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Abstract: This review aims to identify possible causes of differing effectiveness of artificial biological
control of Heterobasidion root rot by the saprotrophic fungus Phlebiopsis gigantea. We describe published
information in terms of pathogen–competitor relationships and the impact of environmental and
genetic factors. We also revisit data from original research performed in recent years at the
Forest Research Institute in Poland. We hypothesized that, in many cases, competition in roots
and stumps of coniferous trees between the necrotrophic Heterobasidion spp. and the introduced
saprotroph, Phlebiopsis gigantea, is affected by growth characteristics and enzymatic activity of the
fungi, the characteristics of the wood, and environmental conditions. We concluded that both wood
traits and fungal enzymatic activity during wood decay in roots and stumps, and the richness of the
fungal biota, may limit biological control of root rot. In addition, we identify the need for research on
new formulations and isolates of the fungal competitor, Phlebiopsis gigantea, as well as on approaches
for accurately identifying the infectious threat from pathogens.

Keywords: competition; Heterobasidion annosum; Heterobasidion parviporum; mycelium growth;
wood decay

1. Introduction

The necrotrophic fungi Heterobasidion spp. cause serious losses in coniferous forests in the Northern
Hemisphere [1–6]. The problem is well known, with nearly 600 papers published by 1971 describing
this issue in detail [7]. In more recent years, molecular methods have been used to describe both the
genetic background and physiology of the infection process [8]. These studies have explained the
different biological mechanisms governing parasitic interactions of both described pathogens with
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) (Figure 1). Heterobasidion
annosum (Fr.) Bref. develops in pine in the outer part of the roots (phloem, cambium) and H. parviporum
(Niemelä and Korhonen) develops in spruce generally in the inner parts (heartwood). These differences
should improve our understanding of the methods for prevention, dilution of breeding loss, and direct
reduction of pathogen inoculum in roots and stumps (Figure 1) [9–12]. Despite some achievements in
developing methods of monitoring the occurrence of this pathogen, some questions concerning its
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genetics, biology and factors of pathogenicity remain unanswered. In particular, there are questions
concerning methods of selecting trees resistant to the pathogen and factors influencing success of
the biological prevention of infection using the competitive fungus Phlebiopsis gigantea (Fr.) Jülich,
which itself is unable to infect living trees [13]. Infections by Heterobasidion spp. cause financial and
breeding losses and so remain as scientific and economic issues and the subject of ongoing investigation
(Figure 2) [14–16].
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Figure 2. Wood decay (left) and sporocarps (right) in Norway spruce stumps infected with H. parviporum
(upper (a,b)) and Scots pine stumps infected with H. annosum (lower (c,d)).

The elimination of Heterobasidion spp. in stumps with intact root systems using a natural competitor,
the competitor P. gigantea, remains the only confirmed and effective method of reducing pathogen
infection. Commercial preparations containing P. gigantea spores have been used in Europe for years,
particularly in Scandinavia.
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They are used to protect both pine and Norway spruce stands against root rot caused by
Heterobasidion spp. [14]. Since 2015 they have been marketed in Poland as Rotstop WP [17–19].
P. gigantea is a proven competitor of several fungi in vitro. Hyphae of this fungus antagonize on contact
the hyphae of other fungi, including Heterobasidion spp., a phenomenon termed hyphal interference.
Any hypha of H. annosum (Fr.) Bref. making contact with a hypha of P. gigantea shows rapid, localized
disruption. The protoplasm becomes disorganized and membrane integrity is reduced [20,21]

In recent years, however, the effectiveness of this biological control method has been contradicted
by research indicating potential limitations in its antagonistic effects under natural conditions.
These limitations indicate the need to determine the conditions for achieving full, long-term
effectiveness [22–26]. Inconsistent protective success of P. gigantea in different forest types can be partly
explained by genetic differences among tree species, which affects susceptibility of wood to infection.
In addition, biological control success is affected by stump and root wood conditions during the time
of colonization by both the control agent and pathogen, as well differences in the genetic variability
and virulence of pathogenic isolates. It should also be noted that there are differences in effectiveness
against Heterobasidion species from Europe and Northern America. [27,28].

While spectacular protective success using P. gigantea is evidenced by rapid reductions in disease
development and therefore reduced wood decay in pine stands, in the case of spruce, the preventive
and therapeutic effects of treatment of stumps are not always satisfactory [13,24,29–31]. These results
are due to many factors, such as differences in the chemical structure of pine and spruce wood,
and the pathogen species and strains properties, including differing enzyme activity. However,
they are predominantly due to different mechanisms of infection and colonization of roots and trunks.
The mechanisms and course of activity of artificially introduced P. gigantea have not been fully explained
and are still unclear. Successful protection is probably related to the time of infection by competing
fungi, the place of the infection in the tree (root or stump) and the interaction between the enzymatically
weak pathogen and the enzymatically more active competitor. Małecka et al. [32], Gunulf et al. [33]
and Kenigsvalde et al. [34] emphasize the importance of these issues. Much research confirms both the
high infectious variability of individual pathogen isolates and variation in the timing of saprotrophic
colonization of preserved wood of roots or stumps [13,35]. Sierota et al. [36] described genetic variation
among commercial strains and indigenous P. gigantea isolates using the random amplified microsatellite
(RAMS) method. Several isolates of both competitors did not display significantly different ligninolytic
activity during Norway spruce decay. On the other hand, Sierota et al. [37] concluded that isolates
with similar dynamics in enzyme activity, even those that are genetically close, may differ in wood
decay ability. Sierota et al. [18] suggested that wood density in the tree stump could play a crucial role
in the process of infection, in particular the amount of early wood in the annual ring.

The present paper compares hypotheses on factors limiting the effectiveness of the biological
control of Heterobasidion root rot, in terms of effects on competitors, as well as the roles of environmental
conditions. This review also reexamines data from original research performed by the Żółciak and
Sierota research group in recent years in Poland.

2. Determinants of the Effectiveness of Protective Treatment

2.1. Competition as a Dynamic Process of Ecological Stability

Competitive interactions among species have been discussed for many years. The first experiments
were performed by Gause in the 1930s [38]. He showed that two species (Paramecium spp. and yeasts)
occupying the same niche cannot live in stable harmony together, but they can interact in two ways—by
dividing the niche or by competitive exclusion. Competitive exclusion can cause local extinction
of one of the species. Studies of competitive exclusion using two similar species can give clear
results, used by Rishbeth [39] to formulate a biological method of reducing root rot Fomes annosus
(= H. annosum) by a competing fungus Peniophora = P. gigantea. However, French et al. [40] argued that
many common ecological interactions, particularly those involving competition and parasitism, can be
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easily confused and that there is often a lack of empirical evidence for reciprocal interactions among
species. A similar opinion was expressed by Keddy [41] and Boddy [42]. They underline the distinction
between interference competition and competition with exploitation. The nature of competitive and
exploitive competition among wood decay fungi is not fully understood [43]. The several types of
interactions between competing mycelia were illustrated in Boddy et al. [44]. The authors underline
the different value of defensive and aggressive mechanisms in different environments (stressful or
un-stressful) and the importance of the sequence of fungal establishment in wood. Observations
made in situ show that in nature, there is a complex array of environmental and substrate interactions,
such that the relationship between two organisms is highly dependent on these other interactions in
addition to direct species-to-species interactions. Maynard et al. [45] showed that in a community
rich in species and individuals, competitive exclusion does not occur, and that species richness is a
self-reinforcing buffer against strong antagonistic interactions. Furthermore, Maynard [46] suggests
also that biotic interactions are much more important than abiotic conditions for explaining fungal
interactions. There are species interactions which have significant positive and negative effects on
wood-decay fungal activity. Functional outcomes and community structure are largely unrelated
to abiotic conditions, but taxonomic richness, evenness, and species associations (i.e., co-occurrence
patterns) exhibit strong relationships with community function, which affects decomposition rates and
fungal activity. A similar pattern was found by Terhonen et al. [47], who studied the composition of
tree endophytes. Accounting for wood traits, fungal species were much more likely to have positive
than negative co-occurrence patterns and competitive exclusion was extremely rare, whereas positive
interactions among fungal endophytes were more common than expected. Evidence suggested that,
across a wide range of wood traits, cooperation may outweigh competition for these fungi. These
results shed light on why an artificially introduced competitor sometimes is ineffective in reducing the
target fungal disease species.

2.2. Influence of Evolutionary History

Knowledge of the molecular mechanisms underlying the interaction between Heterobasidion spp.
and the biocontrol fungus, P. gigantea, is unfortunately still insufficient. There is no evidence of a host
genotype or tree species with full resistance to Heterobasidion spp. [4]. According to Duxbury et al. [48],
who studied the phenomenon of host-pathogen coevolution, genetic variation in susceptibility to
infection in natural populations increases as a result of selection by pathogens. On the other hand,
genetic variation of pathogens also increases, so that virulence adapts to host population genetics.
The most recent ancestor of the genus Heterobasidion is estimated to have appeared approximately 160
mya, the same time that gymnosperms differentiated. The ancestral split into two Heterobasidion groups,
“Pine” (H. annosum/H. irregulare, Garbel. and Otrosina) and “Spruce” (H. parviporum/H. abietinum,
Niemelä and Korhonen, H.occidentale, Otrosina and Garbel), occurred approximately 75–85 mya [49].

Studies on the genetic diversity of H. parviporum and H. annosum have shown that these species
have generally low intraspecies genetic diversity [50]. Lower genetic stability of H. parviporum was
explained as a result of greater gene flow or a recent bottleneck incident. More interestingly, a significant
increase in genetic variability was observed within geographically isolated populations of a given
Heterobasidion species [50,51]. In research concerning the genetic diversity of H. abietinum, Zamponi
et al. [52] and Luchi et al. [53] found similar results. According to that research, Heterobasidion species
evolution, and hence genetic diversity, is strongly related to the history of postglacial redistribution
from fragmented populations and isolated refugia of their main host species [53]. During the ice
age, Norway spruce persisted in refugia, in southern Russia, in the Balkans and to a small degree in
southern Italy [54,55]. Holocene recolonization of spruce, and also probably H. parviporum, resulted in
formation of three main domains: the Baltico-Nordic, the Hercyno-Carpathian and the Alpine [56].
The vast majority of spruce in southern Poland comes from the Alpine and Hercyno-Carpathian refugia,
while northeastern Poland and the Scandinavian peninsula are covered mostly by the Baltico-Nordic
population. Recolonization of spruce in Europe took place much later than pine, as shown by pollen
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records of spruce in Scandinavia that are ca. 2000 years old, while Scots pine (Pinus sylvestris L.) was
present in the area for almost 9000 years [57,58]. This is reflected in the levels of genetic diversity for
H. annosum s.s. (population in equilibrium) and H. parviporum (lower genetic stability).

The significant interspecific and intraspecific genetic diversity of Heterobasidion, resulting from
host evolution and glaciation/postglaciation events, may help explain why, despite the high genetic
diversity of P. gigantea [13,36,37,59], pathogen biocontrol may not always be successful.

2.3. Substrate Influence

It is well known that the manner by which Heterobasidion pathogen mycelium penetrate root
and trunk tissues (Figure 3) is different for pine and spruce [6,8]. Generally, in pine, mycelium of
H. annosum develops primarily in and around cambial tissues and in the external sapwood, while
in spruce, H. parviporum mycelium develops in the heartwood [60,61]. While in pines, infected trees
die quite quickly due to fungal cells that cause decay of tree tissues at the root collar, in spruce the
disease process can last for decades, with infected trees not displaying signs of crown dieback because
the cambium and phloem remain healthy and retain their conductive abilities [8]. However, if the
spruce are growing in alkaline soils or in the case of high inoclulum pressure, Heterrobasidion will still
kill them.
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The linear growth rate of H. parviporum mycelium and of the competitive fungus, P. gigantea,
evaluated in pure cultures showed an interesting pattern. Żółciak et al. [62] found that, in the first
2 days, differences in growth between both fungi were very significant (Figure 3), with P. gigantea
elongating about five times faster than H. parviporum on 2% malt extract agar (MEA).

After 4 days, mycelial elongation by the competitor significantly accelerated, only to decline after
6 days. At the same time, the mycelium of H. parviporum on the same substrate grew much more slowly
for much of the time during the first five days, but by day 6 elongation rates were similar. Similar values
are described by Gonthier et al. [35], when comparing H. annosum and H. irregulare mycelial growth
in vitro. The comparison of growth rates between several isolates of both fungi showed that mycelial
growth rate of P. gigantea (FI from Rotstop and GB from PgSuspension) is higher, but elongation rates of
some isolates of H. parviporum (HP1 and HP3) do not differ significantly from the competitor (Figure 4).
The sequences of both partners were deposited in GenBank as: HP1 KX2896987, HP2 KX289698, HP3
KU645328, FI KX756646, and GB KX756647.
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Figure 4. Average daily mycelium elongation of P. gigantea isolates: FI = Finnish, GB = British; Hp1,
Hp2, Hp3 = Polish H. parviporum isolates (by Żółciak et al. [62]).

Faster growth of P. gigantea mycelium (Figure 5) results not only from its genetically determined
ability to degrade host plant cell walls, but also from the structure of the wood itself. Tomczak and
Jelonek [63] reported that the physical and chemical structure of the cell walls in Scots pine growing in
previously fertilized (post-agricultural) soils is definitely different, with lower wood density, especially
in the peripheral part of the tree, compared to pines growing in forest soils.

Forests 2020, 11, x FOR PEER REVIEW 6 of 17 

 

 

Figure 4. Average daily mycelium elongation of P. gigantea isolates: FI = Finnish, GB = British; Hp1, 
Hp2, Hp3 = Polish H. parviporum isolates (by Żółciak et al. [62]). 

Faster growth of P. gigantea mycelium (Figure 5) results not only from its genetically determined 
ability to degrade host plant cell walls, but also from the structure of the wood itself. Tomczak and 
Jelonek [63] reported that the physical and chemical structure of the cell walls in Scots pine growing 
in previously fertilized (post-agricultural) soils is definitely different, with lower wood density, 
especially in the peripheral part of the tree, compared to pines growing in forest soils. 

 

Figure 5. Phlebiopsis gigantea hyphae penetrating pine sapwood (cross-section: m = mycelium, tr = 
tracheid, pc = pit cells; arrows indicate hyphae) (Sierota [64]). 

Different P. gigantea isolates show not only different rates of growth of mycelium on agar media 
in the laboratory, but also in the rate of decay of root wood in the forest. What could be the reasons 
for such fluctuations in growth rate of mycelium biomass? The answer may be found by examining 
the rate and thinning of the production of enzymes secreted by both fungi. 

2.4. Enzyme Activity 

Adomas et al. [65] showed a high differentiation in the competitive activity of both Heterobasidion 
spp. and P. gigantea, as indicated by mRNA expression. Fungi such as P. gigantea decompose freshly 
cut stumps and roots by the production of extracellular enzymes that degrade the lignin-cellulose 
complex. Lignins are decomposed primarily by oxidoreductases, such as lignin peroxidase, 
manganese peroxidase and laccase, and cellulose by hydrolases, such as cellulases [66]. Because P. 
gigantea is also able to degrade resinous extractives, it is characterized as a pioneer colonizer [67]. 
During lignin decomposition, phenolic compounds are polymerized and co-polymerized. The 

Figure 5. Phlebiopsis gigantea hyphae penetrating pine sapwood (cross-section: m = mycelium,
tr = tracheid, pc = pit cells; arrows indicate hyphae) (Sierota [64]).

Different P. gigantea isolates show not only different rates of growth of mycelium on agar media in
the laboratory, but also in the rate of decay of root wood in the forest. What could be the reasons for
such fluctuations in growth rate of mycelium biomass? The answer may be found by examining the
rate and thinning of the production of enzymes secreted by both fungi.

2.4. Enzyme Activity

Adomas et al. [65] showed a high differentiation in the competitive activity of both Heterobasidion
spp. and P. gigantea, as indicated by mRNA expression. Fungi such as P. gigantea decompose freshly
cut stumps and roots by the production of extracellular enzymes that degrade the lignin-cellulose
complex. Lignins are decomposed primarily by oxidoreductases, such as lignin peroxidase, manganese
peroxidase and laccase, and cellulose by hydrolases, such as cellulases [66]. Because P. gigantea is
also able to degrade resinous extractives, it is characterized as a pioneer colonizer [67]. During
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lignin decomposition, phenolic compounds are polymerized and co-polymerized. The intensity of
these processes can be measured by the amount of respiratory enzymes such as dehydrogenases and
phosphatases [68–70]. The production and activity of some enzymes involved in the infection process
and the decay of wood tissues was described for Heterobasidion spp. by Maijala et al. [71], Johansson
et al. [72], and Maijala [73], and for P. gigantea by Schafer et al. [74–76].

Żółciak et al. [26] evaluated metabolites of P. gigantea in Norway spruce wood and found a strong
correlation between phosphatase and dehydrogenase concentrations, which were negatively correlated
with the concentration of cellulase. Peroxidase production was not correlated with cellulase production,
but was strongly correlated with the presence of vanillic and protocatechuic acid. Xu et al. [77]
describe pathways of enzymatic degradation of lignin, where protocatechuic and vanillic acids are key
byproducts of decay. Żółciak et al. [26] also found that the concentration of protocatechuic acid was
many times greater than that of vanillic acid. Protocatechuic acid is the common byproduct of two
pathways of lignin degradation, namely G-lignin and H-lignin decay, whereas vanillic acid appears only
during G-lignin decomposition. Varela and Tien [78] described similar relationships, and attributed
them to active respiratory hydroxylation of p-hydroxybenzoic acids in wood. The concentrations of
both cellulases and peroxidases produced by different isolates of P. gigantea in decayed Norway spruce
wood were not significantly different. Average cellulase concentration for Finnish isolates of P. gigantea
was 11.89 µg of reduced sugars/g dry weight, and 11.26 µg/g for British isolates, whereas average
peroxidase was 0.99, and 1.03 U/g dry weight, respectively [36,37].

Phenolic acids induced by P. gigantea and H. annosum participate in fungal development and
play important roles in the processes of tree resistance to fungal infection and the decay of wood cell
walls [79]. Sierota et al. [80] found an increase in some phenolic acids during fungal attack of Scots pine
of different provenances, with significant positive correlations between the amounts of hydroxybenzoic
with vanillic and cinnamic acids, cinnamic with o-coumaric acids, and negative correlations with the
amounts of ferulic and salicylic acids in the phloem cells. Mukherjee and Kundu [81] described the
inhibitory effect of benzoic acid on some fungi, which was confirmed by Haars and Hüttermann [82].

The data presented in Table 1 indicate key differences between P. gigantea and H. annosum in
competition for resources, resulting from divergent enzymatic pathways. This is indicated by the
absence of laccases shown by P. gigantea isolates, and the high activity of this enzyme in the fruiting
bodies of H. annosum (Table 1). Laccase is the basic enzymatic indicator of the pathogenicity of
white-rot fungi [83,84]. The activity of other enzymes evaluated was at similar levels in P.gigantea and
H. annosum. Peroxidase activity in both P. gigantea and H. annosum mycelia indicates the activation
of lignin biodegradation [68,69]. For the pathogen, phosphatase activity in wood was slightly more
than for P. gigantea. Phosphatase is important in phosphorus uptake and is utilized after wood
hydrolysis, [70] coinciding with the activity of cellulase. For P. gigantea isolates, the activity of
phosphatase was stimulated to varying degrees by dehydrogenase. Interesting differences were found
in peroxidase, cellulase, and dehydrogenase activity between P. gigantea isolates. Mycelium of a
P. gigantea isolate collected from decaying pine stump wood showed significantly less peroxidase and
cellulase activity than mycelium taken from the fruiting body. The activity of peroxidase and cellulase
in the mycelium obtained from the sporocarps of P. gigantea and H. annosum was highly similar. Samils
et al. [85] observed that not all P. gigantea isolates could be treated as active saprotrophs and may
show weak antagonistic effects, suggesting that resistance towards the competitor increased over time.
Mgbeahuruike et al. [25] compared two hydrophobin P. gigantea genes. This flexible property is also
indicated by the characteristics of color change of guaiacol medium in reaction to phenol oxidase [86],
illustrated in Figure 6 (right), where isolate 1 is more saprotrophic, and isolate 2 is less antagonistic.
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Table 1. Average enzymatic activity of isolates of P. gigantea and H. annosum mycelium growing on
Scots pine wood, calculated on dry wood mass basis (data modified from Żółciak et al. [76]).

Isolate Origin
Enzyme Activity

Laccases U g−1 Peroxidases
U g−1

Cellulases µg
glucose g−1

Phosphatases
µg p-PNP g−1

Dehydrogenases
mg TPF g−1 24 h−1

P.g.5 stump 0 0.608 688.86 295.11 51.42
P.g.6 fruiting body 0 8.802 3280.72 300.34 25.15
H.a. fruiting body 1482.785 7.296 4269.08 351.88 58.12
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2.5. Wood Decay

Wood decomposition by fungi is rather fast [88,89]. Fackler et al. [90] described rapid lignin
degradation by some white-rot fungi, occurring over a matter of days. Wood decay rate significantly
depends on the origin of the culture. For P. gigantea, differences between mycelium isolated from stump
wood or a fruiting body of forest origin, and a pure culture from commercial Rotstop, were described
by Żółciak et al. [62]. Mgbeahuruike et al. [91] did not find differences in the decay rate of Norway
spruce and Scots pine wood, but decay rates for Rotstop isolates were different. Sierota [64] found dry
wood weight loss in Scots pine stumps after 6 months from silvicultural harvesting of 2.95%, 17.46%,
and 21.84% for stump wood collected from salvage cutting, routine cutting and in stumps inoculated
with P. gigantea, respectively. At the same time, the average decay of lateral roots was 39.4%, with roots
that were in moist conditions (after water saturation) being more decayed than from drier conditions
(no saturation).

Wood decay activity of Heterobasidion and Phlebiopsis determines the success of biological control,
especially since wood decomposition can be also slowed down by the bordering of xylem defense
wood [92]. Żółciak et al. [62] compared the rate of Norway spruce decay between isolates of
Heterobasidion and Phlebiopsis and found ~33% wood loss for P. gigantea isolates and ~25% loss for
H. parviporum isolates (Figure 7).

Differences in the specific gravity of wood can indicate the ratio between spring and late
wood [93,94] which is correlated with mycelial growth rates in tissues and therefore to the degree of
root decay by both Heterobasidion and Phlebiopsis. Sierota [64] described the rapid growth of P. gigantea
and commensurate Scots pine wood decay in roots with high specific gravity. Sierota et al. [18,19]
found the same results for the decay of Norway spruce wood by different H. parviporum isolates.
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2.6. Impact of Abiotic Conditions

Soil temperature and precipitation are directly and/or indirectly correlated with the occurrence of
root rot. Korhonen and Stenlid [95] reported that the optimal temperature for mycelium growth of
H. annosum is ~22 ◦C, which can produce mycelium elongation in the laboratory of as much as 9 mm
per day. Cooding et al. [96] showed that in hot years, when air temperature exceeds 35 ◦C, and in
years with severe cold [97], the infection of stumps by pathogen spores is reduced. Mykhayliv and
Sierota [98], in analyzing the presence of the pathogen in Polish forests between 1975 and 2007, found
a strong relationship between weather conditions in particular months in year n − 1 and the area of
stands affected by Heterobasidion spp. in year n. The impact of weather on the presence of disease
symptoms was stronger in stands older than 20 years.

The authors concluded that disease development can be stimulated by higher soil temperature at
the end of the growing season and at the beginning of winter. Witzell et al. [99], however, did not find a
simple relationship between temperature regime and the occurrence of H. annosum and H. parviporum.
Furthermore, both pathogen, competitor, and interactions between them can be suppressed by changing
O2 and CO2 concentrations in air and in wood. Kern and Linkies [100] found in vitro lower expression
of H. parviporum hydrophobin genes (HAH1 and HAH2) with O2 reduction to 0.4%.

2.7. Impact of Biotic Interactions

Heterobasidion and Phlebiopsis fungi are components of the broader ecosystem and should therefore
be evaluated in a way that takes into account the impact of the rhizosphere and endophytic biota
in roots on both fungi. Vasiliauskas et al. [101] suggest that there is a long-term positive effect of
P. gigantea in Rotstop on mycobiota in Norway spruce stumps. Primary and secondary infections
from the soil affect Heterobasidion through the actions of soil microorganisms, including fungi and
bacteria. However, infection of stump and root wood tissues by Heterobasidion and Phlebiopsis after
tree harvesting is affected by the biotic environment in a similar way. The interesting mutual relations
of microorganisms inhabiting roots and stumps artificially infected with P. gigantea was the object
of the present authors’ interest [18,19,26,102–105]. Results indicated that the presence of the active
wood decomposer (P. gigantea) in the wood of Norway spruce stumps did not deplete the richness of
microorganisms that inhabit stumps.

The other factor influencing fungi vitality in wood is the presence, composition, and structure
of the mycetophagous guild of invertebrates, including mites, nematodes, springtails, insects and
molluscs. Some studies showed the role of invertebrates (e.g., Hystiogaster spp., Tarsonemus spp.) in
disseminating fungal spores. Mercado [106] indicates that some bark beetles and their symbiotic mites
are fungus feeders, but others are known to feed on nematodes, other mites, bark beetle eggs, and larvae.
The understanding of such ecological networks is far from completely resolved [107–109]. The results
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obtained by our team suggest that some crystal-forming fungi are avoided by invertebrates [103].
Nagy et al. [92] discuss the enhanced production of oxalic acid by H. parviporum as a response to the
tree defense system. Nagy et al. [92] conclude that trees induce the formation of reaction zones that
possess antimicrobial properties, such as elevated pH and cation content; pathogens lower substrate
pH by secreting oxalic acid, with its conjugate base oxalate being a reducing agent t as well as a
chelating agent for cations. On the other hand, Prasad and Shivay [110] showed that both oxalic acid
and calcium oxalate possess plant properties against wood-consuming organisms—both insect pests
and grazing animals. We are convinced that this mechanism is also involved in fungal resistance to
invertebrates, as suggested by Binns [111] and White [112]. Calcium oxalate, whether produced by
fungi or applied externally, has been shown in mushroom production systems to protect fungi from
feeding damage by sciarid flies. The effects of protective chemical compounds on the presence and
composition of wood-consuming organisms could strongly influence competition between P. gigantea
and Heterobasidion spp.

2.8. Timing P. gigantea Treatment

Efficacy of treatment with P. gigantea in the forest has been investigated many times. Kenigsvalde
et al. [34] reported as much as 20% greater efficacy in conifer stands of Latvian isolates of the competitor
compared to the commercial formulation of Rotstop. Małecka et al. [102] and Żółciak et al. [17] also
found significant differences between isolates when comparing decay in Scots pine and Norway
spruce stumps of twelve unregistered Polish isolates with two Finnish (Verdera), and four British
(PgSuspension) isolates. Differences were found not only among isolates from the same geographical
origin or sampled at different times during the process of decay, but also according to the place of
isolation—whether from the soil spore bank, root, or stump, as well as according to whether treatment
was applied in the spring or autumn. Similar observations were presented by Vainio et al. [13],
Berglund and Rönnberg [22], Annesi et al. [23], Nicolotti and Gonthier [11], Żółciak et al. [76] and
Drenkhan et al. [113].

Sierota [64] found that roots and stumps with higher moisture content, e.g., from salvage-cut trees,
or those inoculated in the rainy season with P. gigantea, can be effectively overgrown by the saprotroph,
similar to freshly cut stumps of recently harvested trees in commercial thinnings. The results obtained
in many studies show a significant impact of stump and root wood moisture depending on the humidity
during the period of treatment (spring or autumn) on the success of P. gigantea treatment [32,64,101,104].
These results indicate that biological treatment could be more effective when it is carried out in weather
conditions favorable for fungus growth, which rules out treatment during dry summer weather.

3. Perspectives

Published information and field studies indicate that rates of mycelium development of some
Heterobasidion isolates, both in pure culture and from roots in the forest (secondary infections), can be
comparable to mycelium development by isolates of P. gigantea. However, P. gigantea isolates caused
greater decomposition of conifer wood than most, and in some cases all, pathogen isolates that were
evaluated. It should be presumed that similar relationships occur in infected wood of roots and
stumps in natural conditions, even if they have not been directly observed. Such a phenomenon may
be common in forest stands established on post-agricultural land or rich forest sites, on which trees
produce wood with larger annual rings than in trees on poorer forest soils [63]. It has been confirmed
that a fast-growing pathogen mycelium, growing from the roots towards the stump, can penetrate
wood tissues just as fast as or faster than the mycelium of a weak growing competitor introduced
into the cut stump. The danger is that the mycelium of the pathogen can infect the roots some years
earlier and colonize the stump faster than mycelium of saprotrophs introduced at a later time into the
stump. Under this scenario, the pathogen can effectively compete with P. gigantea, applied in artificial
inoculation to the stump’s surface. It seems that this is one of the main factors limiting the effective
colonization of spruce stumps by P. gigantea in treating areas of Heterobasidion root rot occurrence.
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As Greig and Pratt mentioned [114], Heterobasidon spp. have been found in stumps 62 years after felling
and in root systems of diseased trees for several decades after harvesting.

Greater chances of successful treatment occur when there is a program in place to monitor
phytopathological threats and when protective treatment is carried out at the earliest time. Boddy
et al. [44] advises additional silviculture practices to fight against pathogens. The first practice is
delaying thinning until trees are older and to conduct thinning operations when basidiospores are not
being dispersed [44]. Another practice is to facilitate the rapid and inexpensive registration of isolates
of P. gigantea that have been found to be most effective in a given environment/country. It is not helpful
when regulations prevent the replacement of an isolate registered in a commercial preparation for years
with a more active local isolate of the same species, since the ability to carry out such substitutions
protects the forest from root rot.

A more fundamental question is what a ‘healthy amount of the disease’ is in a commercial
forest [115]. Even when large-scale biotic threats like root and butt rot are present, ecosystems are able
to compensate for lost elements and to recreate them in a new, often better (though certainly different)
form. The structural components of forests can be maintained only for relatively short intervals,
not only due to regulatory constraints, but also the natural capacity of the ecosystem to restore lost or
distorted trophic structures, as well as due to human intervention [116]. The open question is whether
to “restore” the distorted ecosystem to its previous form, or to skillfully respond through natural
ecosystem processes. In healthy natural ecosystems, pathogens, predation, and other natural damage
factors, including those sometimes occurring at large scales, are phenomena that are often desirable as
they allow restorative forest processes to act [117–119]. In managed stands, the activity of pathogens
can be controlled, for example, by avoiding threats, applying the principle of risk mitigation, or by
semi-natural forest breeding.

4. Conclusions

Further research is needed on approaches for identifying threats from pathogens, on the properties
of individual isolates of P. gigantea (new formulations and isolates) and H. parviporum, on the timing
of protective measures, and on the search for other species of saprotrophic fungi that effectively
decompose stump wood, especially those that occur in spruce. The use of biological control methods
that employ natural competitors to restrict, rather than to eliminate, Heterobasidion spp. occurrence,
seems to be the best approach to protecting the forest.
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76. Żółciak, A.; Korniłłowicz-Kowalska, T.; Sierota, Z.; Iglik, H. Enzymatic activity of Phlebiopsis gigantea isolates.
Acta Mycol. 2008, 43, 41–48. [CrossRef]

77. Xu, Z.; Lei, P.; Zhai, R.; Wen, Z.; Jin, M. Recent advances in lignin valorization with bacterial cultures:
Microorganisms, metabolic pathways, and bio-products. Biotechnol. Biofuels 2019, 12, 32. [CrossRef]

78. Varela, E.; Thien, M. Effect of pH and Oxalate on Hydroquinone-Derived Hydroxyl Radical Formation
during Brown Rot Wood Degradation. Appl. Environ. Microbiol. 2003, 69, 6025–6031. [CrossRef]

79. Kaarik, A. Identification of the mycelia of wood-decay fungi by the oxidation reactions with phenolic
compounds. Studia Forestalia Suecica 1965, 31, 1–80.

80. Sierota, Z.; Gayny, B.; Łuczko, A. Variability of some phenolic acids in phloem of 1-year-old shoots of Scots
pine trees growing with Heterobasidion annosum (Fr.) Bref. Trees 1998, 12, 230–235. [CrossRef]

81. Mukherjee, N.; Kundu, B. Antifungal activities of some phenolics and related compounds to three fungal
plant pathogens. J. Phytopathol. 1973, 78, 89–92. [CrossRef]

82. Haars, A.; Hüttermann, A. Laccase induction in the white-rot fungus Heterobasidion annosum (Fr.) Bref. (Fomes
annosus Fr. Cooke). Archives Microbiol. 1983, 134, 309–313. [CrossRef]

83. Eggert, C.; Temp, U.; Eriksson, K. Laccase is essential for lignin degradation by the white-rot fungus
Pycnoporus cinnabarinus. FEBS Lett. 1997, 407, 89–92. [CrossRef]

84. Hoegger, P.J.; Kilaru, S.; James, T.Y.; Thacker, J.R.; Kües, U. Phylogenetic comparison and classification
of laccase and related multicopper oxidase protein sequences. FEBS J. 2006, 273, 2308–2326. [CrossRef]
[PubMed]

85. Samils, N.; Olson, Å.; Stenlid, J. The capacity in Heterobasidion annosum s.l. to resist overgrowth by the
biocontrol agent Phlebiopsis gigantea is a heritable trait. Biol. Control 2008, 45, 419–426. [CrossRef]
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