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Abstract: Sensitivity analysis and parameter optimization of stand models can improve their
efficiency and accuracy, and increase their applicability. In this study, the sensitivity analysis,
screening, and optimization of 63 model parameters of the Physiological Principles in Predicting
Growth (3PG) model were performed by combining a sensitivity analysis method and the Markov
chain Monte Carlo (MCMC) method of Bayesian posterior estimation theory. Additionally, a nine-year
observational dataset of Chinese fir trees felled in the Shunchang Forest Farm, Nanping, was used
to analyze, screen, and optimize the 63 model parameters of the 3PG model. The results showed
the following: (1) The parameters that are most sensitive to stand stocking and diameter at breast
height (DBH) are nWs(power in stem mass vs. diameter relationship), aWs(constant in stem mass
vs. diameter relationship), alphaCx(maximum canopy quantum efficiency), k(extinction coefficient
for PAR absorption by canopy), pRx(maximum fraction of NPP to roots), pRn(minimum fraction
of NPP to roots), and CoeffCond(defines stomatal response to VPD); (2) MCMC can be used to
optimize the parameters of the 3PG model, in which the posterior probability distributions of nWs,
aWs, alphaCx, pRx, pRn, and CoeffCond conform to approximately normal or skewed distributions,
and the peak value is prominent; and (3) compared with the accuracy before sensitivity analysis and
a Bayesian method, the biomass simulation accuracy of the stand model was increased by 13.92%,
and all indicators show that the accuracy of the improved model is superior. This method can be used
to calibrate the parameters and analyze the uncertainty of multi-parameter complex stand growth
models, which are important for the improvement of parameter estimation and simulation accuracy.

Keywords: Chinese fir; Markov chain Monte Carlo (MCMC); parameter estimation; stand models

1. Introduction

Experimental observations and model simulations are common methods for estimating the
pattern and variability of the global carbon cycle in order to understand the key processes and control
mechanisms of this cycle. To reduce the uncertainties of the parameters of ecological models and
improve the ability of such models to simulate and predict ecosystem processes and changes, researchers
have successively carried out a series of parameter estimation studies for terrestrial ecosystem models
focusing on sample plots at regional and global scales [1–6].

As an important part of the carbon pool, forests play a pivotal role in the carbon cycle of terrestrial
ecosystems and the global carbon cycle. Determining how to obtain the key parameters of forest
growth and estimate forest biomass have become hot research topics. Achieving accurate model
simulations depends on the accurate acquisition of many model parameters, weather-driven data,
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and site parameters. Among these, model parameters are the main source of uncertainty in the
simulation results. Therefore, the accurate acquisition of model parameters is a prerequisite for model
application and the improvement of model prediction accuracy [7,8].

It is a parameter estimation problem to obtain the parameters of a model from observed values.
For linear equations and simple nonlinear equations, the least-squares method can be used to
estimate the parameters. The Physiological Principles in Predicting Growth (3PG) model is based
on physiological processes and simulates the gradual decline of solar radiation, carbon balance,
water balance, and many other physiological processes, and involves many equations [9]. The most
commonly used parameter optimization methods include Markov chain Monte Carlo (MCMC),
the annealing method (AM), the genetic algorithm (GA), and particle swarm optimization (PSO).

The MCMC is a kind of Monte Carlo method which is performed by computer under the
framework of Bayesian theory. In 1953, Metropolis et al. [10] considered the common Boltzmann
distribution sampling problem in physics and proposed the MCMC method (also known as the
Metropolis method) for the first time. To improve the sampling efficiency of the MCMC method,
Chib et al. created the Metropolis–Hastings (M-H) algorithm by modifying the acceptance rate in
sampling based on the Metropolis algorithm (the acceptance rate on both sides of the detailed and
stable condition equation was enlarged in the same proportion), thereby increasing the skip acceptance
rate in sampling [11,12]. To deal with the high-dimensional distribution of parameters, Smith et al.
proposed a sampling method with a higher acceptance rate using the Gibbs random area; the sampling
efficiency of this method under high-dimensional conditions was significantly improved [13].

The MCMC parameter estimation method is widely used in ecological research [14–16].
For parameter estimation using nonlinear optimization methods (e.g., the 3PG model), the choice of
optimization parameters and the amount of calculation are very important. MCMC can combine prior
knowledge of the parameters and observational data to obtain the posterior distribution of the model
parameters; the posterior values of the parameters can then be used as the parameter calibration result,
and the optimized model can be compared with the original model.

This study selects the widely used 3PG model as the research object. Taking a fir forest as an
example, firstly, the parameters of the model are screened via sensitivity analysis. Then, the MCMC
parameter optimization method is used to optimize the sensitive model parameters. The results can be
used to develop a universal method for the optimization of forestry model parameters and provide
guidance for the parameter correction and application of forestry models.

2. Materials and Methods

2.1. Study Site

This paper takes Shunchang County in Nanping as the research area. Shunchang County is
located between 26◦39’ and 27◦12’ N latitude and between 117◦30’ and 118◦14’1 E longitude. It is
situated in the northwest of Fujian Province and covers an area of 1985 square kilometers. The climate
is a mid-subtropical maritime monsoon climate and is affected by the continental climate. The average
annual temperature is 18.5 ◦C and the annual average precipitation is 1756 mm. The frost-free period
is 305 days. The annual average sunshine is 1740.7 h. The county’s forest coverage rate is 75.6% and
the main forest vegetation types are fir, Masson pine, and broad-leaved forest (Figure 1).

The input data of the 3PG model include model parameters, site parameters, stand parameters,
meteorological data, and observational data [17]. In this study, we cut down Cunninghamia lanceolata
trees from 0 to 9 years old in the Shunchang Forest Farm in Nanping City to obtain some model
parameters, stand parameters, and observational data. Some model parameters were obtained
from the forest resources inventory data of Nanjing County for 2003, while others came from
literature reference values and default values. The meteorological data were provided by the Weather
Bureau of Fujian Province, including data from 1994 to 2002. The monthly maximum temperature,
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minimum temperature, average rainfall, and average frost days were interpolated for the study area
using the ANUSPLIN (Hutchinson) [18]. The monthly average meteorological data are listed in Table 1.Forests 2020, 11, x FOR PEER REVIEW 3 of 16 
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Table 1. Monthly average meteorological data.

Month Maximum
Temperature/◦C

Minimum
Temperature/◦C Precipitation/mm Solar Radiation

(MJ*m2*d−1) Frost Days/d

January 22.45 –1.88 36.29 25.45 0
February 23.94 2.16 89.38 23.27 0
March 24.53 4.02 915.97 19.85 0
April 25.51 10.69 146.07 14.36 0
May 26.96 13.95 148.8 10.08 0.67
June 27.6 18.39 224.55 7.91 2.25
July 28.58 21.43 187.58 8.46 3.75

August 27.97 21.99 295.55 11.82 2.5
September 27.18 17.36 210.4 15.62 0.33
October 25.9 9.75 33.53 20.44 0
November 23.79 3.83 21.32 23.61 0
December 21.43 –0.44 35.42 25.64 0

*: multiplication sign.
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Figure 2 shows a flowchart of the methodology followed in this study. The 3PG stand model was
selected as the ecological prediction model, and the input parameters of the model were obtained by
observation of Cunninghamia lanceolata at the sample-plot scale. Based on parameter calibration and
model localization, the 3PG model can accurately simulate the vegetation growth process, biomass,
diameter at breast height (DBH), and the leaf area index (LAI). Moreover, the MCMC method based on
Bayesian theory can obtain the posterior distribution of the model parameters and can thus be used
to estimate the parameters; the posterior distribution of parameters can quantitatively express the
uncertainty of model parameters under the existing observation conditions. Through the optimization
of model parameters, the simulation of future changes in biomass of Chinese fir forest was improved.
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Figure 2. Flowchart of the methodology followed in this study. 3PG: Physiological Principles in
Predicting Growth model; MCMC: Markov chain Monte Carlo method; stemNo: stand stocking; WF:
foliage biomass; WR: root biomass; WS: stem biomass including branches and bark; LAI: canopy leaf
area index (LAI); standvol: stand volume excluding branches and bark; MAI: mean annual volume
increment; avDBH: stand-based mean diameter at breast height (DBH).

2.2. Methods

2.2.1. 3PG Model

The 3PG model was developed by Landsberg and Waring in 1997 and is based on the photosynthetic
physiological processes of plants [19]. The model takes the stand-scale as the spatial scale and the month
as the timescale and considers the complete carbon balance in the actual environment as well as the
climatic conditions, site conditions, management measures, and tree physiological characteristics [20].
The model is mainly composed of three modules. The first module is the carbon fixation module.
This module mainly uses the Beer–Lambert extinction formula to simulate the absorption of solar
radiation by trees, and then uses the canopy quantum efficiency conversion to estimate primary
production. This process accounts for the forest age, temperature, soil moisture content, frost days,
and soil type. The effects of soil fertility and other factors on carbon fixation were simulated dynamically
by a series of functional relationships. The second module is the biomass allocation model. This module
mainly simulates the distribution of fixed carbon among leaves, trunks, and roots. By accounting for the
regeneration of the root system, the leaf litterfall rate, and natural stand-thinning, this module mainly
calculates the biomass allocation and the changes of various tree organs using an allometric growth
equation and the 3/2 self-thinning rule. The third module is the water balance module, which mainly
consists of dynamic models related to soil water, such as models of rainfall, evaporation, and artificial
irrigation, according to the Penman–Monteith equation. This module considers the influence of tree
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age, solar radiation, the difference in water vapor pressure, and canopy quantum efficiency on water
balance. Detailed descriptions of the parameters of the 3PG model are given in Table 2.

Table 2. Detailed descriptions of the parameters of the Physiological Principles in Predicting Growth
(3PG) model.

Parameter Name Definition Unit Symbol Value

pFS2 Ratio of foliage:stem partitioning at B = 2 cm - p2 1
pFS20 Ratio of foliage:stem partitioning at B = 20 cm - p20 0.15
aWS Constant in stem mass vs. diameter relationship - aS 0.095
nWS Power in stem mass vs. diameter relationship - nS 2.4
pRx Maximum fraction of NPP to roots - ηRx 0.8
pRn Minimum fraction of NPP to roots - ηRn 0.25
gammaF0 Litterfall rate at t = 0 month−1 γF0 0.027
gammaF1 Litterfall rate for mature stands month−1 γF1 0.001
tgammaF Age at which litterfall rate has median value month−1 Ft 12
Rttover Average monthly root turnover rate month−1 γR 0.015
Tmin Minimum temperature for growth ◦C Tmin 8.5
Topt Optimum temperature for growth ◦C Topt 16
Tmax Maximum temperature for growth ◦C Tmax 40
kF Number of production days lost for each frost day days kF 0
m0 Value of m when FR = 0 - m0 0
fN0 Value of fN when FR = 0 - fN0 1
fNn Power of (1–FR) in fN - nfN 0
CoeffCond Defines stomatal response to VPD mbar kD 0.05
fCalpha700 Quantum efficiency at 700 ppm - fC700 0.7
fCg700 Canopy conductivity at 700 ppm - fCg700 0.7
SWconst Moisture ratio deficit which gives fθ= 0.5 - c 0.7
SWpower Power of moisture ratio deficit in fθ - n 9
MaxAge Maximum stand age used to compute relative age yr tx 50
nAge Power of relative age in fage - nage 4
rAge Relative age to give fage = 0.5 - rage 0.95
MinCond Minimum canopy conductance m s−1 gCn 0
MaxCond Maximum canopy conductance m s−1 gCx 0.02
LAIgcx Canopy LAI for maximum canopy conductance m2 m−2 LCx 3.33
BLcond Canopy boundary layer conductance m s−1 gB 0.2
gammaN0 Seedling mortality rate (t = 0) yr−1 N0 0.03
gammaNx Mortality rate for older stands (large t) yr−1 N1 0.001
tgammaN Age at which γN = 1/2(γN0+γN1) yr tN 12
ngammaN Shape of mortality response - nN 0.015
wSx1000 Maximum stem mass per tree at 1000 trees/ha kg/tree wSx1000 300
thinPower Power in self-thinning law - nN 3/2
mF Fractions of mean foliage, root, and stem biomass

pools per tree on each dying tree

- mF 0
mR - mR 0.2
mS - mS 0.2
SLA0 Specific leaf area at a stand age of 0 m2 kg−1 σ0 11
SLA1 Specific leaf area for mature stands m2 kg−1 σ1 4
tSLA Age at which specific leaf area = (SLA0+SLA1)/2 yr t 2.5

MaxIntcptn Maximum fraction of rainfall intercepted by
canopy - iRx 0.15

LAImax-Intcptn LAI for maximum rainfall interception m2 m−2 Lix 0

k Extinction coefficient for PAR absorption by
canopy - k 0.5

fullCanAge Age at full canopy cover yr tc 0
alphaCx Maximum canopy quantum efficiency - Cx 0.06



Forests 2020, 11, 1369 6 of 15

Table 2. Cont.

Parameter Name Definition Unit Symbol Value

Y Ratio NPP/GPP - Y 0.47
fracBB0 Branch and bark fraction at a stand age of 0 - p 0.75
fracBB1 Branch and bark fraction for mature stands - p 0.15
tBB Age at which pBB = 1/2(PBB0+ PBB1) yr tBB 2

rhoMax
Minimum basic density for young trees t m−3 ρ0 0.5
Maximum basic density for older trees t m−3 ρ1 0.5

tRho Age at which p = 1/2 density of old and young trees yr tρ 4
aH Constant in stem diameter to height relationship yr aH 0
nHB Power of DBH in stem height relationship - nHB 0
nHN Power of stocking in stem height relationship - nHN 0
aV Constant in stem diameter to volume relationship - aV 0
nVB Power of DBH in stem volume relationship - nVB 0
nVN Power of stocking in stem volume relationship - nVN 0

Qa Intercept in net radiation vs. solar radiation
relationship W m−2 Qa −90

Qb Slope of net radiation vs. solar radiation
relationship - Qb 0.8

gDM_mol Molecular weight of dry matter g mol−1 24
molPAR_MJ Conversion of solar radiation to PAR mol MJ−1 2.3

Note: DBH: diameter at breast height. LAI: leaf area index. NPP: net primary productivity. GPP: gross primary
productivity. VPD: vapor pressure deficit. PAR: photosynthetically active radiation.

2.2.2. Sensitivity Analysis

Sensitivity analysis is an important step in the application of the 3PG model. The optimization of
non-sensitive parameters will not improve the accuracy of the model and will increase the amount of
calculation. The sensitivity analysis of stand model parameters can adequately distinguish and define
the sensitivity and importance of model parameters and provide a basis for the selection of sensitive
parameters. Before parameter optimization, sensitivity analysis of the parameters was carried out,
the parameters which have the largest influence on the model simulation were selected, and then the
parameters were optimized. This can not only improve the efficiency of the optimization algorithm
but also reduce the calculation time.

There is a built-in sensitivity analysis table in the 3PG model, which can be used for the sensitivity
analysis of site factors and model parameters. To test the influence of changes to parameter values on
the output of the 3PG model, parameter sensitivity analysis was performed. The initial condition was
that the other operating parameters of the model remain unchanged. Only by changing the values of
the parameters, the parameters that are sensitive to the biomass and growth of the Chinese fir plantation
as simulated by the 3PG model were explored, and the selected sensitive parameters were optimized
by MCMC.

The model output sensitive to the parameter is as follows:

λ1(X1, p) =
p
X
∂X
∂p

(1)

Where λ1 is the relative sensitivity, X is the model output value, and p is the model parameter.
If the parameter is not sensitive to the model output value, λ1 is 0. When p increases, X also increases,
and λ1 is positive; otherwise, λ1 is negative.

The approximate value of λ1 that can be obtained by the finite difference method is expressed
as follows:

λ1(X, p) =
p0

X0

X+ −X−
2δp

(2)
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Where δp indicates the size of the change range of the parameter p, and X0 =

X(P0).X-=X(p0-δp),X+=X(p0+δp)

2.2.3. MCMC

Bayesian theory can combine the prior knowledge of model parameters and the corresponding
observations of the model output to realize the posterior estimation of model parameters. The MCMC
method involves constructing a Markov chain with the parameter posterior distribution as a stationary
distribution under the framework of Bayesian theory, so as to obtain the posterior samples of the
parameters and infer the numerical characteristics of the parameters based on these samples. Bayesian
theory is expressed in the following formula:

p(θ/y) =
f(y/θ)g(θ)∫

f (y/θ)g(θ)d(θ)
(3)

where θ and y represent the parameters and simulated output values of the 3PG model (e.g., biomass
and diameter at breast height), respectively; p(θ/y) is the posterior probability density function of
the parameters; and f(y/θ) is the observed data. The conditional probability density under the prior
parameter value is also called the likelihood function. g(θ) is the prior distribution of the parameter.
Formula (3) can be changed to the following:

p(θ/x, y) =
f(y/θ, x), g(θ/x)∫

f (y/θ, x)g(θ/x)d(θ)
≈ f (y/θ, x)g(θ) (4)

Commonly used MCMC sampling methods include the Metropolis algorithm, the Metropolis–Hastings
(M-H) algorithm, the Gibbs sampling algorithm, and the adaptive Metropolis algorithm. This study used the
M-H sampling method. The steps for this method are as follows: (1) Randomly generate initial estimates of
parameters within a range of values; (2) generate new parameter values based on the posterior distribution of
parameters assumed in advance; (3) calculate the acceptance probability; (4) generate a uniformly distributed
random number U in the interval [0,1]; (5) if p ≥U, the model accepts the new parameter value; otherwise,
it will reject the new parameter value; and (6) repeat steps (2)–(5) until enough samples are obtained,
and finally obtain the posterior estimation of the parameters.

The initial values of parameters are based on the observed values, and the parameters are roughly
adjusted manually by a trial-and-error method to make the trends of stand stocking and diameter
at break height approximately the same. The prior distribution can be divided into two categories:
conjugate prior and non-informative prior. Non-informative prior refers to a kind of priori constructed
when the value range of parameters and their status in the model are known but nothing is known
about other parameters. In this paper, we chose the non-informative prior which accords with the
uniform distribution.

The purpose of using the MCMC method is to obtain a posterior sample of model parameters by
combining the measured data with the prior knowledge of model parameters. We input the initial
parameter values and posterior parameter values into the 3PG model, respectively, comparing the
simulated values with the measured values. The root-mean-square error (RMSE) between simulation
value and the corresponding observed value was taken as the accuracy evaluation index. The formula
is as follows:

RMSEstem =

√√√i=n∑
i=1

(Stemi − Stemiobs)
2/n (5)

where Stem represents stem biomass including branches and bark, Stemi represents the i-th Stem
simulation value, Stemobs represents the i-th corresponding observed value, and n represents the
number of Stem observations.
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3. Results

3.1. 3PG Model

By changing the values of the parameters (taking the default value of ±30% for the upper and
lower bounds) and observing the sensitivity of the results, the sensitive parameters were selected
(Figure 3). The results showed that the sensitive parameters were nWs (power in the stem mass
vs. diameter relationship), aWs (constant in the stem mass vs. diameter relationship), alphaCx
(maximum canopy quantum efficiency), k (extinction coefficient for the absorption of PAR by canopy),
pRx (maximum fraction of NPP to roots), pRn (minimum fraction of net primary productivity (NPP) to
roots), and CoeffCond (defines stomatal response to vapor pressure deficit (VPD)).
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Through the finite difference method of Formula (2), the sensitivities of the above screened
parameters to stand stocking and DBH were obtained, and the sensitivity levels were divided and
ranked according to the distribution of values [19] (Figure 4 and Table 3).
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Table 3. Results of the sensitivity analysis for stand stocking (stemNo) and DBH predicted by the
3PG model.

Parameter
Sensitivity Value (λ1) Grade (λ1)

StemNo DBH StemNo DBH

nWS –0.06 –3.10 0 3
aWS –0.02 –0.21 0 1

alphaCx 1.17 0.48 3 3
k 0.21 0.09 1 1

pRx –0.35 –0.13 2 1
pRn –0.50 –0.21 3 1

CoeffCond –0.73 –0.31 3 2

The error lines above the points indicate that the model parameters have a positive impact on
the stand stocking and DBH, which indicates that the parameter values increase, so stand stocking
and DBH increase, while the error lines below the points indicate that the model parameters have a
negative impact on the stand stocking and DBH, which indicates that the parameter values increase,
and stand stocking and DBH decrease. Ranking scheme: ≤0.075: Grade 0; 0.075–0.25: Grade 1; 0.25–0.4:
Grade 2; ≥0.4: Grade 3.

The results showed that alphaCx, CoeffCond, and pRn corresponded to stemNo sensitivity Grade
3, pRx to stemNo sensitivity Grade 2, k to stemNo sensitivity Grade 1, nWs and aWs to stemNo
sensitivity grade 0, nWs and AlphaCx to DBH sensitivity Grade 3, CoeffCond to DBH sensitivity
Grade 2, and aWs, k, pRx, and pRn to DBH sensitivity Grade 1.

Finally, seven parameters were selected as the parameters to be calibrated, namely nWs, aWs,
alphaCx, k, pRx, pRn, and CoeffCond.

3.2. MCMC Result

According to the default value of the 3PG model and analytical tree data, the initial values and
ranges of the seven parameters to be optimized were established (Table 4).

Table 4. Initial values, ranges, and posterior distributions of the seven parameters to be optimized.

Parameter Unit Initial Value Range Mode Mean + SD

nWS - 2.4 [0,8] 2.76 3.08 ± 0.17
aWS - 0.095 [0,2] 0.42 0.58 ± 0.02

alphaCx - 0.06 [0,0.6] 0.16 0.26 ± 0.1
k - 0.5 [0,1.5] 1.04 0.80 ± 0.24

pRx - 0.6 [0,2] 0.56 0.71 ± 0.09
pRn - 0.25 [0,1.6] 0.24 0.59 ± 0.1

CoeffCond 1/mbar 0.05 [0,0.65] 0.11 0.24 ± 0.01

The seven most sensitive parameters in the biomass simulation using the 3PG model were
calibrated via the MCMC method, and the range of each parameter was expanded by a certain number
of times. After 50,000 iterations of parameter expansion by 300%, it was found that the values of the
final parameters are relatively stable—that is, further expanding the range or increasing the number of
iterations does not lead to a large change in the parameter values. Compared with the prior distribution
of each parameter, the posterior distribution differed greatly (Figure 5). The posterior probability
distributions of nWs, aWs, alphaCx, pRx, pRn, and CoeffCond approximately conform to a normal or
skewed distribution, and the peak value is prominent, which indicates that the uncertainty of these
parameters is relatively small, and k’s peak value is not prominent, showing an irregular distribution.
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For parameters with a prominent, near-normal, or skewed distribution, the peak value is taken
as the result (Table 4). We took the following values as input values: nWs = 2.76, aWs = 0.42,
alphaCx = 0.16, pRx = 0.56, pRn = 0.24, and CoeffCond = 0.11. For the one parameter that was not
prominent, namely k, the default value was taken as the model input value, that is, k = 0.5.

3.3. Comparative Analysis

Subsequently, the initial values and posterior values of parameters were input into the model for
running and were compared with the observed values. The results are shown in Figure 6. In the 3PG
simulation, the average measured stand biomass over the nine study years was 164.9 t/ha, and the
simulated values before and after adjustment were 138.0 t/ha and 160.1 t/ha, respectively. Compared
with the initial value, the accuracy of the stem simulation was improved by 13.92% (posterior value),
and the deviation decreased from 16.36% to 2.44%. This shows that the posterior value calibrated by
MCMC can achieve a better fit with the observational data.
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Figure 6. Comparison of stand biomass before and after adjustment. Note: the red dots represent
the observational data of Cunninghamia lanceolata trees from the Shunchang Forest Farm, the thin line
represents the predicted stand biomass value (according to the observational data, the 3PG model
can automatically generate a prediction curve), and the thick line represents the simulated stand
biomass value.

The results show that the RMSEs((Root Mean Square Error) of the stem values with the initial
value (default parameter) and posterior value in the model simulation are 1.24 and 0.98, respectively;
the RMSEs of the height values are 0.34 and 0.32, respectively; and the RMSEs of the DBH values are
0.71 and 0.69, respectively. All indicators show that the proposed model has a higher accuracy than the
initial 3PG model (Table 5).

Table 5. Comparison of parameters before and after optimization.

Height DBH Stand Biomass

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

Before
Optimization

After
Optimization

RMSE 0.34 0.32 0.71 0.69 1.24 0.98

4. Discussion

4.1. Parameter Sensitivity

In this study, the sensitivity of 63 model parameters to stand stocking (stemNo) and DBH was
analyzed by sensitivity analysis in the 3PG model. According to the sensitivity results for stemNo
and DBM, the sensitive parameters were power in the stem mass versus diameter relationship (nWs),
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the constant in the stem mass versus diameter relationship (aWs), the maximum fraction of NPP to
roots (pRx), and the minimum fraction of NPP to roots (pRn), which are all related to the allocation
relationship and proportion of biomass, as well as the maximum canopy quantum efficiency (alphaCx),
which defines stomatal response to VPD (CoeffCond), and the extinction coefficient for PAR absorption
by canopy (k).

These sensitivities can be attributed to the fact that the canopy quantum efficiency and extinction
coefficient affect the interception of light energy, photosynthetic production, and respiration, which is
the main reason for limiting the activity of photosynthesis [20,21]; they also affect the power value of
the relationship between dry biomass and DBH, the constant value of the relationship between dry
biomass and DBH, the maximum net primary production allocated to the roots, and the minimum
net primary production allocated to the roots. The results showed that the biomass and DBH were
influenced by the distribution and proportion of biomass. Leaf stomata were the main outlet for
water vapor from the plant body to the atmosphere, and the response of stomata to VPD affects
transpiration, photosynthesis, and respiration; therefore, stand stocking and DBH were more sensitive
to the above parameters.

L-J Esprey et al. [20,22] found that the parameters Y, alphaCx, MaxCond, rhoMax, fracBB0, fracBB1,
fCalpha700, Topt, and k were sensitive to stand stocking and DBH. Meanwhile, Xiaodong Song et al. [23,24]
found that nWS, aWS, alphaCx, MaxCond, k, tWaterMax, FR, pRx, pRn, CoeffCond, tRho, fracBB1,
and fracBB2 were sensitive parameters. However, in the present study, Y, rhoMax, fracBB0, fracBB1,
and Topt were not found to be sensitive parameters. The main reason for this is that the species,
environment, and method in this work are different from those in the aforementioned two studies.
Although local sensitivity analysis is simple and easy to conduct, it cannot test the influence of the
interaction between model parameters on the output of the model. Therefore, global sensitivity analysis
should be used for analysis in subsequent studies.

4.2. Parameter Optimization using MCMC

According to the results of the sensitivity screening, seven parameters in the 3PG model which
have a large influence on stand stocking and DBH were selected for optimization. Compared with
the prior distribution of the parameters, the posterior distribution of the parameters was greatly
different. The more the scope of the posterior distribution was narrowed, the smaller the uncertainty
of the optimized parameters, which indicates the validity of the calibration-parameter selection.
The results show that the parameters tend to be stable and the model can simulate the observed values
adequately. The results show that the MCMC method can be used to obtain the optimal parameters
stably, and additionally verify the feasibility of this method for parameter adjustment in the 3PG model.

For example, for the parameter k, the posterior distribution is flat and irregular, and the peak
value is not prominent. This shows that different parameter combinations can obtain the same model
output value; this phenomenon may be due to the redundancy and correlation of model parameters,
model structure error, and input-output error. In addition to the parameters that are sensitive to stand
stocking and DBH, the 3PG model can also screen the parameters that are sensitive to other parameters,
such as leaf biomass, root biomass, stand volume, and leaf area index. The methods that were used for
sensitivity analysis in the present study can also be used for the selection and optimization of these
other sensitive parameters [20].

4.3. Model Uncertainty

The uncertainty of model parameters is mainly due to the fact that some parameters in the model
are difficult to obtain directly. The goal of traditional parameter estimation methods is to find a set
of optimal parameters in some specific model structures. In the model calibration, most researchers
adjust some specific parameters and choose the parameters with the smallest error as the calibration
parameters according to the error between the model simulation and the measured value. However,
this method is subjective [25,26]. Meanwhile, some scholars construct the objective function of the
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difference between the simulated value and the observed value to minimize the difference between the
model simulation and the measured value, so as to obtain the estimated value of the model parameters.
As it is impossible to obtain accurate model parameters in complex process-based models, it is not
feasible to obtain only one parameter estimate using an optimization algorithm [27]. The MCMC
method based on Bayesian theory can obtain the posterior distribution of model parameters and
accordingly has been widely applied [28–30]. By minimizing the objective function, the best fitting
degree between the model output and the actual observation data can be achieved, which can effectively
reduce the uncertainty of model parameters, improve the accuracy of model simulation, and enhance
the practical application value of ecological models.

In addition to the model parameters, the structure of the model itself and the meteorological
driving data are the main sources of uncertainty in the 3PG model. The uncertainty caused by the
model structure is mainly due to the fact that it is difficult to quantitatively and accurately describe
the processes of photosynthesis, biomass allocation, and water balance, and that the effects of factors
such as plant respiration, extreme weather, and disasters are not considered in the model, which also
affects the simulation of stand growth. Meteorological data are important driving data for ecological
models. In this paper, to obtain a spatiotemporally continuous meteorological driving dataset for the
study area, an interpolation method was used. Due to the uneven spatial distribution of discontinuous
macro-phenomena such as temperature and rainfall, the uncertainty caused by the interpolation
method will also affect the stand prediction, which is one of the bottlenecks restricting the practical
application of the model for stand management. The atmospheric system is highly nonlinear and
chaotic, and therefore uncertainty is inevitable in weather forecasting, and the same is true for the 3PG
model, which is driven by weather [31–33].

The uncertainty of simulation values increases with increasing simulation time. To overcome
this problem, a sequential parameter estimation method or data assimilation method can be used
to dynamically optimize the model parameters or state variables according to new observational
data that are obtained in the future so as to reduce error propagation and more accurately predict
the carbon-cycle processes of ecosystems under future climatic conditions. Additionally, researchers
should further study how to quantify and reduce the uncertainty caused by errors in the model input
data and by the model structure itself.

5. Conclusions

In this study, the sensitivity of 63 parameters in the 3PG model to stand stocking and DBH was
analyzed based on the analytical data of trees from 0 to 9 years old, meteorological data from 1994–2003,
and forest inventory data from the Shunchang Forest Farm in Nanping. The seven parameters that had
the greatest influence on biomass and DBH were selected, and these parameters were then optimized
using the Markov chain Monte Carlo (MCMC) method. The conclusions are as follows:

(1) Among the 63 parameters of the 3PG model, the parameters that are most sensitive to stand
stocking and DBH were nWs, aWs, alphaCx, k, pRx, pRn, and CoeffCond.

(2) The parameters that have the greatest influence on stand stocking are alphaCx, CoeffCond, pRn,
pRx, k, nWs, and aW, and the parameters with the greatest influence on DBH are nWs, alphaCx,
CoeffCond, aWs, pRn, pRx, and k.

(3) The posterior probability distributions of nWs, aWs, alphaCx, pRx, pRn, and MaxCond have an
approximately normal or skewed distribution with a prominent peak value; however, the peak
value of k is not prominent, showing an irregular distribution.

(4) Compared with the simulation results using the default parameters, the RMSEs of the stem values
with the initial value (default parameter) and posterior value in the model simulation are 1.24
and 0.98, respectively; the RMSEs of the height values are 0.34 and 0.32, respectively; and the
RMSEs of the DBH values are 0.71 and 0.69, respectively.
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