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Abstract: Urban vegetation biomass is a key indicator of the carbon storage and sequestration capacity
and ecological effect of an urban ecosystem. Rapid and effective monitoring and measurement
of urban vegetation biomass provide not only an understanding of urban carbon circulation and
energy flow but also a basis for assessing the ecological function of urban forest and ecology. In this
study, field observations and Sentinel-2A image data were used to construct models for estimating
urban vegetation biomass in the case study of the east Chinese city of Xuzhou. Results show that
(1) Sentinel-2A data can be used for urban vegetation biomass estimation; (2) compared with the
Boruta based multiple linear regression models, the stepwise regression models—also multiple linear
regression models—achieve better estimations (RMSE = 7.99 t/hm2 for low vegetation, 45.66 t/hm2 for
broadleaved forest, and 6.89 t/hm2 for coniferous forest); (3) the models for specific vegetation types
are superior to the models for all-type vegetation; and (4) vegetation biomass is generally lowest in
September and highest in January and December. Our study demonstrates the potential of the free
Sentinel-2A images for urban ecosystem studies and provides useful insights on urban vegetation
biomass estimation with such satellite remote sensing data.

Keywords: urban vegetation; biomass estimation; Sentinel-2A; stepwise regression; Xuzhou

1. Introduction

According to the World Urbanized Prospects, urban residents are expected to compose 68% of
the global population by 2050 [1], and this would bring increasingly intensive urban heat island
(UHI) effects, environmental degradation, and ecological damage. As an important carrier of urban
ecosystems, urban vegetation—which refers to all naturally growing and human-planted vegetation
within an urban area [2,3]—brings considerable ecological, economic, and social benefits [4]. These
include improving urban microclimates, mitigating UHI effects, increasing surface runoffs, maintaining
the urban carbon–oxygen balance, and equally importantly, enhancing the quality of urban life by
providing spaces for relaxation and recreation [5–8]. As such, the focus of urban eco-environmental
studies has been long on urban vegetation, particularly the biomass of urban vegetation [9]. Urban
vegetation biomass is an effective indicator of the capacity of carbon storage and sequestration, and
ecological effect of an urban ecosystem [10,11]; it is, therefore, important to estimate urban vegetation
biomass in urban eco-environmental management.
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Traditional biomass measurement is simply to remove and weigh all the biomass occurring in
quadrats, which is a labor-intensive and time-consuming practice [12,13]. This method does not allow
quick monitoring and, more importantly, to some extent, might be destructive to the phenomenon
being investigated. Remote sensing, however, provides an alternative to biomass measurement largely
because it makes objective and mostly non-destructive observations of vegetated areas at various
spatial and temporal resolutions. While vegetation biomass cannot be directly derived from remote
sensing image data, remote sensing based estimation requires the use of sample plots to acquire field
measurements for allometric growth equations based modeling and image interpretation for estimation
(e.g., [14]). Vegetation biomass estimation with remote sensing has been summarized and reviewed in
previous studies [15–17]. While optical sensor, radar, and lidar data can be used for biomass estimation
separately or jointly [18–22], multispectral data is the most frequently used data type [15]. Although it
has been widely recognized for its advantages, remote sensing has been mostly used to measure the
biomass of individual vegetation types in natural forest [23,24], grassland [25–27], wetlands [28,29],
and deserts [30] but rarely the biomass of urban vegetation [14,31].

Sentinel satellites are an Earth observation satellite constellation developed by the European
Space Agency (ESA) as part of the Copernicus Program. Sentinel-2 is a wide-swath, high-resolution,
multispectral imaging mission with two twin satellites (Sentinel-2A and Sentinel-2B), supporting
land and climate-change monitoring [32]. Sentinel-2A was launched in June 2015 and has offered
free image data at the ESA’s website as of December 2015. The Sentinel-2 MSI (multispectral imager)
samples 13 different spectral bands ranging from the visible to shortwave infrared of electromagnetic
spectrum, four bands at 10 m, six bands at 20 m, and three bands at 60 m spatial resolution [32].
It has now been used for a variety of forestry applications such as fire damage monitoring [33,34],
forest storage estimation [35,36], and canopy cover calculation [37]. While some researchers have
combined Sentinel-2A with radar data for biomass estimation [24], using such free optical sensor data
alone has not been assessed. Testing the capability of Sentinel-2A data to estimate urban vegetation
biomass would be interesting as Sentinel-2A data is being increasingly important for land monitoring,
particularly for forestry.

In this study, we therefore focus on the modeling of urban vegetation biomass estimation from
Sentinel-2A image data. Quadrat biomass was calculated using the allometric biomass equations with
field measurements, and then vegetation biomass models were constructed with remote sensing derived
variables. Specific objectives are testing the capability of Sentinel-2A data to estimate urban vegetation
biomass and examining whether vegetation type-specific modeling can improve estimation accuracy.

2. Study Area

Bordering the provinces of Shandong, Henan, and Anhui, Xuzhou (33◦43’~34◦58’ N,
116◦22’~118◦40’ E) (Figure 1) is a national key railway hub located in the northwestern part of
Jiangsu province, east China [38]. It has a monsoon-influenced humid subtropical climate with an
annual mean daily temperature of 14.5 ◦C and an annual total precipitation of 832 mm [39]. As a
typical forested city, Xuzhou has received multiple titles and awards such as the National Forest City
in 2012, the National Ecological Gardening City in 2015, and particularly the UN-Habitat Scroll of
Honor Award in 2018 [40], which is attributed largely to the implementation of several greening and
ecological restoration programs in recent decades. Although the importance of urban vegetation to
cities is generally acknowledged here, no research has been conducted to estimate and assess the urban
vegetation biomass for Xuzhou.

The area within the third ring road of Xuzhou (indicated by the red line in Figure 1a) was selected
for this research, covering a geographical area of ~108.51 km2. The area within the third ring road is
traditionally considered as the urbanized part of Xuzhou and home to the majority of Xuzhou’s urban
residents. Its urban green areas have expanded remarkably in recent years and would be an ideal area
for this research. The study area is flat in the central area with thick soil and hilly in the north, east,
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and south parts with thin humus-poor soil. The soil type is leached cinnamon soil, weak alkaline with
pH ranging from 7.63 to 8.07 [41].
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Figure 1. The location of the study area: (a) the border of the study area (i.e., the third ring road of
Xuzhou) and the sites for field investigations (yellow for low vegetation, green for broadleaved forest,
and purple for coniferous forest); (b) Xuzhou in east China.

According to our fieldwork, most of the trees in the study area are coniferous, consisting largely
of arborvitae trees (Platycladus orientalis). These evergreen trees were mainly planted during the 1950s
and 1960s with 700–3000 trees per hectare [41]. They are usually 5–12 m high (avg. 8.36 m) with
diameters at breast height (DBH) ranging from 5 to 15 cm (avg. 12.47 cm) [41]. Broadleaved forest is
dominated by poplar (Populus euramevicana), black locust (Robinia pseudoacacia), and paper mulberry
(Broussonetia papyrifera) trees. While the poplar trees are usually large (avg. DBH = 21.40 cm) and high
(avg. height = 20 m) and concentrated along rivers and roads, the black locust and paper mulberry
trees are scattered in parks and small hills. Shrubs are mostly found in parks, including colorful and
decorative species such as Buxus megistophylla, and Berberis thunbergii. Grassland is relatively small in
urban Xuzhou, usually in parks and residential/institutional properties. Typical grass includes Setaria
viridis, Ophiopogon bodinieri, Iris tectorum, and Allium macrostemon.

3. Materials and Methods

3.1. Remote Sensing Data

In this study, we used Sentinel-2A image data—freely obtained from ESA’s website—for urban
vegetation biomass estimation. These L1C-level data, which have already been radiometrically
calibrated, were acquired in six different months of 2017 (Table 1). The image quality is generally
good with a mean cloudiness of less than 10%. Although the January and May images were more
cloud-contaminated, the study area remains cloud-free in the images—the images are therefore still
usable. For data preprocessing, they were first atmospherically corrected and then re-sampled to 10-m,
both using SNAP (SentiNel Application Platform), an image processing package developed by ESA for
processing Sentinel data [42]. Lastly, the study area was extracted from the image data in ENVI 5.1
software for further processing.
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Table 1. Remote sensing image data used for urban vegetation estimation.

Image ID Acquisition Time Cloudiness

S2A_MSIL1C_20170115T030041_N0204_R032_T50SNC_20170115T030235 15-Jan-2017 40.88%
S2A_MSIL1C_20170326T025541_N0204_R032_T50SNC_20170326T030153 26-Mar-2017 0.10%
S2A_MSIL1C_20170525T025551_N0205_R032_T50SNC_20170525T030448 25-May-2017 13.40%
S2A_MSIL1C_20170724T025551_N0205_R032_T50SNC_20170724T030446 24-July-2017 1.74%
S2A_MSIL1C_20170922T025541_N0205_R032_T50SNC_20170922T030440 22-Sept-2017 0.82%
S2B_MSIL1C_20171206T030059_N0206_R032_T50SNC_20171206T063334 6-Dec-2017 0.02%

3.2. Urban Vegetation Classification

Based on our preliminary field investigations, we decided to classify the vegetation of the study
area into three coarse categories, namely low vegetation (mostly shrubs and grass), broadleaved
forest (mostly poplar, black locust, and paper mulberry), and coniferous forest (mostly arborvitae
trees). While many areas are characterized by a single vegetation type, there are some areas with
mixed vegetation, which justifies the use of linear spectral mixture analysis (LSMA) [38,43]—where the
spectrum of a pixel is considered a linear combination of spectra of pure endmembers within the pixel
weighted by their fractional abundance. To this end, a wide variety of features, such as spectral features
(spectral reflectance and spectral indices), textural features (calculated by the gray level co-occurrence
matrix), and vegetation abundances (the abundances of coniferous forest, broad-leaved forest, and low
vegetation, obtained by LSMA) were derived from the Sentinel-2A image data and combined with
topographical features (DEM—digital elevation model, and slope and aspect derived from DEM) to
classify urban vegetation classification using the support vector machine (SVM) method. SVM is a
machine learning algorithm used for image classification [44,45] and can achieve high accuracy. We
compared SVM with other classifiers, namely random forest (RF), artificial neural network (ANN), and
quick unbiased efficient statistical tree (QUEST), and found that the SVM produced the best result when
vegetation abundances were added for classification. For a detailed description of the classification
procedure, please refer to our previous research [2]. The produced classification map helps to identify
the dominant vegetation type of each pixel so the biomass of each vegetated pixel can be estimated
with the models constructed later.

3.3. Candidate Variables for Modeling

A total of 116 variables (features) on spectral reflectance, vegetation indices, topographical features,
and vegetation abundances were selected as candidate variables (features) for biomass estimation.
They are given in Table 2 (see Table A1 for their description and calculation formulas).

Table 2. Candidate variables for biomass estimation.

Category Variable Number

Spectral reflectance Blue, Green, Red, VRE1, VRE2, VRE3, NIR, N_NIR, SWIR1, SWIR2 10
Vegetation abundance Low, BLF, CLF 3
Topographical features DEM, Slope, Aspect 3

Vegetation indices SAVI, MSAVI2, OSAVI, DVI, SR1-SR7, RVI, NDVIre1n, NDVIre1, NDVI,
gNDVI, GI, Chlogreen, EVI2, NDII 20

Textural features Mean (*), Var (*), Homo (*), Cont (*), Diss (*), Entr (*), Sec_M (*), Cor (*) 80
Total 116

Note: VRE1–VRE3 represent the spectral reflectance in the three red-edge bands of Sentinel-2A image data and
N_NIR represents the narrow near-infrared band. Low, BLF, and CLF represent the abundances of low vegetation,
broadleaved forest, and coniferous forest. The description and formulas for the vegetation indices are detailed in
Table A1. Mean (*), Var (*), Homo (*), Cont (*), Diss (*), Entr (*), Sec_M (*), and Cor (*) refer to the eight textural
features obtained by the gray level co-occurrence matrix using the 10 original image bands, namely mean, variance,
homogeneity, contrast, difference, entropy, second moment, and correlation.
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3.4. Field Measurements

Biomass sampling is necessary for vegetation biomass modeling. Usually, quadrat biomass is
the sum of the dry weight of every single plant in the quadrat [12,13]. Despite high accuracy, this
method requires the vegetation being investigated to be cut. As such, it is applicable to primeval forest
or experimental plots but not desirable for urban green land. As a frequently used indirect biomass
estimation method [46], the allometric biomass equations, where the quantitative relationships between
the biomass and the growth variables of a plant are established [11], however, provide an alternative
biomass sampling approach in an urban context. As they are reliable for determining tree biomass,
a growing number of biomass equations have been proposed for various vegetation species across
the world [47–54]. In this study, the allometric biomass equations were considered for calculating the
biomass of each quadrat.

From extensive literature, the allometric biomass equations for various types of trees and shrubs
in Xuzhou were summarized (Tables A2 and A3). For grass, a different estimation approach was
adopted in this study: the average unit grassland biomass of Xuzhou is the spatially weighted biomass
of Jiangsu, Anhui, Henan, and Shandong provinces [55] since Xuzhou is located at the junction of these
four provinces (Table 3). Through the calculation, the average unit biomass of Xuzhou’s grassland is
61.89 g/m2.

Table 3. The calculation of the average unit (aboveground) biomass of grassland of Xuzhou [55].

Area Grassland (×104 km2)
(Aboveground) Biomass

of Grassland (Tg)

Average Unit
(Aboveground) Biomass of

Grassland (g/m2)

Jiangsu 0.31 0.17 54.48
Anhui 1.08 0.69 63.89
Henan 1.80 1.14 63.33

Shandong 1.35 0.81 60.00
Total 4.54 2.81 61.89

The growth variables of plants required in the allometric biomass equations were measured in the
field investigations conducted from October to December 2017. The general investigation procedure is
as follows: (1) a total of 192 urban vegetation quadrats were randomly pre-selected over the false-color
Sentinel-2A imagery of the study area and their central coordinates were retrieved; (2) 10 m × 10 m
quadrats were determined (matching the spatial resolution of Sentinel-2A imagery) by navigation in
the field with hand-held GPS (Global Positioning System) devices to these coordinates; (3) the growth
variables of each single plant (shrubs and trees only) in each quadrat were recorded and the biomass
of each single plant using the plant-specific allometric biomass equations was calculated; and (4) the
biomass of the all the plants in a quadrat were summed to obtain the total biomass of that quadrat and
this was repeated for each quadrat.

Note that our records varied with vegetation type. Within each quadrat, we documented the name,
tree height (from the base to the crown), and DBH (diameter at breast height, i.e., ~1.3 m) for trees, the
name, basal diameter, height, and crown width for shrubs, and the name, height, and coverage area for
grass. Different measuring tools were used in accordance with the plants to be investigated and the
parameters to be recorded. The DBHs and basal diameters were measured by a 2-m tape measure with
a minimum scale of 1 mm while shrub heights were measured by a 5-m tape measure with a minimum
scale of 1 mm. For tree heights, we used a telescopic height measuring rod with a maximum range of
20 m and a minimal scale of 1 mm. Photos illustrating the fieldwork are shown in Figure 2.
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Although 192 vegetation quadrats were initially selected, only 140 quadrats of them (shown in Figure 1)
were visited and investigated in practice—because some of the pre-selected quadrats were not accessible for
various reasons (e.g., physical barriers and refusal to access). Among the 140 quadrats were 35 dominated
by coniferous forest, 73 by broadleaved forest, and 32 by low vegetation. The results of quadrat biomass
calculated mainly by using the allometric biomass equations are detailed in Table A4.

3.5. Modeling

3.5.1. Correlation Analysis

Prior to modeling, the relationship between the candidate variables (Table 2) and the vegetation
biomass was examined through correlation analysis. The biomass of the quadrats dominated by
low vegetation, broadleaved forest, and coniferous forest is hereinafter referred to as low vegetation
biomass, broadleaved forest biomass, and coniferous forest biomass, respectively. The correlation
coefficients were computed with and without vegetation types discriminated.

3.5.2. Stepwise Regression Modeling

Stepwise regression (SR) is essentially a multiple linear regression method, but it is different from
the general multiple linear regression in the selection of variables. In a stepwise regression analysis, the
most significant or least significant variable is added to or removed with iteration from the multiple
linear regression model based on its statistical significance [56,57]. At each iteration of adding or
removing a potential independent variable, resultant models are assessed by means of the p-value of an
F-statistic (p-value < 0.05 for statistical significance) [56,57]. Stepwise regression has proved effective
in selecting variables for modeling and has been widely used in different fields [58,59], including
forest biomass estimation [60]. As such, it was considered more suitable for constructing the urban
vegetation biomass estimation models in this study.



Forests 2020, 11, 125 7 of 24

As it is likely that collinearity exists in the predictive variables, the variance inflation factor
(VIF) [57,61] is used to examine it in this study:

VIF = 1/
(
1−R2

i

)
(1)

where Ri is the correlation coefficient between the ith predictive variable and the remaining predictive
variables. There is no multicollinearity if VIF ranges between 0 and 10. If VIF≥ 10, high multicollinearity
exists between variables and some of them should be removed from the model [62].

3.5.3. Boruta Based Multiple Linear Regression Modeling

In addition to the SR modeling, the general multiple linear regression (MLR) is also considered in
this study for comparative analysis. It is too complicated to include all the 116 candidate variables
(Table 2) in the MLR modeling as it would decrease accuracy, cause overfitting, and slow computation.
It is advisable to reduce the dimensionality of data when there are a large number of variables [63].
To this end, a group of important variables is then selected, which is done in this study by using the
Boruta algorithm. Boruta is a feature selection wrapper built around the random forest classification
algorithm and helps to determine important variables [64,65]. A detailed description of this feature
selection technique can be found in [65,66]. The Boruta algorithm can be performed in the statistical
software of R, where important variables are confirmed for modeling and unimportant one are rejected,
and some artificial variables called shadow variables are generated from the original variables [65]).

Despite the capability to locate important variables, the Boruta algorithm does not consider the
collinearity among these variables. Like the SR modeling, closely correlated variables are removed
if VIF ≥ 10. The final MLR biomass estimation models are finally determined until the VIF of each
remaining variable is less than 10.

3.5.4. Accuracy Assessment

While 70% of the calculated quadrat biomass were used for modeling, the remaining 30% were
reserved for assessing the models using two measures, namely the coefficient of determination (Ryz

2)
and the root-mean-square-error (RMSEyz):

R2
yz =

∑n

i=1

(
Bmodeled,i − B

)2
/
∑n

i=1

(
Bcalculated,i − B

)2
(2)

RMSEyz =

√√
1
n

n∑
i=1

(
Bcalculated,i − Bmodeled,i

)2
(3)

where Bmeasured,i is the calculated quadrat biomass, Bmodeled,i is the modeled quadrat biomass, B is the
average of calculated biomass of all quadrats, and n is the number of quadrats.

3.6. Seasonal Variation of Urban Vegetation Biomass

After the accuracy assessment, the superior models can be determined and used for exploring
the seasonal vegetation biomass variation of the study area. With the variables required by the
determined models derived from the Sentinel-2A image data (Table 1), the biomass of low vegetation,
broadleaved forest, and coniferous forest can be estimated for January, March, May, July, September,
and December of 2017, respectively. The total urban vegetation biomass of the study area is then
calculated by summing the estimated type-specific biomass. The change rate (CR) is defined by the
following equation:

CR =
Biomax − Biomin

Biomin
(4)

where Biomax and Biomax are the maximum and minimum biomass of the year 2017.
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4. Results and Analysis

4.1. Urban Vegetation Classification

By the SVM classifier, the urban vegetation of the study area was classified into three types,
namely low vegetation, broadleaved forest, and coniferous forest (Figure 3) in the 24-July-2107 image;
the overall accuracy of this classification was 89.86% with a Kappa coefficient of 0.83. While the central
part of the study area had limited vegetation, vegetated areas were mostly covered by low vegetation,
followed by coniferous forest.
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Figure 3. Urban vegetation classification by support vector machine.

4.2. Correlations between Candidate Variables and Urban Vegetation Biomass

4.2.1. For Low Vegetation

There were 14 candidate variables significantly correlated with low vegetation biomass (Table 4).
Eight spectral reflectance variables had negative correlations with all-vegetation biomass, coefficients
ranging from −0.364 to −0.553. It was negatively associated with low vegetation abundance and
positively with coniferous forest abundance. Low vegetation biomass is generally lower than the
biomass of broadleaved and coniferous forests, and more low vegetation in the quadrat means lower
quadrat biomass. The correlation of low vegetation biomass with topographic features was not
significant because low vegetation is usually scattered in the study area. Low vegetation biomass was
negatively correlated with two vegetation indices and two textural features.
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Table 4. Variables significantly correlated with low vegetation biomass.

Variable Correlation (p-Value) Variable Correlation (p-Value)

Blue −0.397 (0.025) SWIR2 −0.364 (0.041)
Green −0.473 (0.006) Low −0.564(0.001)
VRE2 −0.370 (0.037) CLF 0.356 (0.046)
VRE3 −0.397 (0.024) DVI −0.399 (0.024)
NIR −0.553 (0.001) SR6 −0.455 (0.009)

N_NIR −0.460 (0.008) Cor (VRE2) −0.411(0.019)
SWIR1 −0.431 (0.014) Cor (VRE3) −0.423 (0.016)

4.2.2. For Broadleaved Forest

A total of 54 variables were significantly correlated with broadleaved forest biomass (Table 5). Four
spectral reflectance variables were negatively correlated with broadleaved forest biomass. Regarding
vegetation abundance variables, only low vegetation abundance was negatively correlated with
broadleaved forest biomass, but the coefficient was low. As for topographic features, broadleaved
forest grows in relatively flat areas (e.g., parks and residential land) and low-elevated hills in the
study area and, therefore, no significant correlation exists between topography and broadleaved forest
biomass. The biomass was also correlated with seven vegetation indices, higher correlation coefficients
with DVI and SR4. Textural features had close, mostly positive, correlations with broadleaved forest
biomass, although the highest correlation (−0.72), with Cor (VRE2), was negative.

Table 5. Variables significantly correlated with broadleaved forest biomass.

Variable Correlation (p-Value) Variable Correlation (p-Value) Variable Correlation (p-Value)

Green −0.424 (0.000) Homo (Red) 0.255 (0.030) Cont (NIR) 0.357 (0.002)
VRE1 −0.297 (0.011) Entr (Red) 0.245 (0.037) Diss (NIR) 0.339 (0.003)
NIR −0.412 (0.000) Sec_M (Red) 0.231 (0.049) Entr (NIR) 0.322 (0.005)

SWIR1 −0.272 (0.020) Homo (VRE1) 0.252 (0.031) Cor (NIR) −0.379 (0.001)
Low −0.281 (0.016) Diss (VRE1) 0.232 (0.048) Mean (N_NIR) 0.310 (0.008)

MSAVI2 −0.341 (0.003) Entr (VRE1) 0.265 (0.023) Var (N_NIR) 0.332 (0.004)
OSAVI −0.272 (0.020) Mean (VRE2) 0.296 (0.011) Cont (N_NIR) 0.527 (0.000)

DVI −0.382 (0.001) Var (VRE2) 0.268 (0.022) Diss (N_NIR) 0.482 (0.000)
SR4 0.388 (0.001) Cont (VRE2) 0.490 (0.000) Entr (N_NIR) 0.250 (0.033)

gNDVI 0.366 (0.001) Diss (VRE2) 0.433 (0.000) Mean (SWIR1) 0.273 (0.019)
Chlogreen 0.276 (0.018) Entr (VRE2) 0.399 (0.000) Cont (SWIR1) 0.302 (0.009)

EVI2 −0.352 (0.002) Cor (VRE2) −0.720 (0.000) Diss (SWIR1) 0.327 (0.005)
Homo (Blue) 0.275 (0.018) Mean (VRE3) 0.300 (0.010) Entr (SWIR1) 0.369 (0.001)
Entr (Blue) 0.231 (0.049) Cont (VRE3) 0.353 (0.002) Mean (SWIR2) 0.267 (0.023)

Sec_M (Blue) 0.288 (0.014) Diss (VRE3) 0.358 (0.002) Cont (SWIR2) 0.441 (0.000)
Homo (Green) 0.254 (0.030) Entr (VRE3) 0.286 (0.014) Diss (SWIR2) 0.406 (0.000)
Diss (Green) 0.259 (0.027) Mean (NIR) 0.289 (0.013) Entr (SWIR2) 0.373 (0.001)
Entr (Green) 0.294 (0.011) Var (NIR) 0.254 (0.030) Cor (SWIR2) −0.324 (0.005)

4.2.3. For Coniferous Forest

Among the 116 candidate variables, 16 were significantly correlated with coniferous forest biomass
(Table 6). Seven spectral reflectance variables were all negatively correlated with coniferous forest
biomass, with correlation coefficients mostly higher than 0.5. Not surprisingly, only coniferous forest
abundance (CLF) was highly positively correlated with coniferous forest biomass. DEM was the only
topographic feature significantly correlated with coniferous forest biomass, and the negative correlation
is probably linked to the fact that coniferous forest grows in hills and its biomass decreases with
elevation. Coniferous forest biomass was highly significantly correlated with several vegetation indices
but, interestingly, no correlation was found with textural features. The Var (variance), Cont (contrast),
Diss (difference), Entr (entropy) values were all zero while Mean (mean), Homo (homogeneity), Sec_M
(second moment), and Cor (correlation) values were all one—coniferous forest is densely distributed in
the study area, thus no clear textural characteristics.
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Table 6. Variables significantly correlated with coniferous forest biomass.

Variable Correlation (p-Value) Variable Correlation (p-Value)

VRE1 −0.335 (0.049) BLF −0.371 (0.028)
VRE2 −0.637 (0.000) CLF 0.531 (0.001)
VRE3 −0.588 (0.000) DEM −0.337 (0.047)
NIR −0.551 (0.001) SAVI −0.559 (0.000)

N_NIR −0.560 (0.000) MSAVI2 −0.567 (0.000)
SWIR1 −0.636 (0.000) OSAVI −0.514 (0.002)
SWIR2 −0.541 (0.001) DVI −0.562 (0.000)

Low −0.580 (0.000) EVI2 −0.558 (0.000)

4.2.4. For All-Type Vegetation

Results show that 39 variables were significantly correlated with all-type vegetation biomass
(Table 7). In total, ten spectral reflectance variables had negative correlations with all-type vegetation
biomass, coefficients ranging from −0.308 (Red) to −0.496 (Green). It was negatively associated with
low vegetation abundance but positively with broadleaved and coniferous forest abundances. Low
vegetation has lower biomass than coniferous and broadleaved forest and, in a given area (e.g., a
pixel size), the all-type vegetation biomass would be lower if low vegetation abundance is larger
than the other two vegetation abundances. While it had no significant correlation with topographic
features, all-type vegetation biomass was correlated with half of the vegetation indices. The highest
positive correlation coefficient was found with SR4 (0.390) while the highest negative with DVI (−0.396)
(Table A1). In addition, only 14 (17.50% of the total) textural features were significantly correlated with
all-type vegetation biomass and coefficients were generally low.

Table 7. Variables significantly correlated with all-type vegetation biomass.

Variable Correlation (p-Value) Variable Correlation (p-Value) Variable Correlation (p-Value)

VRE1 −0.335 (0.049) BLF −0.371 (0.028) VRE1 −0.335 (0.049)
VRE2 −0.637 (0.000) CLF 0.531 (0.001) VRE2 −0.637 (0.000)
VRE3 −0.588 (0.000) DEM −0.337 (0.047) VRE3 −0.588 (0.000)
NIR −0.551 (0.001) SAVI −0.559 (0.000) NIR −0.551 (0.001)

N_NIR −0.560 (0.000) MSAVI2 −0.567 (0.000) N_NIR −0.560 (0.000)
SWIR1 −0.636 (0.000) OSAVI −0.514 (0.002) SWIR1 −0.636 (0.000)
SWIR2 −0.541 (0.001) DVI −0.562 (0.000) SWIR2 −0.541 (0.001)

Low −0.580 (0.000) EVI2 −0.558 (0.000) Low −0.580 (0.000)
VRE1 −0.335 (0.049) BLF −0.371 (0.028) VRE1 −0.335 (0.049)
VRE2 −0.637 (0.000) CLF 0.531 (0.001) VRE2 −0.637 (0.000)
VRE3 −0.588 (0.000) DEM −0.337 (0.047) VRE3 −0.588 (0.000)
NIR −0.551 (0.001) SAVI −0.559 (0.000) NIR −0.551 (0.001)

4.3. Urban Vegetation Biomass Estimation Models

4.3.1. Stepwise Regression Models

The results of performing SR for constructing vegetation biomass estimation models are presented
in Table A5. All the (adjusted) coefficients of determination (Rnh

2 and adj-Rnh
2) were higher than

0.70, and the fitting was generally good. The variables in the models were less than those (highly)
significantly correlated with vegetation biomass (Tables 4–7). The type-specific and all-vegetation
biomass estimation models are given below.

The SR biomass estimation model for low vegetation:

B = 10× [−171.896− 49.335× Low + 76.406×CLF + 316.404× gNDVI − 13.710
×SR2− 0.365×Cor(VRE2) + 1.087×DEM]

(5)
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The SR biomass estimation model for broadleaved forest:

B = 10× [660.327 −16.739×Cor(VRE2) − 3601.606×Green
+9.944×Cor(SWIR1) − 695.210×OSAVI
−196.861×Var(VRE2) + 98.126×Cont(SWIR1)]

(6)

The SR biomass estimation model for coniferous forest:

B = 10× [183.909 −473.034× SWIR1− 0.016× SR3− 0.232×DEM + 0.299×GI
+14.747×Cor(VRE2)]

(7)

The SR biomass estimation model for all-type vegetation:

B = 10× [213.811 −4566.311×Green− 5.370×Cor(VRE2) + 2655.001×Red
+237.815×Cont(SWIR2) − 108.805×Cont(VRE1)
+0.366×Cor(N_NIR) − 273.149×Var(SWIR1) − 395.915×Var(Blue)
+157.094×Var(VRE1) − 49.701×Cont(Red) + 163.695× Entr(Green)
−203.368× Sec_M(VRE2)]

(8)

4.3.2. Multiple Linear Regression Models

The results of performing the Boruta algorithm in the statistical software of R are shown in
Figure 4. Important variables were labeled as Confirmed in blue, unimportant ones as Rejected in red,
and shadow ones as Shadow in grey.

Using the same biomass data as the SR modeling, the MLR biomass estimation models for low
vegetation, broadleaved forest, coniferous forest, and all-type vegetation were built with the important
variables identified through the Boruta algorithm and the use of VIF.

The MLR biomass estimation model for low vegetation biomass:

= 10× [110.92− 77.401× Low− 199.972× SR6 + 70.94×CLF] (9)

The MLR biomass estimation model for broadleaved forest:

B = 10× [409.043− 12.234×Cor(VRE2) − 2222.677×Green
−696.378×NIR− 124.43×Var(NNIR)

+27.297×Cont(VRE2)]
(10)

The MLR biomass estimation model for coniferous forest:

BB = 10× [170.234− 301.27×VER2− 0.712× Slope] (11)

The MLR biomass estimation model for all-type vegetation:

B = 10× [156.94 −4011.984×Green + 37.17×Cont(VRE2)
+2201.306×Red + 4.449× SR4]

(12)
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Figure 4. Importance of candidate variables: (a) low vegetation; (b) broadleaved forest; (c) coniferous
forest; and (d) all-type vegetation. Important variables are labeled as Confirmed in blue, unimportant
ones as Rejected in red, and shadow ones as Shadow in grey.

4.3.3. Accuracy Assessment

Figure 5 illustrates the results of assessing the SR biomass estimation models for low vegetation,
broadleaved forest, coniferous forest, and all-type vegetation. It shows that Ryz

2 values of the models
for specific vegetation types (viz. the models for low vegetation, broadleaved forest, and coniferous
forest) were all higher than 0.7. The coniferous model had the highest Ryz

2 (0.786) and the lowest
RMSEyz (6.89 t/hm2). The all-type model had a larger RMSE than the type-specific models.
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Figure 5. Accuracy assessment of the SR biomass estimation models: (a) low vegetation; (b) broadleaved
forest; (c) coniferous forest; and (d) all-type vegetation.
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Similarly, the remaining 30% of field observation data are used to assess the accuracy of the MLR
biomass estimation models. After this, the two types of models are compared in terms of accuracy
measured by the coefficient of determination (Ryz

2) and root-mean-square-error (RMSEyz) (Table 8).

Table 8. Comparing the accuracies of the SR and MLR biomass estimation models (unit for RMSE: t/hm2).

Vegetation Type Low Vegetation Broadleaved Forest Coniferous Forest All-Type Vegetation

Ryz
2 RMSEyz Ryz

2 RMSEyz Ryz
2 RMSEyz Ryz

2 RMSEyz

SR 0.77 7.99 0.73 45.66 0.79 6.89 0.58 45.16
MLR 0.70 10.89 0.62 57.06 0.64 9.67 0.49 60.19

4.4. Seasonal Variation

As the SR models produced better estimates, they were used to calculate the biomass of each urban
vegetation type in January, March, May, July, September, and December of 2017. The type-specific
vegetation biomass and total vegetation biomass are shown in Figure 6.
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Figure 6. Type-specific biomass and the total vegetation biomass in the selected months of 2017: (a) low
vegetation; (b) broadleaved forest; (c) coniferous forest; and (d) all vegetation.

Overall, vegetation biomass increased over time and decreased after peaking in autumn.
The highest biomass of low vegetation was in September (28,423 t) and lowest in January and
December (~15,000 t) with a maximal change rate of 87.60%. Despite an increase of 27,150 t biomass
from January to September, the change rate of broadleaved forest was 58.93%, much lower than low
vegetation (Figure 7). The biomass change rate of coniferous forest (25.58%) was the lowest in the three
vegetation types. The total vegetation biomass change was 67,524 t with a change rate of 40.39%.
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5. Discussion

Correlation analysis is useful to identify what variables are related to the dependent variable [59].
While the biomass of low vegetation and broadleaved forest is correlated mostly with spectral
reflectance, broadleaved biomass is correlated mostly with textural features. Although there might
be close correlations among some of the candidate variables (e.g., NDVI and RVI in the category of
vegetation indices), we here did not provide a full correlation matrix for this because the number of
variables was so large and would take substantial space of the publication. In addition, the use of
stepwise regression and variance inflation factor can avoid the models with correlated variables [57].

Our modeling results show that for both individual vegetation types and all-type vegetation,
the SR models have higher coefficients of determination and lower root-mean-square-errors than
the MLR models. This clearly suggests that the SR modeling outperforms the MLR modeling in the
estimation of urban vegetation biomass. The superiority of SR modeling is also noted in the study of
Xu et al., where degraded grassland biomass was estimated using machine learning methods from
terrestrial laser scanning data [27]. By comparing SR, random forest, and artificial neural network,
they claimed that SR produced the highest accuracy (R2 = 0.84, RMSE = 48.89g/m2). However, it might
be controversial to conclude that SR is best for vegetation biomass modeling as some researchers favor
machine learning algorithms. For example, Lu et al. report that RF (R2 = 0.78, RMSE = 1.34 t/ha)
performs better than SR (R2 = 0.75, RMSE = 1.46 t/ha) in wheat biomass estimation with unmanned
aerial vehicle data [67]. We here do not attempt to compare the results of our models with those of
others because the data for modeling and the contexts (various vegetation types in an urban area vs. a
single type of vegetation in (semi-) environments) were different.

Although some researchers estimated vegetation biomass from remote sensing without
discriminating types [29], our study revealed that vegetation biomass should be modeled for specific
vegetation types for higher modeling accuracy. This is often done for different contexts by other
researchers, e.g., Gao et al. who discriminated broadleaved, coniferous, mixed, and bamboo forest
in China’s Zhejiang province [68], and González-Jaramillo et al. who divided vegetation of the San
Francisco watershed (south Ecuador) into tropical mountain forest, subpáramo, and pastures [23].
In fact, the finding of correlation analysis that variables significantly correlated with vegetation biomass
varies largely with vegetation type implies that type-specific biomass estimations models should
be constructed. Similarly, non-species-specific allometric growth models yielded larger errors than
species-specific ones [69]. Urban vegetation cannot be regarded as a single vegetation type as it varies
largely in biophysical characteristics and thus biomass. Such variations, which might be minimized in
plantations, should be considered for urban green areas. As such, it is important to discriminate urban
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vegetation types through image classification before modeling urban vegetation biomass from remote
sensing image data.

Regarding the seasonal variation of vegetation biomass, coniferous forest has much lower biomass
loss than low vegetation and broadleaved forest, which is because coniferous forest consists mainly
of evergreen arborvitae trees that do not lose their leaves through the year. This suggests that more
coniferous trees should be planted if the biomass loss of low vegetation and broadleaved forest needs
to be compensated. In this multi-season analysis, the same type-specific estimation models were used
for estimating vegetation biomass from remote sensing data imaged in different months. For a plant
species in an area, there is only one allometric growth equation, which is often built with measurements
acquired, e.g., when plants are luxuriant with maximal biomass in a year. The biomass estimation
models constructed with quadrat biomass calculated using these equations should best reflect that
time. If these models are used for other dates, estimation biomass would be less accurate (e.g., due to
less leaves in winter). Remote sensing variables derived from remote sensing images can however
characterize the vegetative status of the plants and compensate the impact.

In addition, there are some other limitations that might undermine the results. Firstly, the allometric
biomass equations for a variety of plant species with high reported accuracies were borrowed from
previous studies, but we were not able to individually verify these equations as this work is out of the
scope of the present study. Secondly, tree biomass could be, to some extent, underestimated from remote
sensing image data. While it is likely that under large coniferous and broadleaved and coniferous trees
grow some low vegetation like grass and bushes, this cannot be recognized in pixels, notwithstanding
the application of linear spectral mixture analysis. Despite these limitations, our study proves the
capability of free optical sensor data like Sentinel-2A to estimate urban vegetation biomass. It would
be interesting if urban vegetation biomass could be regularly monitored; however, this seems currently
challenging as Sentinel-2A data now remains scarce and does not allow a retrospective assessment.

6. Conclusions

This study demonstrates how Sentinel-2A image data can be used for vegetation biomass in an
urban context. The main findings and conclusions of this study are as follows:

• Freely available multispectral Sentinel-2A satellite data has proven its capability in urban vegetation
biomass estimation. The measured biomass of each vegetation type is closely correlated with
different remote sensing derived variables, mostly spectral reflectance for low vegetation and
coniferous forest and mostly textural features for broadleaved forest.

• The vegetation biomass estimation models built by the stepwise regression (SR) outperform those
with the multiple linear regression. It is necessary to discriminate vegetation types in biomass
modeling and the highest accuracy is obtained by the SR model for coniferous forest.

• Highest vegetation biomass occurs in autumn (September) while lowest in winter (January and
December). Low vegetation and broadleaved forest have larger seasonal change rates than
coniferous forest that consists mostly of evergreen trees.

Urban green areas are a key component of urban eco-environment and make a vital contribution
to improving the quality of life and moderating climate. In general, trees have a stronger carbon
sequestration capability and produce more biomass than low vegetation. More coniferous trees can
maintain less biomass loss in winter. However, tree species should be diversified to reduce ecological
vulnerability and guarantee a more robust urban ecosystem and more sustainable urban development.
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Appendix A

Table A1. Formulas used for calculating spectral indices [70].

Spectral Index Formula

Green index (GI) GI = Green/Red
Green normalized different vegetation index (gNDVI) gNDVI = (N_NIR−Green)/(N_NIR + Green)

Normalized difference vegetation index (NDVI) NDVI = (NIR−Red)/(NIR + Red)
Ratio vegetation index (RVI) RVI = NIR/Red

Difference vegetation index (DVI) DVI = NIR−Red
Enhanced vegetation index 2 (EVI2) EVI2 = (NIR−Red)/(1 + NIR + 2.4×Red)
Chlorophyll green index (Chlogreen) Chlogreen = N_NIR/(Green + VER1)

Normalized difference vegetation index (NDVIre1) NDVIre1 = (NIR−VER1)/(NIR + VER1)
Normalized difference vegetation index (NDVIre1n) NDVIre1n = (N_NIR−VER1)/(N_NIR + VER1)

Simple ratio 1 (SR1) SR1 = NIR/VER1
Simple ratio 2 (SR2) SR2 = N_NIR/VER1
Simple ratio 3 (SR3) SR3 = N_NIR/Red
Simple ratio 4 (SR4) SR4 = N_NIR/Green
Simple ratio 5 (SR5) SR5 = N_NIR/Blue
Simple ratio 6 (SR6) SR6 = Blue/VER1
Simple ratio 7 (SR7) SR7 = NIR/Red

Normalized difference infrared index (NDII) NDII = (NIR− SWIR1)/(NIR + SWIR1)
Soil-adjusted vegetation index (SAVI) SAVI = N_NIR−Red

N_NIR+Red+L × 0.5

Modified soil-adjusted vegetation index 2 (MSAVI2)
MSAVI2 = 0.5× [(2× NIR + 1

−

√
(2×NIR + 1)2

− 8× (NIR−Red)]
Optimized soil-adjusted vegetation index (OSAVI) OSAVI = (NIR−Red)/(NIR + Red + 0.16)

Note: VRE1–VRE3 represent the three red-edge bands; N_NIR represents the narrow near-infrared bands.

Table A2. Allometric biomass equations for trees, used for calculating quadrat biomass.

Tree species Model R2 Reference

Platycladus orientalis

WS = 0.0573 (D2H) 0.8657 0.97

[71]WB = 0.0043 (D2H) 1.1085 0.89
WL = 0.0038 (D2H) 1.0385 0.84
WR = 0.0485 (D2H) 0.6886 0.80

Robinia pseudoacacia

WS = 0.0681 (D2H) 0.9865 0.9545

[72]WB = 12020 + 0.009 (D2H) 0.8862
WL = −0.549 + 0.007 (D2H) 0.9174

WR = 0.0087 (D2H) 1.0513 0.9472

Metasequoia
glyptostroboides

WS = 0.0146 (D2H) 0.9835 0.993

[73]WB = 0.0243 (D2H) 0.7359 0.993
WL = 0.0949 (D2H) 0.4795 0.982
WR = 0.0102 (D2H) 0.8745 0.975
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Table A2. Cont.

Tree species Model R2 Reference

Populus euramevicana

WS = 0.006 (D2H) 1.098 0.995

[74]WB =0.001 (D2H) 1.157 0.984
WL = 0.012 (D2H) 0.685 0.955
WR = 0.083 (D2H) 0.636 0.915

Cinnamomum camphora

WS = 0.0914 (D2H) 0.7755 0.944

[73]WB = 0.0099 (D2H) 1.0256 0.946
WL = 0.0011 (D2H) 1.1713 0.941
WR = 0.0298 (D2H) 0.8740 0.935

Ginkgo biloba

lnWS = −3.84 + 0.95ln (D2H) 0.98

[75]lnWB = −9.38 + 1.46ln (D2H) 0.852
lnWL = −6.95 + 1.03ln (D2H) 0.853
lnWR = −5.60 + 1.07ln (D2H) 0.967

Platanus acerifolia WT = 0.0690(D2H) 0.9133 / [76]

Larix gmelinii

lnWS = −2.8319 + 0.8379ln (D2H) 0.9996

[77]lnWB = −3.9021 + 0.8822ln (D2H) 0.9015
lnWL = −4.0174 + 0.7659ln (D2H) 0.9007
lnWR = −3.6497 + 0.8247ln (D2H) 0.9994

Broussonetia papyrifera WT = 0.07112 (D2H) 0.910358078 / [78]

Ligustrum lucidum

WS = 0.03939 (D2H) 0.95679 0.97

[79]WB = 0.03357 (D2H) 0.77809 0.84
WL = 0.11613 (D2H) 0.45871 0.61
WT = 0.11394 (D2H) 0.84957 0.97

Koelreuteria bipinnata

WS = 0.08259 (D2H) 0.80831 0.97

[79]WB = 0.00053 (D2H) 1.29104 0.94
WL = 0.01286 (D2H) 0.69408 0.81
WT = 0.12238 (D2H) 0.84468 0.98

Magnolia grandiflora

WS = 0.0649 (D2H) 0.8131 0.969

[73]WB = 0.0431 (D2H) 0.6697 0.904
WL = 0.0254 (D2H) 0.8701 0.837
WR = 0.0885 (D2H) 0.6713 0.883

Liriodendron chinense

WS = 0.02426 (D2H) 0.942303 0.99537

[80]WB = 0.000349 (D2H) 1.268207 0.962865
WL = 0.000419 (D2H) 1.048786 0.834806
WR = 0.023475 (D2H) 0.770233 0.918072

Paulownia fortunei

WS = 0.021158D 2.43244 0.9978

[81]WB = 0.057869D 2.06599 0.9959
WL = 0.060045D 1.54688 0.9891
WR = 0.030740D 2.10612 0.8387

Note: D is DBH (diameter at breast height); H is tree height; WS, WB, WL, refer to the biomass of stem, branch, and
leaves; and WT and WR to the total aboveground biomass and root biomass.

Table A3. Allometric biomass equation of shrubs, used for calculating quadrat biomass [82,83].

Species Model R2 Species Model R2

Ligustrum
quihoui

WB = 26.332 (CH) 0.666 0.950

Buxus bodinieri

WB = 262.879 (CH) 1.546 0.895
WL = 14.646C 1.164 0.972 WL = 224.662 (CH) 1.364 0.890

WR = 18.721 (VC) 0.421 0.965 WR = 294.262 (CH) 1.639 0.889
WT = 52.388 (CH) 0.654 0.959 WT = 756.343 (CH) 1.497 0.913

Berberis
thunbergii

WB = 73.468 (AC) 0.766 0.927
Buxus

megistophylla

WB = 15.572D 1.325 0.979
WL = 3.340 (AC) 0.465 0.601 WL = 20.649 + 9.047ln (CH) 0.902

WR = 29.029 (AC) 0.721 0.785 WR = 9.654D 1.308 0.975
WT = 104.637 (AC) 0.734 0.903 WT = 35.982D 1.212 0.980
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Table A3. Cont.

Species Model R2 Species Model R2

Photinia
serrulata

WB = 0.310 (D2H) 1.097 0.985
Pittosporum

tobira

WB = 765.073 (VC) 0.824 0.991
WL = 0.264 (D2H) 0.916 0.986 WL = 2.958 (D2H) 0.607 0.911
WR = 0.259 (D2H) 1.053 0.988 WR = 445.103 (VC) 0.742 0.972
WT = 0.805 (D2H) 1.051 0.988 WT = 1411.387 (VC) 0.742 0.979

Hibiscus
syriacus

WB = 108.688 (VC) 1.693 0.984
Nandina
domestica

WB = 75.700 (CH) 1.110 0.980
WL = 18.925 (CH) 1.565 0.969 WL = 11.109 + 17.911lnH 0.971
WR = 69.564 (VC) 1.563 0.985 WR = 57.553 (CH) 1.187 0.939
WT = 206.627 (VC) 1.589 0.986 WT = 167.114 (CH) 1.174 0.960

Lagerstroemia
indica

WB = 30.213H 6.318 0.987

Syringa oblata

WB = 0.876 (D2H) 0.894 0.988
WL = 6.656H 5.065 0.994 WL = 0.683 (D2H) 0.715 0.988

WR = 20.934H 5.905 0.989 WR = 0.603 (D2H) 0.877 0.991
WT = 58.305H 6.065 0.989 WT = 2.011 (D2H) 0.863 0.991

Forsythia
suspensa

WB = 0.385 (D2H) 1.025 0.997
WL = 0.187 (D2H) 0.868 0.985
WR = 0.176 (D2H) 0.954 0.990
WT = 0.716 (D2H) 0.989 0.996

Note: D is basal diameter; H is height; C is crown width (which is the average of south-north crown diameter C1
and east-west crown diameter C2; C = (C1 + C2)/2); AC is the area of crown (AC = π × C1 × C2); VC is the volume of
crown (VC = AC × H); WS, WB, WL, refer to the biomass of stem, branch, and leaves; and WT and WR to the total
biomass and root biomass.

Table A4. The calculated biomass for each quadrat. As only 140 of the 192 pre-selected quadrats were
visited and investigated, the quadrat ID ranges from 1 to 192.

ID Biomass (kg) ID Biomass (kg) ID Biomass (kg) ID Biomass (kg)

1 1005.74 2 654.00 3 1192.37 5 1372.71
6 1711.81 7 11,250.00 8 972.12 9 1286.95

10 2118.96 11 1043.43 13 1258.78 14 1114.78
15 502.87 16 431.85 17 638.50 21 985.40
22 918.67 23 989.10 24 1212.90 25 349.37
26 732.72 27 838.38 28 1580.27 29 383.54
30 110.76 31 100.03 33 766.57 34 1556.81
35 917.00 36 56.07 37 383.64 38 1171.94
39 759.66 40 519.31 41 1383.84 42 1300.94
43 711.91 45 1158.74 46 831.58 47 447.30
48 906.36 50 607.56 51 362.14 52 325.44
53 734.24 54 634.06 55 2152.83 56 965.29
59 240.68 60 777.64 63 2042.87 65 1237.21
66 1573.60 67 901.01 68 1641.06 69 805.89
70 612.32 71 1658.79 72 433.56 74 2225.07
75 257.17 76 893.24 77 1209.58 80 8.23
82 706.14 83 989.41 84 1105.56 86 551.12
87 38.43 88 222.73 90 879.47 91 1285.60
92 17.95 94 442.08 95 822.52 96 680.24
97 1085.41 99 1153.80 100 188.35 101 11,085.08

106 2771.95 107 590.58 110 884.22 111 1531.30
116 984.55 117 3452.27 118 525.76 119 120.16
121 371.84 123 663.12 124 559.32 126 1610.53
127 866.05 129 3437.13 132 384.20 134 2179.22
135 216.23 137 2915.05 139 610.32 140 6.19
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Table A4. Cont.

ID Biomass (kg) ID Biomass (kg) ID Biomass (kg) ID Biomass (kg)

142 1100.06 143 1634.99 145 973.77 146 364.50
147 1421.20 148 1841.15 149 2707.82 151 969.84
152 2899.26 153 6.19 154 1176.14 156 1100.67
157 3279.12 158 6.19 159 1265.47 162 1007.43
163 2240.88 164 1189.30 166 6.19 168 6.19
169 6.19 170 698.32 172 198.72 173 6.19
174 1772.22 175 2304.31 176 6.19 177 6.19
178 1045.89 179 131.80 180 78.79 181 888.34
182 64.71 183 320.74 185 210.05 187 724.18
188 308.44 189 1002.98 190 6.19 192 623.21

Table A5. The results of the SR modeling.

Vegetation Type Rnh
2 Adj-Rnh

2 Variable Coefficient VIF

Low vegetation 0.853 0.818

Constant −171.896
Low −49.335 1.382
CLF 76.406 3.254

gNDVI 316.404 3.181
SR2 −13.710 4.274

Cor (VRE2) −0.365 1.311
DEM 1.087 1.207

Broadleaved forest 0.821 0.805

Constant 660.327
Cor (VRE2) −16.739 2.095

Green −3601.606 1.066
Cor (SWIR1) 9.944 2.317

OSAVI −695.210 1.375
Var (VRE2) −196.861 5.043

Cont (SWIR1) 98.126 5.674

Coniferous forest 0.838 0.810

Constant 183.909
SWIR1 −473.034 1.151

SR3 −0.016 1.346
DEM −0.232 1.109

GI 0.299 1.461
Cor (VRE2) 14.747 1.079

All vegetation 0.754 0.721

Constant 213.811
Green −4566.311 4.279

Cor (VRE2) −5.370 1.889
Red 2655.001 4.530

Cont (SWIR2) 237.815 9.833
Cont (VRE1) −108.805 6.695
Cor (N_NIR) 0.366 1.905
Var (SWIR1) −273.149 3.947

Var (Blue) −395.915 3.295
Var (VRE1) 157.094 4.905
Cont (Red) −49.701 3.396

Entr (Green) 163.695 9.353
Sec_M (VRE2) −203.368 4.150
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