not accounted for when training the
models. The attribute table containing predictor variables for all cells, as well as their individual
latitude and longitude, was extracted as a comma-separated values (CSV) file and imported into R.
The ZAGA models trained with the calibration data were applied to all cells generating CWD volume
predictions for the entire study area. These predictions were multiplied by 100 to obtain an estimate of
volume per hectare as opposed to volume per 100 m2. Given that there were a few (less than 0.05% of
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the data) overpredictions well above the range of CWD volume observed in field plots, the maximum
prediction value was set to the mean plus four standard deviations of the field sample distribution
(~160 m3/ha). Predictions, along with their geo-locations, were imported into ArcMap as points and
rasterized using the “point to raster” tool.

2.7.2. Seismic Line CWD Volume Layer

Using the CWD volume layer created for the entire 4300-hectare study area described above,
segments of seismic lines of the study area were attributed with their mean CWD m3/ha. A vector
layer of all seismic lines on the study area was obtained via a seismic line mapper tool [44], which uses
a least-cost path solution on a CHM to trace linear features on forested environments. The “generate
points along lines” tool in ArcMap was used to both generate dense sampling points as well as sparse
split points to segment each seismic line. Sampling points were attributed using the “extract values to
points” tool, extracting values from the raster of overall volume. Lines were split into segments using
the “split line at point” tool. Finally, segments were attributed with their mean CWD volume using the
“spatial join” tool to link values of sampling points with each line segment.

3. Results

3.1. Accuracy of Best Models

The accuracies of the best model using ML data and of the best model without ML data were
tested both on the calibration area using keep-one-out cross-validation (0.623 R2, 0.224 RMSE using ML
data; 0.514 R2, 0.254 RMSE without ML) and on the verification area while training only on calibration
area samples (0.721 R2, 0.198 RMSE using ML data; 0.628 R2, 0.203 RMSE without ML). Goodness of
fit (R2) and root mean square error (RMSE) were comparable between cross-validation tests in the
calibration area and tests in the verification area. Furthermore, these metrics were better in models
including ML variables in relation to models without ML variables. The regression line of all models
approximates the 1:1 relationship with a slightly gentler slope. The variance of CWD volume was
greater in disturbance plots than in forest plots, and the former also displayed stronger zero-inflation
in the calibration area plots (Figure 3).
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Figure 3. Scatter plots of actual versus predicted coarse woody debris (CWD) volume in m3. The best
model with multispectral LiDAR (ML) data was used to estimate CWD volume on (a) the calibration
area plots using keep-one-out cross-validation, and on (b) the verification area plots using the calibration
plots to train the model. Similarly, the best model without ML data was also applied to the (c) calibration
and (d) verification areas. Goodness-of-fit (R2), root mean square error (RMSE) and sample size (S) are
indicated on each plot.

3.2. Map Products

To showcase the application of the selected models, CWD volume per hectare (m3/ha) was
mapped over the 4300-hectare study area to generate two map products: a comprehensive map over
all ground-cover types with 100m2 raster cell-size (Figure 4), and a map of seismic line 100-m segments
classified according to their average CWD density (Figure 5). High density CWD clusters were detected
at the edges of previously harvested areas (Figure 4a) and in the southwestern portions of the study area
in the form of partial windthrows (Figure 4c). Seismic lines with (Figure 5a) and without (Figure 5c)
CWD treatment were identified in the maps. In Figure 4b, very low CWD quantities are observed in
the interior of the harvested area (northwestern portion of Figure 4a), moderate CWD quantities in
the natural forest (southeastern portion of Figure 4a), and very high CWD quantities in the transition
between the two.
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 Figure 4. Map of coarse woody debris (CWD) volume per hectare (m3/ha) over the study area. High quantities of CWD are displayed in red, medium quantities in
yellow and low quantities in blue. Roads and water bodies are excluded from the CWD volume model and are presented as dark blue. Insets (a) and (c) showcase
hotspots of CWD in false-color imagery. Insets (b) and (d) showcase the CWD volume map over (a) and (c) respectively.
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Figure 5. Map of coarse woody debris (CWD) volume per hectare (m3/ha) over seismic lines on the study area. The gray-scale background image presents volume per
hectare for the entire study area, while the seismic lines are classified as high (red) medium (yellow) and low (blue) CWD quantities. (a) and (c) are false-color aerial
images showing examples of high and low CWD densities respectively. (b) and (d) are field photos of (a) and (c) respectively.
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CWD volume in the reference data was compared to the volume in the map products
(Figures 4 and 5), which were divided into upland and lowland according to ABMI’s wetland
classification layer [25]. These datasets are presented as box-and-whisker plots below (Figure 6).
The distribution of CWD volume on the final maps was quite similar to the distribution on forest
plots, even when separating the area into lowland and upland, though the upper quartile of the
predictions was a bit lower. The average volume in upland was 13.7 m3/ha and in lowland was
3.4 m3/ha. Disturbance plots, most of which were located on treated seismic lines, had much higher
volumes than the rest of the study area. This was expected given the practice of creating CWD
piles as part of restoration treatments [7]. The population of seismic lines on the map products had
slightly lower volumes than the rest of the upland areas, but treated lines had much higher volumes
than untreated lines. Average volume on treated and untreated seismic lines was 18.2 m3/ha and
9.4 m3/ha respectively.
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containing vCWD, pNDVI, vWater, and WP variables. The two models with the smallest AICc were 
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Figure 6. Box and whisker diagram for coarse woody debris (CWD) volume on reference data (green,
total of 108 field plots) on the CWD map for the entire application area (blue, total of 379,025 cells) and
on seismic lines (red, 63,816 sampling points). All reference data (a) are divided into (b) disturbance
plots (54 plots) and (c) forest plots (54 plots). Forest plots are divided into (d) lowland plots (14 plots)
and (e) upland plots (40 plots). All map predictions (f) are divided into (g) lowland (38% of cells) and
(h) upland (62% of cells) predictions. Seismic line predictions (i) are divided into (j) untreated lines
(90% of samples) and (k) treated lines (10% of samples). Original values were in m3/100m and were
projected to m3/ha. Box-plot outliers are presented in gray.

3.3. Model Selection Tables

The model-selection table for the candidate ZAGA CWD volume models (Table 3) is presented
below. It is noteworthy that all candidate models shared the same logistic component: a model
containing vCWD, pNDVI, vWater, and WP variables. The two models with the smallest AICc were
models including aNBR, while the two other models did not include any ML variables. All continuous
models shared CC, CHM and vCWD variables, and some models included either aNBR or pNDVI.
No candidate models selected brightness or aNDVI variables.
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Table 3. Candidate two-part models for coarse woody debris (CWD) volume according to small sample
Akaike information criterion (AICc). The rank (r), degrees of freedom (df) and delta AICc (∆AICc)
are provided for each model. The following variables were selected in all continuous models: area of
detected CWD objects via image-analysis (vCWD); canopy closure (CC); and height of the tallest tree
(CHMmax). The following were selected in some continuous models: standard deviation of the active
normalized burn ratio (aNBRsd) and range of passive NDVI (pNDVIr). Finally, all logistic models
included: vCWD, standard deviation of passive NDVI (pNDVIsd), visible water area (vWater) and
wetland probability (WP).

r Continuous Model Logistic Model df AICc ∆AICc

1 vCWD2 + CC + CHMmax + CHMmax
2 + aNBRsd

2 vCWD + pNDVIsd + vWater + WP 12 −2.08 0.00

2 vCWD2 + CC + CHMmax + CHMmax
2 + aNBRsd

2 +
pNDVIr

vCWD + pNDVIsd + vWater + WP 13 −1.98 0.09

3 vCWD2 + CC + CHMmax + CHMmax
2 + pNDVIr vCWD + pNDVIsd + vWater + WP 12 −1.43 0.64

4 vCWD2 + CC + CHMmax + CHMmax
2 vCWD + pNDVIsd + vWater + WP 11 −0.43 1.65

Given the results presented in Table 3, model ranked 1 was selected as the best simplest predictive
model including ML variables and model ranked 4 was selected as best simplest model excluding ML
variables. Models ranked 2 and 3 are variations of these selected models adding pNDVI as a variable,
and given all candidate models were “tied” with ∆AICc lower than 2, only the simplest models were
chosen for application in the study area.

To better understand the composition of the best ZAGA model, standardized coefficients for the
predictors, including multispectral LiDAR, were obtained by modelling scaled predictor variables with
a mean of zero and standard deviation of one (Tables 4 and 5). This enabled us to study the relative
contribution of each explanatory variable to the final model in terms of strength and direction.

Table 4. Intercept and coefficients for binomial part of the best zero-adjusted gamma model. Values are
presented for models created with the original training data and models using standardized predictor
variables (mean of zero and standard deviation of one). Variables include visible coarse woody debris
area (vCWD), standard deviation of passive normalized difference vegetation index (pNDVIsd), visible
water (vWater) and wetland probability (WP).

Intercept vCWD pNDVIsd vWater WP

Original −0.137 −1.823 −17.701 0.559 4.687
Standardized −3.674 −5.059 −0.819 1.874 1.333

Table 5. Intercept and coefficients for continuous part of the best zero-adjusted gamma model. Values
are presented for models created with the original training data and models using standardized
predictor variables (mean of zero and standard deviation of one). Variables include squared area of
visible coarse woody debris (vCWD), canopy closure (CC), height of tallest tree (CHMmax), squared
height of tallest tree (CHMmax

2) and squared standard deviation of active normalized burn ratio
(aNBRsd

2).

Intercept vCWD2 CC CHMmax CHMmax
2 aNBRsd

2

Original −6.956 0.012 −3.070 0.581 −0.012 11.284
Standardized −1.547 0.133 −0.662 1.161 −0.369 0.061

3.4. Accuracy of Visible-CWD Layer

Figure 7 contains graphs comparing ground cover of vCWD image-objects with measured CWD
ground cover in field plots, for all calibration area plots as well as for only the plots with negative
average pNDVI. Disturbance plots exhibited greater zero-inflation in the response variable than forest
plots and both types of plots had zero-inflated predictions. Goodness of fit (R2), RMSE, and slope of
regression in plots with negative NDVI were all much superior than these metrics in all field plots.
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Figure 7. Scatter plots of actual versus predicted coarse woody debris (CWD) ground cover in m2.
Predicted ground cover presented here is the area sum of CWD objects detected via image-analysis.
A weak relationship is observed when (a) all field plots are used in regression, and a much stronger
relationship is observed in (b) plots with negative average normalized-difference vegetation index
(NDVI).

4. Discussion

Once a model was selected, the production of map products over the entire area of study was
achievable using common map algebra operations in a GIS environment. The selected models achieved
good predictive accuracy (0.623 R2, 0.224 RMSE in cross-validation; 0.721 R2, 0.198 RMSE in the
verification area) but required a sophisticated set of inputs, involving high-resolution aerial images,
high density LiDAR point clouds as well as ML point clouds. The results presented in Figure 3 indicate
that, even where ML data is not available, CWD volume can still be modeled with good predictive
accuracy (0.514 R2, 0.254 RMSE in cross-validation; 0.628 R2, 0.203 RMSE in the verification area),
with a mean decrease of 0.101 in R2 and a mean increase of 0.0125 in RMSE in relation to ML-inclusive
models. The final maps of CWD volume in the study area (Figures 4 and 5) reveal that even though
CWD distribution is largely controlled by the occurrence of wetlands, artificial piles of CWD on seismic
lines and clear-cuts are exceptions which can cause CWD anomalies. Overall average CWD volume
in the study area (9.78 m3/ha for the entire study area, 17.73 m3/ha for uplands and 3.14 m3/ha for
lowlands) was small when compared to what Lee et al. [45] measured in aspen-dominated stands in
Alberta (108.8 to 124.3 m3/ha), but upland volumes in the present study are comparable to several other
studies [46–48] in boreal forests as presented in Table 6. It is not surprising that lowlands had a very
low volume of CWD (3.14 m3/ha) since the lowland trees observed in the field were small (commonly
close to 7 cm diameter at largest end) and since not all wetlands were densely populated by trees,
especially bogs and marshes which were mostly shrubby. Additionally, the CWD distribution on the
produced maps was very similar to the distribution in the reference data (Figure 6), with mean values
from uplands and lowlands in the reference data (17.7 and 3.1 m3/ha respectively) close to the mean of
uplands and lowlands in the final maps (13.7 and 3.4 m3/ha respectively).
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Table 6. Minimum and maximum average coarse woody debris volume (m3/ha) over varied boreal
forest types presented in other studies. Note that the present study estimated volumes in 100 m2 plots
and upscaled the values for an estimate per hectare. Minimum value from Pedlar et al. [48] includes
snags. Sturtevant et al. [46] values are for individual stands, while all other studies present averages.

Citation Forest Types (Min/Max) Location Min Max

Lee et al., 1997 [45] 20–30 yr. aspen stands/120 + yr. aspen stands AB,
Canada

108.8 124.3

Linder et al., 1997 [49] Natural pine, spruce and deciduous stands Sweden 62 -
Sturtevant et al., 1997 [46] 58 yr. fir stand/80 yr. fir stand NL,

Canada
15.2 78.1

Sippola et al., 1998 [47] Managed 15 yr. spruce stands/Natural mixed
stands

Finland 6.6 47.2

Pedlar et al., 2002 [48] Spruce stands/mixed stands ON,
Canada

<17.8 131.5

Present study Black spruce dominated wetlands/Upland
coniferous, deciduous and mixed forests

AB,
Canada

3.14 17.73

CWD amounts are known to be highly variable between and within ecosystems, being influenced
by the action of fire, insects and diseases [1,6], and to be strongly correlated with the biomass of the
living trees in the area [47–49]. In this study most of the black spruce trees on wetland sites had a
diameter close to or smaller than 7 cm at the largest end, most of which would not be classified as CWD
if dead. This observation supports the results presented for CWD volumes on wetlands. It is worth
noting that the CWD volume distribution for treated lines in the seismic line map (Figure 5; mean
18.19 m3/ha) is smaller than the distribution in the disturbance field plots (Figure 6; mean 36.2 m3/ha)
which is likely due to the fact that field plots were constrained by the limits of disturbances. Artificial
CWD piles are confined, while the map cells were not. It is also possible that overrepresentation of
plots with large quantities of CWD in the reference data samples may be inflating this difference.

It is worth noting that the calibration and verification plots were relatively similar (given they are
located within the same natural region and due to a consistent sampling strategy) in terms of forest
structure, seismic-line distribution, and fire history, and this is likely a key factor for the success in
applying models trained in the calibration area on to the verification area. Water bodies and man-made
structures such as buildings and parking lots were some of the ground-cover types present in the study
area but not included in the training of the models or the final maps. In this case, such ground cover
features were removed manually since they were isolated and of no interest for this study, but it is
worth noting that the model would be less capable of predicting CWD volume on ground cover types
it was not trained on.

We expect the model trained in this study area to perform with lower accuracy when applied
to different forests unless new reference data is introduced. We believe wetland probability was
an important variable selected by the candidate models because the terrain and forest structure of
our study area is highly controlled by the presence and absence of wetlands, and therefore would
advise against using wetland probability when applying CWD volume estimation models on areas not
affected by wetlands. Similarly, the height of the tallest tree (CHMmax) was an important variable to
model CWD volume in our study area likely due to the presence of deciduous, coniferous and mixed
forest stands with great variance in tree size, and the fact that differently sized trees yield different
volumes of CWD. Therefore, on homogenous forest stands it is likely that CHMmax will not perform as
well as a controlling factor for CWD volume. Finally, we predict that canopy cover and ML variables
should be valuable indicators of occluded CWD volume in a variety of forest types, but their influence
on model predictive power should decrease on areas with less canopy cover, such as forests recently
affected by fires.
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4.1. Model Selection

The two simplest models with and without ML variables were “tied” as candidates with a ∆AICc
lower than 2 (Table 3). However, in our case, model ranked 4 was close enough to an ∆AICc of 2 and
performed worse in Figure 3 such that we deemed model 1 to be the best option when ML variables
are available. We note that the four variables common to all candidate binomial models were directly
linked to factors we predicted would control CWD occlusion and distribution: presence of canopy
cover and tall vegetation being represented by pNDVI and distribution of wetlands being represented
by visible water area and wetland probability. Additionally, as we expected ML variables were selected
by top models as good predictor variables for CWD volume models.

Only variance-related variables (i.e., standard deviation and range) were present in candidate
models concerning vegetation indices, both active and passive. This result suggests that the mean of
vegetation indices does not capture volume variance whereas the variance of vegetation indices does.

We note that one possible path for exploration in the future to circumvent some of the bias of
model selection is to use ensemble models, which combine many different models to provide one
“average” model that may increase the estimation accuracy. However, in this case, since all candidate
models were quite similar to each other and therefore not entirely independent, it is unlikely that
an ensemble approach using these models would expressively increase the predictive power of the
final model. Additionally, supervised learning models would likely require a much larger number
of samples.

4.2. Importance of Multispectral LiDAR for Infra-Canopy Predictions

Models including aNBR placed higher than models without ML data as seen in Table 3, and the
best ML-inclusive model yielded more accurate results than the best model without ML variables,
with lower RMSE and higher R2 as seen in Figure 3. It is also visible between Figure 3a,c that the
plots that benefited the most from the inclusion of ML variables were the plots with large amounts
of CWD above the regression line; in other words, plots with underpredicted CWD volume. When
analyzing our orthophotos and field photos of these plots we noticed that most of them were also
affected by either closed canopy (off the seismic lines) or tall grass (on the seismic lines). Furthermore,
as seen on Figure 7, the vCWD layer produced via GEOBIA is only a good estimator of CWD quantities
on plots where CWD is not being occluded by closed canopy or tall grass (Figure 7b), and produces
a zero-inflated independent variable on Figure 7a. These results suggest that ML variables can be
valuable for CWD volume estimation, likely acting as indicators of occluded CWD quantity and
consequently reducing the error on plots with occluded CWD. However, given that models without
ML variables were also selected as candidates, we must conclude that there was not enough evidence
to make the claim that ML substantially improved our CWD volume models.

NDVI is a much more common indicator for coarse woody debris than NBR in the literature.
However, in this case aNBR was selected over aNDVI within candidate models, most likely because of
the reduced ground-point frequency observed in the green ML channel, which increases the relative
variance of the aNDVI values obtained at each plot. The low point density and high percentage of
single returns of the green ML channel are attributed to the larger beam divergence and forward
tilt for this channel which causes it to encounter more foliage than the other channels. Wet surfaces
caused by rain prior to the flight mission further reduced the detection capability for the green channel.
We expect that data collected on drier conditions and/or lower altitude would yield a dataset with a
more complete representation of ground points especially in the green channel. In that case, aNDVI
would likely be a more appropriate indicator for spectral separation on CWD than aNBR, and it is
possible that aNBR would not even be present in candidate models for such a dataset. Additionally,
even though individual ML channels were not considered as potential variables in model selection
given that active vegetation indices were assumed to be superior variables in terms of model parsimony,
future studies may consider investigating the potential of separate channels as additional information
for forest classification.
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It is noteworthy that Okhrimenko and Hopkinson [21] demonstrated that active vegetation indices
should be derived from single return averages instead of all-return averages for more consistent values
across land cover types. However, in the case of this study, the point density for single-returns was
not dense enough, especially on vegetated areas. Therefore, using averages from single-returns of
the ML datasets presented here would in practice defeat the intended purpose of ML in this study:
providing insight onto occluded CWD. Future studies may incorporate lower-altitude ML acquisition
for an increased number of single returns on all channels, enabling more stable active indices.

4.3. Two-Part Models Versus Simple Models

We considered that separating the CWD volume model into a binomial and a continuous part was
beneficial due to the nature of the zero-inflated response variable. Tests comparing two-part models
against simple linear models revealed that two-part models primarily reduce the overprediction of
plots in the lower-left corner of actual-versus-predicted CWD volume scatterplots such as those seen
in Figure 3. Consequently, two-part models consistently reduced RMSE and increased R2 values
in relation to simple linear models when using either cross-validation or the verification area tests.
Furthermore, AICc tests would place simple models well above the ∆AICc threshold of 2 and would
only select two-part models as candidates.

In our study area, the spatial distribution of wetlands seems to control much of the forest structure
and consequently CWD volume. It is noteworthy that wetland-related variables were selected by all
binomial models but not by any of the continuous models in Table 3. This result suggests that the
presence or absence of wetlands is highly related to the presence or absence of CWD, and therefore the
zero-inflation effect on our response variables. Furthermore, the presence or absence of wetlands is not
a strong factor for CWD volume on plots where CWD is present, which is supported by the fact that
most plots with large amounts of CWD were located on uplands. This pattern is expected on seismic
line treatment efforts as well, since usually operators will be instructed to apply a larger amount of
CWD on upland sites than they would on wetland sites [7]. Tests comparing single linear models
to two-part linear models indicated that the former consistently overpredicted CWD quantities on
wetland plots with water.

4.4. Standardized Model Coefficients

The standardized coefficients of the binomial model (Table 4) reveal that all variables substantially
contribute to the prediction of this model, with vCWD being the strongest predictor. The response
variable for the binomial model can be understood as the likelihood of absence of CWD. Therefore,
a strong negative coefficient for vCWD is to be expected and indicates that the larger the quantities of
detected CWD area, the smaller the likelihood that CWD is absent. Positive coefficients for vWater and
WP show that high wetness and presence of wetlands increase likelihood of absence of CWD, as would
be expected given the smaller stature of the forests in these areas. A negative coefficient for standard
deviation of passive NDVI leads us to believe that NDVI-homogeneous areas are less likely to contain
CWD in relation to areas with high NDVI variability, which is plausible given that during leaf-on
conditions (summer) ground vegetation is widespread in the study area and sites without CWD will
generally have either very high NDVI in the case of vegetated areas and very low NDVI in the case of
roads and open water without much variability. Conversely, sites with CWD will have the presence of
low NDVI pixels on CWD and high NDVI pixels in the surrounding ground vegetation, causing a
greater variance for NDVI.

Standardized coefficients of the continuous model (Table 5) reveal that aNBR was the least
important predictor. This effect is not surprising considering models without ML predictor variables
were tied in terms of ∆AICc with the ML-inclusive models (Table 3). Given aNBR was selected in some
candidate models we assume that, to some extent, it must contain valuable information regarding
the variance of CWD volume. However, its small standardized coefficient and its absence in other
candidate models suggest that it does not contain substantial information to conclude it is on the
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same level of importance as the other variables. We believe that the information being supplied by
aNBRsd is similar to the information being supplied by pNDVIsd in the binomial model, namely that
vegetated areas without CWD will have high aNBR without much variance, and that areas with CWD
will have low aNBR pixels on CWD and high aNBR pixels on the surrounding vegetation, causing
greater variance. In other words, the positive nature of the aNBRsd coefficient shows that an increase
of CWD quantities can cause higher variance in aNBR captured with ML LiDAR. Finally, we believe
that aNBR is not supplying substantial information about the variance of the response variable due to
noise in the intensity values given that the intensity information available in LiDAR returns of the
ground surface is very likely to have been affected by environmental factors such as target roughness,
reflectance and wetness, as well as attenuation due to pulses being split into multiple returns [50].

A positive coefficient for squared vCWD in the continuous model shows there is a positive
relationship between predicted area of CWD according to our GEOBIA and actual CWD volume.
Given a negative coefficient for CC we interpreted that gaps in the canopy may indicate larger
quantities of fallen trees, whereas tightly packed canopies are unlikely to have large quantities of sound
logs. We recognize that this assumption may indicate the model is less capable for heavily decayed
CWD. The standardized coefficients for CHMmax at Table 5 indicate that an increase of tree size has a
positive relationship with CWD volume, although it relates to a tapering curve given the negative
CHMmax

2 coefficient.

4.5. Issues and Limitations

As discussed previously, the main sources for the underprediction of CWD volume (i.e., false
negatives in the vCWD raster image) in the presented models are occlusions caused by superimposed
vegetation. ML data aided in diminishing the effect of occlusion, however due to low point density
in ML point clouds the benefits of these datasets were limited. It is likely that more powerful ML
radiometric calibration methods will be available in the future which could enable a more direct
comparison between ML intensity and object reflectance, potentially even causing dense ML point
clouds to eliminate the need for image analysis altogether.

Aside from the issue of gaps in the ML data due to diminished returns at ground level, the NIR
ML band also displayed a noticeable banding issue caused by variations of return intensities on each
laser scan line. This effect caused some noise to be translated to our aNDVI and aNBR layers, which
probably reduced the accuracy of our results presented here. There have been studies on possible
solutions for banding problems [51]. However, since the vegetation indices were sampled at plot level,
while averaging the values of all pixels within each plot, we considered that the effect of banding was
attenuated for the purposes of answering the questions posed in our study and we decided to not
perform any noise attenuation procedure on our datasets. We suggest that banding issues should be
addressed in order to increase accuracies in future studies.

The main sources for overprediction of CWD volume (i.e. false positives in the vCWD raster
image), observed on plots below the regression line in Figure 3 seem to be: a small quantity of occluded
CWD being interpreted as a large quantity of CWD, which may be attributed to the noisy nature of the
ML data; and tall neighboring trees with a lower than average CWD quantity, which highlights one
disadvantage of using the CHMmax variable as an indicator for CWD volume. The presence of the
canopy closure (CC) and height of tallest tree (CHMmax) variables in all candidate models might be
indicating that the ML data is not providing enough information about the occluded portions of the
study area, and that the height of the tallest tree within each plot as well as the percentage of occluded
area are supplementing that lack of information and improving the CWD volume estimates. If the
ML datasets were more comprehensive and consistent, the value of CC and CHMmax variables would
likely diminish.

Aside from the sources of overprediction described above, upon close examination of the final
maps presented in Figures 4 and 5 we found additional sources of localized error: clear-cut edges,
isolated snags and wet mud surfaces. Some shadowed edges between clear-cuts and natural forest
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seem to have caused overprediction of CWD, probably given that our sampling design avoided and
therefore did not account for these transitions between forest and disturbances. Some isolated snags,
especially on clear-cuts, caused CWD overprediction; even though in some studies snags are defined
as a type of CWD in here it acts as a source of error. Additionally, extensive wet mud surfaces located
on wetlands, which usually surround water bodies, are seen as highly reflective bumpy areas with
low NDVI, which caused the RF classifier to overpredict CWD. These three additional sources of error
present situations which were not accounted for in the training data, which reinforce the importance of
having a representative sample for your application area.

Finally, we believe that our map of seismic line volume (Figure 5) should only be used as a
reference for field operators and we recognize that it is likely to have lower accuracy than our map for
the overall forest (Figure 6). Volume values for line segments were derived from the raster of volume
in the overall area, and therefore cells positioned in an arbitrarily placed grid may be at the transition
between disturbance and forest. For a better estimate of volume on seismic lines, future models should
be constrained by the spatial extent of seismic lines, excluding the surrounding forest. GIS procedures
could be applied to generate irregular 100 m2 cells within the boundaries of seismic lines and CWD
volume models could be applied to such cells for a more reliable prediction.

4.6. Future Work

We used data collected over the summer (leaf-on) to generate all intermediate products presented
in this document. We believe the incorporation of spring (leaf-off) datasets as an additional resource
for CWD volume estimation should increase the accuracy of predictive models especially on areas
with occluded CWD. We note that upon inspection, most plots well above the regression lines on
Figure 3a,c represented piles of CWD occluded by tall grass on seismic lines. On leaf-off data the CWD
on these same plots should be much more distinct, since the live vegetation is less dense that time of
year. Additionally, it is possible that incorporating the ML datasets into the GEOBIA workflow may
increase the accuracy of the vCWD layer. Moreover, while our study focused on coarse woody debris,
it is likely that similar models could be applied to estimate fine woody debris (FWD, <7 cm diameter
or <1 m length) volume assuming FWD is affected by the same parameters presented in the selected
models for CWD volume. The impact of a finer object of study on the accuracy of models using the
presented methods is yet to be tested. Finally, it is unclear if ensemble models could perform better
than single models within this context given most linear models presented here as candidate models
were quite similar.

We encourage future researchers to investigate these options, to explore the utility of other
explanatory variables (e.g., time since disturbance, tree-species composition, etc.), and to test
the development of remotely sensed models of CWD in other forest ecosystems. Additionally,
the possibility of creating accurate high-resolution (10 m GSD) CWD maps over extensive study areas
may be beneficial to improve a variety of ecological models including wildlife habitat and seismic line
use models.

5. Conclusions

A method for creating accurate and extensive maps of CWD volume on boreal forests was
presented in this study as a novel solution using multispectral LiDAR (ML) for volume estimation of
both visible and occluded CWD. Visible CWD was mapped using geographical object-based image
analysis, and occluded CWD was modeled using infra-canopy normalized burn ratio. The best
zero-adjusted gamma models (ZAGA) using ML data and without ML were selected with small-sample
Akaike’s information criterion (AICc). Many of the variables we predicted would control CWD
quantities and occlusion were selected as predictor variables in the best models, including visible
CWD area, height of tallest alive trees, canopy closure, visible water area, wetland probability, passive
NDVI and active NBR. The ZAGA models performed very well when tested with the reference data,
both in cross-validation tests with the training samples (0.623 R2, 0.224 RMSE using ML data; 0.514 R2,
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0.254 RMSE without ML) as well as in verification tests using independent samples from a spatially
separated from the training area (0.721 R2, 0.198 RMSE using ML data; 0.628 R2, 0.203 RMSE without
ML). The best model using ML performed better than the best model lacking ML variables. Our final
CWD volume maps provide accurate, extensive, and high-resolution (10-m GSD) estimates for our
study area and provide the foundation for a variety of management activities, including seismic line
restoration and fire-hazard assessment.

CWD used to protect regeneration efforts on seismic lines are usually applied based on the natural
range observed in the environment [7]. This natural range can be accurately mapped using the method
presented here. Field operators can use extensive maps of CWD volume as guides to select areas for
CWD treatment as well as for improved navigation in seismic lines. Conversely, large accumulations
of CWD which can constitute a fire hazard [52] can be detected in these map products and addressed
to prevent wildfires.

The methods presented here could be applied to any forested environment to generate extensive
CWD volume maps which may be used for forest management as well as ecological research.
Some methodological steps of our method may be improved and expanded, such as the inclusion
of leaf-off data and the use of ensemble models. ML-derived vegetation indices proved to be useful
in detecting CWD but could not be applied reliably to generate active NDVI due to attenuation
losses in the green channel. Moreover, even though ML was helpful for modelling occluded CWD,
a lack of ground returns in closed canopy areas limited the efficacy of these datasets and showcased
that modelling occluded forest targets remains a technical challenge. More research is required in
this context.
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Appendix A

Twenty-seven sites were selected for CWD volume sampling in the study area based on accessibility,
forest composition and seismic line treatment. Sites were selected centered around seismic lines and in
each site four 100 m2 sampling plots were laid out (Figure A1): two circular forest plots randomly
placed within a buffer from 12 to 36 meters away from the line, and two disturbance plots placed
systematically starting 15 meters away from the beginning of the line and spaced 75 meters apart.
Forest plots had a 5.645 m radius and disturbance plots had the same width as the seismic line and
variable length to obtain a 100 m2 area (Figure A2). Plots were located using a real-time kinematics
(RTK) unit, by locating the center point of forest plots and the start and end points of disturbance plots.
Volume was sampled for each CWD piece by obtaining three diameter measurements and one length
measurement (Figure A3) exclusively within the sampling plots, while objects crossing the edge of the
plots were measured as if they ended at the limits of the plot (Figure A4).
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Figure A4. Measuring strategy for CWD partly outside the sampling area. Only the (blue) segment
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represent tape used in (a) disturbance plots or biodegradable paint used in (b) forest plots to mark the
edges of the plots.
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