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Abstract: Soil respiration (Rs) is seldom analyzed using remotely sensed data because satellite
technology has difficulty monitoring various respiratory processes in the soil. We investigated the
potential of remote sensing data products to estimate Rs, including land surface temperature (LST)
and spectral vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS),
using a nine-year (2007–2015) field measurement dataset of Rs and soil temperature (Ts) at five forest
sites at the eastern Loess Plateau, China. The results indicate that soil temperature is the primary
factor influencing the seasonal variation of Rs at the five sites. The accuracy of the model based on
the observed data is not significantly different from the model based on MODIS-derived nighttime
LST values. There was a significant difference with the model based on MODIS-derived daytime
LST values. Therefore, nighttime LST was the optimum LST for estimation of Rs. The normalized
difference vegetation index (NDVI) consistently exhibited a stronger correlation with Rs when
compared to the green edge chlorophyll index and enhanced vegetation index. Further analysis
showed that adding the NDVI into the model considering only Ts or nighttime LST could significantly
improve the simulation accuracy of Rs. The models depending on nighttime LST and NDVI showed
comparable accuracy with the models based on the in situ Ts and NDVI. These results suggest that
models based entirely on remote sensing data from MODIS have the potential to estimate Rs at the
cold temperate coniferous forest sites. The performance of the model in other vegetation types or
regions has also been proved. Our conclusions further confirmed that it is feasible for large-scale
estimates of Rs by means of MODIS data in temperate coniferous forest ecosystems.

Keywords: soil respiration; soil temperature; land surface temperature; vegetation indices; MODIS
data; cold temperate coniferous forests

1. Introduction

Soil respiration (Rs) is the second largest carbon flux between terrestrial ecosystems and the
atmosphere [1]. Consequently, small changes in Rs will have a large impact on atmospheric CO2

concentration and climate warming. Therefore, an accurate estimation of the spatial–temporal variation
in Rs is required to assess the carbon budgets of terrestrial ecosystems [2] and to understand the effect
of global warming on Rs [3,4].

Since Rs is a combined flux from plant roots and microorganisms from different soil depths [5],
several factors and their interactions affect Rs rates. Soil temperature (Ts) and soil moisture (Ws) are
considered to be the most important factors controlling the CO2 flux [6,7]. In addition, other factors,
such as vegetation types [8,9], composition and quantity of litter [10], soil organic carbon [11,12],
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soil nitrogen [13], and fine root biomass [13], also impact Rs. Many semi-empirical models have
been used for predicting the spatial and temporal variability of Rs using in situ measurement data,
including Ts, Ws, and vegetation characteristics [1,14–16]. However, on a large spatial scale, these
factors are difficult to obtain with in situ measurements because of their distinct spatial and temporal
changes [13,15]. Due to spatial data products providing us a broad range of spatial coverage and
regular temporal sampling, we speculate that if the spatial data relating to soil temperature and
moisture from satellite remote sensing can be used in an Rs model, then CO2 efflux over large spatial
and temporal scales can be estimated [3].

Satellite techniques have been used for the estimation of the spatial distribution of gross primary
productivity (GPP), net primary productivity (NPP), and net ecosystem exchange (NEE) [17]. However,
Rs estimations based on remote sensing products remain problematic because it is difficult for remote
sensing to monitor various respiratory processes in the soil [3,18]. Previous studies have reported that
remote sensing data could be used to establish Rs models. For example, the land surface temperature
(LST) night-driven model can simulate the temporal variation of Rs in deciduous and evergreen forest
sites [19]. In a study of Rs of forest landscapes in Saskatchewan, Canada, Wu et al. [20] showed that an
accurate estimation of Rs could be inferred with the product of the normalized difference vegetation
index (NDVI) and the nighttime LST derived from the Moderate Resolution Imaging Spectroradiometer
(MODIS) imagery as the independent variable in regression equations. Furthermore, the accuracy of
Rs models based only on remotely sensed data are comparable with those based on in situ measured
data [3]. However, the performance of satellite-driven Rs models in other vegetation types or regions,
such as a semiarid region, like the Loess Plateau, China, requires further study [18,19].

In this study, we evaluated the potential to estimate Rs using remote sensing data products.
We used our nine-year dataset of field measured Rs, Ts, and Ws on five forest sites at the middle
of Lvlian Mountain in the eastern Loess Plateau of China and the MODIS product dataset (http:
//ladsweb.nascom.nasa.gov/data/search.html) corresponding to the sites to analyze the correlations
between Rs and LST values and in situ measured Ts, and subsequently determined the optimum
temperature predictors. Then, we investigated the correlations between Rs and the three vegetation
indexes (VI, e.g., the normalized difference vegetation index (NDVI), the green edge chlorophyll index
(CIgreen edge) and the enhanced vegetation index (EVI)), and selected the best VI predictors. Finally,
we built empirical models of Rs from the remotely sensed data, using different statistical approaches
based on the optimum temperature and vegetation index for each site, and we also evaluated the
accuracy of these Rs models.

2. Materials and Methods

2.1. Study Sites

The study site is located in the Pangquangou National Natural Reserve in the Guangdi Mountains
of Shanxi Province, China. The region has a temperate continental monsoon climate. Between 1977
and 2011, the annual average precipitation was 604.9 ± 177.5 mm, ranging from 935.0 mm in 1967
to 358.4 mm in 1997, and 60% of the precipitation occurred mostly in the summer months based on
a provincial rainfall station near the site. The annual average temperature was 4.3 ◦C, and mean
temperatures in January and July were −10.2 and 17.5 ◦C, respectively. The altitude of the area ranges
from 1400 to 2700 m. The dominant trees in the region are composed of Larix principis-rupprechtii Mayr.
(Prince Rupprecht’s Larch), Picea wilsonii Mast. (Wilson Spruce), Picea meyeri Rehd. et Wils. (Meyer
Spruce) and Populus davidiana Dode (Wild Poplar), which is mostly located between 1700 and 2600 m
above sea level, accounting for 60% of the area. The forests in the area have not been cut or thinned
since 2000, which are in a state of natural growth. The experiment was carried out in five forest sites,
including an evergreen needle-leaf forest (ENF), an evergreen and deciduous needle-leaf mixed forest
(NMF), and three deciduous needle-leaf forests (DNF-1, DNF-2, and DNF-3), which are located at
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different altitudes ranging from 1790 to 2387 m. The physical and chemical characteristics of the sites
are listed in Table 1.

Table 1. Summary of characteristics for all five sites.

Sites NMF ENF DNF-1 DNF-2 DNF-3

Latitude N 37◦53′08.4” N 37◦52′34.4” N 37◦53′33.7” N 37◦53′24.3” N 37◦53′03.4”
Longitude E 111◦25′56.6” E 111◦26′31.0” E 111◦31′05.0” E 111◦30′15.1” E 111◦30′34.5”

Elevation (m) 2163 1986 2387 2264 2105
Slope (◦) ~16 ~8 ~25 ~32 ~1
Aspect SW SW SW SW SW

Soil texture Loamy sand Loamy sand Loamy sand Sandy loam Sandy loam
Soil depth (cm) 10–35 10–30 10–35 10–30 10–30
SBD (g cm−3) a 0.73 1.26 1.04 1.11 1.27

WHC (%) b 37.25 20.32 30.62 24.19 27.47
Plant

combination Coniferous mixed forest Evergreen
coniferous forest

Deciduous
coniferous forest

Deciduous
coniferous forest

Deciduous
coniferous forest

Dominant
species

Picea wilsonii Mast.
(Wilson Spruce), Larix

principis-rupprechtii Mayr.
(Prince Rupprecht’s

Larch)

Picea wilsonii Mast.
(Wilson Spruce)

Larix
principis-rupprechtii

Mayr. (Prince
Rupprecht’s Larch)

Larix
principis-rupprechtii

Mayr. (Prince
Rupprecht’s Larch)

Larix
principis-rupprechtii

Mayr. (Prince
Rupprecht’s Larch)

Stand density
(tree ha−1) 950 675 1175 1025 925

DBH (cm) c 22.9 ± 8.7 29.6 ± 9.0 18.7 ± 8.2 26.6 ± 11.1 28.1 ± 10.3
a Soil bulk density; b Water holding capacity; c Diameter at breast height.

2.2. Soil Respiration Measurement

The Rs was measured at the five sites using an LI-COR 6400 portable photosynthesis system
(LI-COR, Environmental Division, Lincoln, NE, USA) connected to a standard soil chamber (6400-09).
In each site, nine or more PVC chambers, which were made of polyvinyl chloride pipe, were permanently
installed with a 2-m spacing between them before measuring Rs. The aboveground living plants
were removed, and the litter was left in the chamber. All measurements were performed during
the day from 10:00 AM to 14:00 PM. The Rs measurement process and the equipment calibration
were described in Li et al. [7]. At the 10-cm depth (T10) near the chamber, the soil temperature was
measured by a thermocouple probe (6400-13, LI-COR, Environmental Division, Lincoln, NE, USA)
simultaneously with the Rs measurement. After the initial measurements, we continuously observed
the soil temperature at 5- (T5) and 15-cm (T15) depths. The Ws values from the 0- to 10-cm soil depth
near the chamber were measured by an oven drying method at 105 ◦C. The leaf area index (LAI)
was measured simultaneously with Rs measurements by using LAI-2200C (LI-COR, Environmental
Division, Lincoln, NE, USA) only in 2015. The soil bulk density (SBD) at 0–10, 10–20, and 20–30 cm
was measured using the volumetric core method. The measurements of SBD and stand density were
made within three 10 m × 10 m areas. These measurements were made monthly, during the growing
season, from July 2007 to October 2015, and a total of 58 measurements were recorded at each site.

2.3. MODIS Land Surface Products

We used three land surface MODIS products for our analysis. They were downloaded from
NASA’s Earth Observing System Data and Information System (http://ladsweb.nascom.nasa.gov/data/

search.html). We used the Terra MODIS 8-day surface reflectance data (MOD09A1, 500 m), and the
Terra and Aqua MODIS 8-day LST (MOD11A2 and MYD11A2, 1 km). Table 2 shows three spectral
vegetation indices (VI) calculated from the surface reflectance product of MOD09A1. The nine LST
temperature types were used in the analysis. LSTtd and LSTtn are the LST at Terra’s 10:30 AM/PM
overpasses, respectively. LSTad and LSTan are the LST at Aqua’s 1:30 AM/PM overpasses, respectively.
LSTtav is the mean of LSTtd and LSTtn, and LSTaav is the mean of LSTad and LSTan. LSTav is the mean
of LSTtd, LSTtn, LSTad, and LSTan. LSTdayav is the mean of LSTad and LSTtd. LSTnightav is the mean of
LSTan and LSTtn.
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Pixels containing each study site from the MODIS land surface products (MOD09A1, MOD11A2,
and MYD11A2) were extracted for data analysis by using five study sites’ geo-location information
(latitude and longitude). The values of VI and LST of the Rs measurement days for each site were
obtained from the two consecutive 8-day composites by linear interpretation.

Table 2. Vegetation indices calculated from MODIS 8-day surface reflectance product.

Vegetation Index Formulation Reference

Normalized Difference Vegetation Index NDVI = pnir−pred
pnir+pred

[21]

Enhanced Vegetation Index EVI = 2.5× pnir−pred
pnir+1+6.0×pred−7.5×pblue

[22]

Green Edge Chlorophyll Index CIgreen edge =
pnir

pgreen
− 1 [23]

pgreen, pblue, pred, and pnir are reflectance of the green, blue, red, and near-infrared (NIR) band in the MOD09A1
product, respectively.

2.4. Data Processing and Analysis

2.4.1. Methods for Rs Modelling

Previous studies have established that Ts, Ws, and vegetation productivity are the three most
important abiotic and biotic factors influencing Rs [6,7]. However, due to Pearson’s Product Moment
correlation coefficient between Rs and Ws at all sites not being statistically significant (Figure S1),
we only selected the independent variables of Ts, LST, and VI as proxy indicators to build the Rs model.

The exponential and Arrhenius-type functions (Equations (1) and (2)), in which the measured Rs

is the dependent variable and temperature, including the measured Ts and MODIS LST data, is the
independent variable, were used to explore the correlations between Rs and the measured Ts at three
depths (e.g., T5, T10, and T15), as well as Rs and the MODIS LST values at different passing times.
Based on the coefficient of determination (R2) and root mean square error (RMSE) of each of the fitted
equations, we determined the best temperature predictors for further analysis:

Rs = Rref × eQ×T, (1)

Rs = Rref × eE0×(
1

Tref−T0
−

1
T−T0

), (2)

where Rs is the measured Rs (µmol CO2 m−2 s−1), and T refers to the measured Ts or LST (◦C). Q (◦C−1)
represents the rate of Rs change with respect to temperature. E0 (K) is the activation energy parameter
that represents the Rs sensitivity to T. T0 is the lower temperature limit for the Rs, which is fixed
at 227.13 K (−46.02 ◦C), similar to the original model of Lloyd and Taylor [24]. Tref is the reference
temperature and it is set to 283.15 K (10 ◦C). Rref (µmol CO2 m−2 s−1) in Equation (1) represents Rs

when T is 0 ◦C, whereas Rref (µmol CO2 m−2 s−1) in Equation (2) represents the Rs at Tref.
Next, we analyzed the correlations between Rs and VI values (NDVI, EVI, and CIgreen edge) with

linear functions and exponential functions, respectively (Equations (3) and (4)). Based on the R2 and
RMSE, the best VI predictors were selected for further analysis:

Rs = a + b×VI, (3)

Rs = a× eb×VI, (4)

where a and b are the fitted parameters, and VI is one of the three vegetation indexes.
Based on above analysis, the following equations (Equations (5)–(10)) were used to build six

2-variable models of Rs with T and VI. The independent variables were chosen from the best-fitted
equations of Equations (1)–(4) that had the highest R2 and lowest RMSE:

Rs = a + b× T ×VI, (5)
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Rs = a + b× T + c×VI, (6)

Rs = a× e(b×T+c×VI), (7)

Rs = a× e(b×T)
×VIc, (8)

Rs = Rref × eE0×(
1

Tref−T0
−

1
T−T0

)+c×VI, (9)

Rs = Rref × eE0×(
1

Tref−T0
−

1
T−T0

)
×VIc, (10)

where a, b, and c are the fitted parameters, which differ depending on the model. T (◦C) and VI
are the corresponding optimal independent variable Ts or MODIS LST, and VI. Tref is the reference
temperature, which was set to 283.15 K (10 ◦C). Rref (µmol CO2 m−2 s−1) represents the soil respiration
at Tref.
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Figure 1. Seasonal variations in the (a) soil respiration rate (Rs, µmol CO2 m−2 s−1), (b) soil temperature
at 5 cm depth (T5, ◦C), (c) land surface nighttime temperature from MODIS-Aqua (LSTan, ◦C),
(d) normalized difference vegetation index (NDVI), and (e) soil water content at 0 to 10 cm (Ws, %) at
the five sites during measurement.



Forests 2020, 11, 131 6 of 17

2.4.2. Statistical Analysis

All statistical analysis was conducted using SPSS 17.0 (SPSS Inc., Chicago, IL, USA). All plots
were drawn using SigmaPlot 11.0 (Systat Software Inc., Chicago, IL, USA). The mean Rs of each
site and all chambers was used for statistical analysis. One-way ANOVA was applied to compare
the mean differences of Rs for the relevant biotic and abiotic factors between the five study sites.
A linear regression model between the MODIS LST and in situ measured Ts was used to confirm
the feasibility of using MODIS LST in estimating Rs. One-way ANOVA, based on the R2 and RMSE
values from each site, was also examined to compare the goodness of fit to the models driven by the in
situ measured Ts with that of the models solely considering LST, and post hoc procedure of Duncan
was used to determine differences between sites or groups. Akaike’s information criterion (AIC) was
used to compare the goodness of fit to the models between the single and double variable model.
The models were validated using the method of training/evaluation and splitting cross-validation [25].
The model performance was evaluated by statistical indicators, which included the R2, RMSE, and
model utilization efficiency (EF) of the estimated residuals.

3. Results

3.1. Seasonal Variations of Rs

Similar to the seasonal variations of Ts and NDVI, Rs showed an obvious seasonal pattern during
the study period (Figure 1). The maximum Rs usually appeared at the mid-growing season and
corresponded to the maximum Ts and NDVI values, except for one in July of 2009, which corresponded
to the lowest Ws recorded during the whole experiment period (Figure 1). One-way ANOVA result
illustrated that among the five sites, DNF-3 exhibited the highest Rs, DNF-1 showed the least Rs, and
the difference of the average Rs varied among the sites (Table 3).

T5 and LSTan exhibited a similar seasonal trend (Figure 1), with a maximum in summer and
minimum at the start and end of the growing season. T5 at DNF-1 was significantly lower (p < 0.05)
than at DNF-3, but this was not significantly different (p > 0.05) than at sites NMF, ENF, and DNF-2.
However, LSTad and LSTan were not characterized with a significant difference (p > 0.05) among
the five sites (Table 3). Additional analysis indicated that the correlations between the Ts values
measured at different depths and all of the LST values were all highly significant (Table 4). Furthermore,
the correlations between Ts with nighttime LSTs (LSTtn and LSTan) were significantly stronger than that
between Ts with daytime LSTs (LSTad and LSTtd), indicating that for an Rs estimation, the nighttime
LST values were better than the daytime LST values. Additionally, among the three depth Ts values,
T5 had the best correlation between the Ts values and LST values.

Ws at the five sites showed a large temporal fluctuation with the occurrence of precipitation
events during the measurement. Ws was above 50% of the water holding capacity (WHC) except
for in July 2009 (Figure 1). There was a significant difference observed in the average Ws among the
sites except for between DNF-2 and DNF-3 (p < 0.05). Among the five sites, the NDVI values did not
have a significant difference (p > 0.05), as they ranged from 0.62 ± 0.20 to 0.68 ± 0.19, with a seasonal
coefficient of variation (CV) of 24.35 through 34.00% (Table 3). The maximum NDVI typically occurred
in the mid-growing period, except for one occasion in July of 2009 (Figure 1), which corresponded
exactly to the least Ws (Figure 1).
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Table 3. Mean and coefficient of variation (CV, %) of soil respiration (Rs, µmol CO2 m−2 s−1), soil temperature at the 5-cm depth (T5, ◦C), land surface temperature
(LSTad and LSTan, ◦C), normalized difference vegetation index (NDVI), and soil water content at 0 to 10 cm (Ws, %) at the five sites during measurement.

Site Code
Rs T5 LSTad LSTan NDVI Ws

Mean CV Mean CV Mean CV Mean CV Mean CV Mean CV

NMF 4.24 ± 2.27 ab 53.62 9.33 ± 4.71 ab 50.49 15.21 ± 4.85 a 31.92 6.71 ± 5.89 a 87.77 0.68 ± 0.19 a 28.34 54.19 ± 17.20 e 31.74
ENF 4.76 ± 2.54 b 53.48 10.18 ± 4.96 ab 48.72 15.08 ± 4.72 a 31.27 6.27 ± 5.73 a 91.41 0.69 ± 0.17 a 24.35 29.62 ± 8.32 a 28.09

DNF-1 3.57 ± 1.94 a 54.36 8.45 ± 4.61 a 54.62 14.55 ± 4.99 a 34.29 5.30 ± 5.69 a 107.24 0.62 ± 0.20 a 32.88 48.57 ± 14.26 c 29.37
DNF-2 4.95 ± 2.39 b 48.33 10.20 ± 4.63 ab 45.38 14.54 ± 4.98 a 34.26 5.22 ± 5.74 a 109.83 0.62 ± 0.21 a 34.00 38.29 ± 12.31 b 32.13
DNF-3 6.11 ± 2.94 c 48.20 11.08 ± 5.03 b 45.44 15.13 ± 4.73 a 31.26 5.67 ± 5.72 a 100.82 0.65 ± 0.21 a 31.91 37.50 ± 9.50 b 25.34

All 4.73 ± 2.57 54.15 9.85 ± 4.84 49.14 14.90 ± 4.83 31.79 5.84 ± 5.74 97.77 0.65 ± 0.20 31.75 41.64 ± 15.35 38.97

Data are means ± standard deviations (n = 58). Values in the same column followed by the different letters are significantly different (p < 0.05) based on the Duncan test.

Table 4. Pearson correlation coefficients (r) among four land surface temperatures (LST) and in situ measured temperatures (Ts) at the five sites during the measurement.

Temperature
NMF ENF DNF-1 DNF-2 DNF-3

T5 T10 T15 T5 T10 T15 T5 T10 T15 T5 T10 T15 T5 T10 T15

LSTan 0.88 0.86 0.82 0.92 0.90 0.87 0.90 0.90 0.85 0.91 0.89 0.85 0.92 0.90 0.89
LSTtn 0.89 0.87 0.83 0.91 0.89 0.87 0.89 0.89 0.83 0.89 0.87 0.83 0.91 0.89 0.88
LSTtd 0.73 0.69 0.62 0.83 0.79 0.74 0.73 0.70 0.61 0.72 0.68 0.62 0.77 0.73 0.69
LSTad 0.68 0.64 0.58 0.74 0.71 0.65 0.72 0.68 0.59 0.69 0.65 0.59 0.74 0.70 0.65

T5, T10, and T15 is soil temperature (◦C) at a depth of 5, 10, and 15 cm, respectively. LSTtd and LSTtn is the daytime and nighttime land surface temperature observed by the Moderate
Resolution Imaging Spectroradiometer (MODIS) onboard Terra satellites, respectively. LSTad and LSTan is the daytime and nighttime land surface temperature observed by MODIS
onboard Aqua satellites, respectively. The correlation was all significant at the 0.01 level (n = 58).
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3.2. Correlations between Rs and Ts and LST

The correlations between Rs and the temperatures, including three Ts values and nine MODIS
LST values, were all highly significant for each site (Table 5, Figure 2), indicating that both Ts and LST
values could be used to predict Rs. Furthermore, with the R2 and RMSE values of the fitted equations,
the T5 equation was the best one using Rs with Ts at the five sites, and LSTan was the best using LST
(Table 5, Table S1).

Table 5. Results of the statistical analysis of the fitted Equations (1) and (2) relating soil respiration to
temperatures on the five sites for all measured data during the measurement.

Model Temperature
NMF ENF DNF-1 DNF-2 DNF-3

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Equation (1)

T5 0.74 1.25 0.79 1.34 0.76 1.14 0.77 1.53 0.74 2.01
T10 0.74 1.25 0.77 1.35 0.72 1.21 0.76 1.49 0.71 2.03
T15 0.74 1.22 0.76 1.32 0.68 1.23 0.73 1.48 0.67 2.08

LSTan 0.64 1.50 0.73 1.54 0.79 1.13 0.74 1.48 0.71 1.97
LSTnightav 0.65 1.46 0.73 1.54 0.78 1.17 0.72 1.55 0.70 2.03

LSTtn 0.63 1.48 0.69 1.63 0.76 1.26 0.67 1.68 0.67 2.16
LSTtav 0.57 1.56 0.68 1.73 0.70 1.36 0.64 2.01 0.67 2.20
LSTav 0.56 1.61 0.67 1.76 0.72 1.34 0.65 2.00 0.67 2.19
LSTaav 0.53 1.70 0.64 1.85 0.71 1.36 0.62 2.03 0.65 2.22
LSTtd 0.44 1.83 0.59 1.98 0.55 1.62 0.49 2.03 0.56 2.53

LSTdayav 0.41 1.90 0.54 2.08 0.58 1.63 0.48 2.09 0.53 2.57
LSTad 0.35 2.02 0.44 2.25 0.54 1.68 0.41 2.19 0.47 2.65

Equation (2)

T5 0.74 1.24 0.80 1.32 0.78 1.05 0.81 1.40 0.77 1.88
T10 0.75 1.24 0.79 1.33 0.74 1.12 0.79 1.37 0.75 1.90
T15 0.75 1.21 0.77 1.30 0.70 1.15 0.75 1.38 0.70 1.96

LSTan 0.62 1.51 0.71 1.56 0.79 1.09 0.75 1.42 0.74 1.85
LSTnightav 0.63 1.46 0.72 1.54 0.80 1.10 0.74 1.47 0.74 1.89

LSTtn 0.62 1.46 0.70 1.58 0.78 1.17 0.71 1.57 0.71 1.98
LSTtav 0.56 1.59 0.69 1.70 0.72 1.31 0.66 1.96 0.69 2.08
LSTav 0.55 1.63 0.67 1.74 0.73 1.29 0.66 1.95 0.69 2.08
LSTaav 0.53 1.69 0.64 1.81 0.72 1.31 0.64 1.99 0.67 2.12
LSTtd 0.43 1.84 0.60 1.94 0.56 1.57 0.51 1.98 0.58 2.42

LSTdayav 0.42 1.89 0.56 2.03 0.59 1.57 0.51 2.03 0.56 2.47
LSTad 0.38 1.98 0.48 2.19 0.56 1.62 0.45 2.13 0.51 2.56

R2 is the coefficient of determination; and RMSE (µmol CO2 m−2 s−1) is the root mean square error. T5, T10, and T15
is soil temperature (◦C) at a depth of 5, 10, and 15 cm, respectively. LSTtd and LSTtn is the daytime and nighttime
land surface temperature observed by MODIS onboard Terra satellites, respectively. LSTtav is the mean of LSTtd
and LSTtn. LSTad and LSTan is the daytime and nighttime land surface temperature observed by MODIS onboard
Aqua satellites, respectively. LSTaav is the mean of LSTad and LSTan. LSTav is the mean of LSTtd, LSTtn, LSTad,
and LSTan. LSTdayav is the mean of LSTad and LSTtd, LSTnightav is the mean of LSTan and LSTtn. The correlations
were all significant at the 0.01 level (n = 58).

3.3. Correlations between Rs and VIs

The correlations between the Rs and the three VI values were all significant at the 0.01 level for
each site. The exponential and linear functions performed comparably in describing the dependency
of Rs on the VI values for the five study sites (Table 6). Furthermore, NDVI consistently exhibited a
better correlation (with the highest R2 and the lowest RMSE) with Rs than the other two VI values at
all sites. Therefore, in the following analysis, we selected NDVI to represent the Rs response to GPP at
the seasonal time scale.
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Figure 2. Correlations between soil respiration (Rs, µmol CO2 m−2 s−1) and (a) soil temperature at the
5 cm depth (T5, ◦C), (b) nighttime land surface temperature from Aqua MODIS (LSTan, ◦C), (c) daytime
land surface temperature from Aqua MODIS (LSTad, ◦C), and (d) normalized difference vegetation
index (NDVI) during the measurement.

Table 6. Results of statistical analysis relating soil respiration to VIs at the five sites for all measured
data during measurement a.

Model VI
NMF ENF DNF-1 DNF-2 DNF-3

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Equation (3)
NDVI 0.76 1.17 0.68 1.46 0.72 0.98 0.74 1.17 0.71 1.65
EVI 0.65 1.44 0.63 1.70 0.65 1.37 0.63 1.65 0.61 2.03

CIgreen edge 0.66 1.49 0.54 1.76 0.57 1.63 0.60 1.71 0.60 2.11

Equation (4)
NDVI 0.73 1.18 0.66 1.48 0.72 1.02 0.76 1.17 0.71 1.55
EVI 0.66 1.32 0.60 1.59 0.65 1.13 0.64 1.42 0.63 1.77

CIgreen edge 0.70 1.23 0.60 1.60 0.66 1.12 0.69 1.33 0.71 1.55
a VIs are vegetation indices. NDVI is the normalized difference vegetation index, EVI is the enhanced vegetation
index, CIgreen edge is the green chlorophyll index. R2 is the coefficient of determination, and RMSE (µmol CO2 m−2

s−1) is the root mean square error. The correlations were all significant at the 0.01 level (n = 58).

3.4. Combined Correlations between Rs and Ts (or LST) and NDVI

When T5 (or LSTan) and NDVI were integrated into one of the six two-variable models (Equations
(5)–(10)), the results showed that each of the fitted equations could be used to precisely predict Rs from
T5 (or LSTan) and NDVI variables (Table 7). Furthermore, in comparison with the one-dimensional
equation (Equations (1)–(4); Tables 5 and 6), two-variable models (Table 7) were better for all five sites
based on the value of RMSE and AIC. According to the model performance indicators (R2, RMSE,
and AIC), the performances of the fitted T5–NDVI models were very similar to the fitted LSTan–NDVI
model, due to the fact that with the independent t test for the R2, RMSE, and AIC values between
the Rs to T5 and NDVI model and the Rs to LST and NDVI model, except for the R2, demonstrated a
significant difference. However, it was not the case in RMSE and AIC.

3.5. Modeled Soil Respiration Validation

The results obtained from the leave one out cross-validation are shown in Table 8. In contrast to the
cross -validation statistical result of the one-dimensional equation, the R2 and EF of the two-dimensional
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equations increased, and RMSE decreased. This further confirmed our conclusion that the application
of the two-dimensional equations of T5–NDVI (or LSTan–NDVI) is better than the one-dimensional
equations of T5 (or LSTan) in predicting Rs at a seasonal scale. Furthermore, the cross-validated
statistics of the models driven by LSTan or LSTan–NDVI were slightly lower than those of the models
of the in situ measured T5 or T5–NDVI.

The modeled Rs closely resembled the seasonal patterns of the measured Rs (Figure 3). Rs increased
quickly after the start of the growing season and maximized in the summer months and then underwent
an evident decrease since autumn. An obvious overestimation that occurred on 5 July 2009 at the five
forest sites reduced the evaluation accuracy of the cross-validation because of summer drought. When
2009 was excluded from the model validation, the R2 and EF of the cross-validation increased and
RMSE decreased compared with that including all measured data for one of the five sites (Table S2).
Moreover, underestimation was observed after raining or the middle growing period.Forests 2020, 11, x FOR PEER REVIEW  10 of 17 

 

Figure 3. Seasonal variations of soil respiration measured (Rm) and predicted (Rp) by model five based 

on in situ soil temperature and NDVI (Rp–T5*NDVI) or nighttime LST and NDVI (Rp–LSTan*NDVI) 

for the five study sites. 

NMF

R
s 

(μ
m

ol
 m

-2
s-1

)

0

2

4

6

8

10

12

ENF

R
s 

(μ
m

ol
 m

-2
s-1

)

0

2

4

6

8

10

DNF-1

R
s 

(μ
m

ol
 m

-2
s-1

)

0

2

4

6

8

10

Rm 

Rp-T5*NDVI 

Rp-LST*NDVI 

DNF-2

R
s 

(μ
m

o
l 

m
-2

s-1
)

0

2

4

6

8

10

DNF-3

Date (yy/M/d)

07/1/1  08/1/1  09/1/1  10/1/1  11/1/1  12/1/1  13/1/1  14/1/1  15/1/1  16/1/1  

R
s 

(μ
m

ol
 m

-2
s-1

)

0

2

4

6

8

10

Figure 3. Seasonal variations of soil respiration measured (Rm) and predicted (Rp) by model five based
on in situ soil temperature and NDVI (Rp–T5*NDVI) or nighttime LST and NDVI (Rp–LSTan*NDVI)
for the five study sites.
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Table 7. Fitting statistics for the respiration models at the five sites for all measured data from during the measurement.

Equation
NMF ENF DNF-1 DNF-2 DNF-3

R2 RMSE AIC R2 RMSE AIC R2 RMSE AIC R2 RMSE AIC R2 RMSE AIC

Soil temperature at 5 cm depth
Rs = a × eb×T 0.74 1.25 29.59 0.79 1.34 37.67 0.76 1.14 19.19 0.77 1.53 53.68 0.74 2.01 85.13

Rs = Rref × e(b(1/56.02−1/(T+46.02))) 0.74 1.24 28.89 0.80 1.32 36.27 0.78 1.05 10.10 0.81 1.40 43.10 0.77 1.88 77.06
Soil temperature at 5 cm depth and NDVI

Rs = a + b × T × VI 0.82 0.96 −1.21 0.79 1.16 20.74 0.80 0.85 −14.18 0.79 1.10 15.08 0.77 1.51 51.47
Rs = a + b × T + c × VI 0.80 1.02 8.21 0.77 1.21 27.75 0.78 0.91 −5.40 0.80 1.08 14.39 0.76 1.52 54.79

Rs = a × e(b×T+c×VI) 0.84 1.10 17.24 0.84 1.17 23.81 0.79 0.90 −6.01 0.81 1.18 25.67 0.78 1.57 58.38
Rs = a × eb×T

× VIc 0.85 1.10 17.30 0.84 1.17 24.03 0.79 0.91 −5.15 0.82 1.18 24.87 0.79 1.56 57.64
Rs = Rref × e((b(1/56.02−1/(T+46.02)))+c×VI) 0.84 1.10 16.71 0.85 1.16 23.22 0.80 0.88 −8.32 0.84 1.16 22.86 0.81 1.55 56.89
Rs = Rref × e((b(1/56.02−1/(T+46.02)))

× VIc 0.85 0.96 1.36 0.85 1.16 23.55 0.80 0.90 −6.63 0.84 1.16 23.24 0.81 1.55 57.06
Nighttime LST from Aqua MODIS

Rs = a × eb×LST 0.64 1.50 50.92 0.73 1.54 54.19 0.79 1.13 18.00 0.74 1.48 49.17 0.71 1.97 82.56
Rs = Rref × e(b(1/56.02−1/(LST+46.02))) 0.62 1.51 52.13 0.71 1.56 55.94 0.79 1.09 13.86 0.75 1.42 44.28 0.74 1.85 75.11

Nighttime LST from Aqua MODIS and NDVI
Rs = a + b × LST × VI 0.71 1.22 26.91 0.71 1.37 40.37 0.74 0.97 0.71 0.71 1.28 32.94 0.70 1.66 63.04

Rs = a + b × LST + c × VI 0.75 1.12 18.96 0.72 1.34 39.70 0.75 0.97 2.58 0.77 1.15 22.21 0.74 1.57 58.03
Rs = a × e(b×LST+c×VI) 0.81 1.11 18.56 0.81 1.31 37.76 0.81 0.98 3.99 0.79 1.20 27.43 0.77 1.64 63.53
Rs = a × eb×LST

× VIc 0.81 1.11 17.80 0.80 1.32 38.26 0.81 1.00 5.54 0.79 1.20 27.28 0.77 1.61 61.37
Rs = Rref × e((b(1/56.02−1/(LST+46.02)))+c×VI) 0.81 1.11 17.81 0.81 1.30 36.65 0.82 0.95 −0.38 0.81 1.17 24.70 0.79 1.60 60.20
Rs = Rref × e((b(1/56.02−1/(LST+46.02)))

× VIc 0.82 1.11 17.60 0.80 1.31 37.55 0.82 0.97 2.56 0.81 1.19 26.08 0.79 1.59 59.75

R2 is the coefficient of determination, RMSE (µmol CO2 m−2 s−1) is the root mean square error, and AIC is a version of Akaike’s information criterion. T5 is soil temperature at the 5-cm
depth. LSTan is the nighttime land surface temperature from Aqua MODIS. VI is the normalized difference vegetation index (NDVI). All relationships were statistically significant at p <
0.01 (n = 58).
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Table 8. The leave one out cross-validation statistics for the respiration models of the five sites during the measurement.

Equation
NMF ENF DNF-1 DNF-2 DNF-3

R2 RMSE EF R2 RMSE EF R2 RMSE EF R2 RMSE EF R2 RMSE EF

Soil temperature at 5 cm depth
Rs = a × eb×T 0.76 1.36 0.48 0.79 1.25 0.31 0.78 1.19 0.27 0.77 1.50 0.21 0.74 1.88 −0.32

Rs = Rref × e(b(1/56.02−1/(T+46.02))) 0.76 1.37 0.49 0.79 1.25 0.33 0.80 1.10 0.45 0.78 1.37 0.36 0.76 1.73 −0.05
Soil temperature at 5 cm depth and VI

Rs = a = b × T × VI 0.81 1.18 0.63 0.87 1.01 0.63 0.84 0.87 0.70 0.84 1.09 0.66 0.84 1.40 0.47
Rs = a = b × T + c × VI 0.79 1.26 0.59 0.81 1.11 0.53 0.80 1.00 0.60 0.81 1.11 0.64 0.80 1.58 0.31

Rs = a × e(b×T+c×VI) 0.81 1.20 0.60 0.83 1.10 0.56 0.80 1.05 0.53 0.82 1.25 0.48 0.78 1.71 −0.06
Rs = a × eb×T

× VIc 0.81 1.20 0.60 0.87 1.03 0.61 0.83 0.97 0.59 0.81 1.24 0.50 0.78 1.66 0.06
Rs = Rref × e((b(1/56.02−1/(T+46.02)))+c×VI) 0.81 1.21 0.61 0.85 1.07 0.58 0.83 0.95 0.62 0.82 1.21 0.53 0.79 1.64 0.06
Rs = Rref × e((b(1/56.02−1/(T+46.02)))

× VIc 0.81 1.21 0.61 0.86 1.04 0.61 0.83 0.95 0.62 0.82 1.21 0.53 0.79 1.62 0.12
Nighttime LST from Aqua MODIS

Rs =a × eb×LST 0.67 1.58 0.35 0.66 1.49 0.22 0.71 1.15 0.46 0.69 1.41 0.44 0.67 1.87 0.00
Rs = Rref × e(b(1/56.02−1/(LST+46.02))) 0.66 1.60 0.37 0.64 1.50 0.26 0.72 1.09 0.54 0.71 1.37 0.48 0.71 1.77 0.15

Nighttime LST from Aqua MODIS and VI
Rs = a = b × LST × VI 0.73 1.40 0.49 0.76 1.24 0.49 0.77 1.00 0.62 0.75 1.19 0.59 0.78 1.58 0.34

Rs = a = b × LST = c × VI 0.74 1.37 0.53 0.79 1.16 0.55 0.76 1.00 0.61 0.77 1.55 0.38 0.80 1.57 0.41
Rs = a × e(b×LST+c×VI) 0.76 1.31 0.54 0.82 1.20 0.50 0.76 1.03 0.58 0.77 1.16 0.61 0.76 1.68 0.23
Rs = a × eb×LST

× VIc 0.76 1.33 0.53 0.81 1.13 0.58 0.76 1.04 0.58 0.77 1.16 0.61 0.77 1.63 0.31
Rs = Rref × e((b(1/56.02−1/(LST+46.02)))+c×VI) 0.77 1.30 0.55 0.81 1.15 0.57 0.78 0.98 0.63 0.78 1.12 0.64 0.76 1.65 0.25
Rs = Rref × e((b(1/56.02−1/(LST+46.02)))

× VIc 0.76 1.32 0.55 0.81 1.15 0.57 0.77 0.99 0.62 0.78 1.14 0.63 0.77 1.60 0.34

R2 is the coefficient of determination, RMSE is the root mean square error, and EF is the modeling efficiency. The correlations were all significant at the 0.01 level (n = 58).
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4. Discussion

4.1. The Impact of Temperature on Rs

The LST data from MODIS products can potentially be used as a measure of temperature [17].
At our study site, MODIS Terra and Aqua LST values were all significantly correlated with the
observed Ts (Table 4). When comparing the correlation between nighttime LST values and in situ
observed Ts values with that of the correlation of daytime LST and in situ observed Ts, the better
nighttime correlation could be attributed to both the absence of a solar radiation effect on the thermal
infrared signal at night [26] and the influence of vegetation during daytime [27]. During the daytime,
dense vegetation may increase the conversion of solar incident energy into latent heat, and thus cool
the surface through evapotranspiration. During the nighttime, vegetation exerts a negligible effect on
the correlation between surface air temperature and nighttime LST [19,27].

In our study, we found that the MODIS LST data could be used to establish models estimating Rs,

as an alternative to Ts. Our results also show that nighttime LST data were usually better correlated
with Rs than daytime LST, as indicated by the performance of the exponential functions and the
Arrhenius-type functions (Table 5). It was concluded that nighttime LST was the optimal predictor for
estimating Rs. This might be attributed to the nighttime LST values, indicating the baseline temperature
regulates plant phenology [17].

Our result is consistent with previous studies [19,20,27]. For example, in a Canadian boreal black
spruce stand, Wu et al. [20] reported that nighttime LST showed a greater potential in explaining
variations in Rs than daytime LST, referring to the fact that nighttime LST is more resistant to various
residual noise components. Huang et al. [19] suggests that an accurate estimation of Rs could be
inferred with Terra MODIS LST using either nighttime LST or the mean of daytime and nighttime LST
as the independent variable in regression equations.

4.2. Vegetation Index as a Driver of Rs

We identified that Rs was correlated with three kinds of VIs (i.e., NDVI, EVI, and CIgreen edge).
Others observed the same phenomenon [28,29]. This result suggests that the spectral vegetation
indexes from remote sensing can be used in the prediction model of Rs. There was a consistently
stronger correlation between Rs and NDVI than the correlation between Rs and EVI or CIgreen edge for
the five forest sites (Table 6), which was not consistent with others. For example, at a maize and a winter
wheat field, Huang et al. [28] reported that EVI or CIred edge consistently exhibited a better correlation
with Rs than NDVI, which was attributed to NDVI showing less of a seasonal variation than EVI and
CIred edge, particularly when the green leaf area index (GLAI) was greater than 3. Huete et al. [22] also
reported that NDVI tends to saturate at high vegetation densities, and is highly sensitive to differences
in background reflectance. Conversely, EVI and CIred edge improved the canopy background correction
and are more sensitive than NDVI to variation in dense vegetation. In our study, the vegetation types
of the five study sites are all cold temperate coniferous forests, and the in situ measured monthly LAI
ranged from 1.85 to 4.22, 3.08 to 4.77, 1.27 to 2.96, 0.80 to 2.27, and 0.74 to 2.84 from April 2015 to
October 2015 at the NMF, ENF, DNF-1, DNF-2, and DNF-3 sites, respectively (Figure 4). Compared
with the other reports, our study sites illustrated a sparse vegetation region, and a lower vegetation
index. Therefore, NDVI consistently exhibited a better correlation with Rs than the other two VI values.
Vegetation indexes at the ENF site are not as well correlated with Rs than that at other sites. This may be
attributed to the fact that the ENF site is an evergreen needle leaf forest and the coefficient of variation
of its vegetation coverage within a year is the least one among the five sites.
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4.3. Spatial Scale of the Data

The spatial scales of the data for analysis in our study are different. Rs, Ts, and Ws measurements
at each site were carried out in an area of approximately 400 m2, and their values were averaged.
However, each pixel of the MODIS 8-day surface reflectance and 8-day LST products represents an
area of 500 m × 500 m and 1000 m × 1000 m, respectively. Therefore, the MODIS products (i.e., VI and
LST values) are not necessarily consistent with in situ measured data (i.e., Rs, Ts, and Ws) in the spatial
scale. Despite that, we found that the MODIS LST and the measured Ts showed a consistent seasonal
variation pattern (Figure 1). In addition, a Pearson correlation analysis showed that the MODIS LST
values and the measured Ts (i.e., T5, T10, and T15) were all significantly correlated at the 0.01 level
for the five forest sites (Table 4). Huang et al. [3] observed the similar pattern. In our study site in a
sub-alpine meadow, it is feasible to predict both Rs with MODIS products and the in situ measured soil
temperature [30]. Recently, MODIS data have also been confirmed to estimate ecosystem respiration on
the global scale [31]. Therefore, MODIS LST may be identified as a proxy indicator of Ts to estimate Rs.

4.4. Limitation of the Study

The models driven by remote sensing data (i.e., LSTan and NDVI) performed well in Rs estimation
at the current five forest sites; however, several limitations are listed below:

We focused our study on the growing season of five temperate coniferous forest sites; therefore,
the model’s performance in the non-growing season still needs to be evaluated. The previous study also
reported that the factors influencing Rs in different phenological phases may be different. For example,
Huang et al. [3] found the models driven by mean LST and root zone soil moisture could explain most
of the non-growing season’s variations in Rs at a deciduous forest site. The models including the
mean LST, root zone soil moisture, and EVI exhibited a high accuracy for Rs estimation in early and
late-growing periods. However, in the mid-growing period, the model entirely dependent on mean
LST, root zone soil moisture, and EVI may exhibit a lower explanation capacity for seasonal variation
of Rs than the model driven by in situ measured Ts at the 4 cm depth, Ws at the 10 cm depth, and gross
primary productions.

Because the Ws factor was not explicitly included in the prediction models of Rs, the satellite-driven
model may provide a relatively poor Rs estimation under severe drought and raining pulse conditions,
as we observed. Throughout the nine-year study period, Ws was below 50% of WHC only in the
measurement on July 2009, where the corresponding Rs was also uniformly lower than that in the
same period in other years at the five study sites. An obvious overestimation of Rs was also found on
5 July 2009 (Figure 3). The overestimation may be attributed to the model being based only on LSTan

and NDVI and not including the effect of Ws on Rs. In order to further explore the impact of Ws on
the performances of models only based on T5 or LSTan, a regression analysis was conducted using
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logarithmic and parabolic models. The result showed a mean Ws from May to October (MAW) or
mean Ws from May to July (MTW) was significantly correlated with the R2 of the exponential model of
T5 or LSTan to Rs (Table S3) except the DNF-2 and DNF-3 sites. The correlation with MTW was better
than with MAW in most cases, indicating that the performance of the Rs model based on T5 or LSTan

was influenced by Ws. Wu et al. [20] also reported that the Rs model based on the data of MODIS LST
and NDVI is affected by the soil water amount.

Remotely sensed LST data lack observations for cloud-covered areas [32]. The soil respiration
measurement includes both sunny and cloudy days. Moreover, in our study, VI and LST values
corresponding to the Rs measurement days were from the two consecutive 8-day composites by linear
interpretation. Consequently, information extraction errors from remote sensing data may introduce
errors into Rs prediction.

The value of Rs is also influenced by soil texture, substrate quantity, and quality [33]. These factors
were not incorporated into our model, however in future studies these factors may improve the
accuracy of the Rs models and should be investigated further.

5. Conclusions

We investigated the feasibility of estimating Rs using solely MODIS product data on five cold
temperate coniferous forest sites in the eastern Loess Plateau, China. The results showed that
the accuracy of the model based on the observed surface soil temperatures was not significantly
different with that of the model based on MODIS-derived nighttime LST values. However, the model
using MODIS-derived daytime LST values was significantly different, indicating that nighttime land
surface temperatures were the optimum LST for estimating Rs. Between the selected three VI values,
NDVI consistently exhibited a better correlation with Rs, compared to EVI and CIgreen edge. Adding
NDVI into the model considering only Ts or nighttime LST significantly improved the simulation
accuracy of Rs. The models driven by LSTan and NDVI demonstrated a similar performance to the
models considering T5 and NDVI based on the test of the AIC, R2, and RMSE values. Our findings
demonstrate that models based entirely on remote sensing data have the potential to predict Rs in the
cold temperate coniferous forest sites. Our previous study and other researches at different sites and
vegetation types also have confirmed the feasibility of estimating Rs using solely MODIS product data.
The present study provides valuable information for the large-scale estimation of Rs in cold temperate
deciduous forest ecosystems. It is possible that the use of MODIS data for soil respiration estimation
will provide a great convenient way for forest carbon budget calculation at larger scales.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/2/131/s1,
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The statistical analysis of one-way ANOVA based on R2 and RMSE of the model driven by in situ Ts or remote
sensing surface temperature. Table S2: The leave one out cross validation statistics for the respiration models
of the five sites when the site-year 2009 was exclude from model validation due to severe drought, Table S3:
The statistical analysis of regression functions between R2 of the exponential model of Rs to T5 or LSTan and mean
soil water content from May to October (MAW) or mean soil water content from May to July every year (MTW).
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