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Abstract: Climate change-induced elevated temperatures and drought are considered to be serious
threats to forest ecosystems worldwide, negatively affecting tree growth and viability. We studied
nine European beech (Fagus sylvatica L.) provenances located in two provenance trial plots with
contrasting climates in Central Europe. Stomata play a vital role in the water balance of plants
by regulating gaseous exchanges between plants and the atmosphere. Therefore, to explain the
possible adaptation and acclimation of provenances to climate conditions, stomatal (stomatal density,
the length of guard cells, and the potential conductance index) and leaf morphological traits (leaf
size, leaf dry weight and specific leaf area) were assessed. The phenotypic plasticity index was
calculated from the variability of provenances’ stomatal and leaf traits between the provenance plots.
We assessed the impact of various climatic characteristics and derived indices (e.g., ecodistance) on
intraspecific differences in stomatal and leaf traits. Provenances transferred to drier and warmer
conditions acclimated through a decrease in stomatal density, the length of guard cells, potential
conductance index, leaf size and leaf dry weight. The reduction in stomatal density and the potential
conductance index was proportional to the degree of aridity difference between the climate of origin
and conditions of the new site. Moreover, we found that the climate heterogeneity and latitude
of the original provenance sites influence the phenotypic plasticity of provenances. Provenances
from lower latitudes and less heterogeneous climates showed higher values of phenotypic plasticity.
Furthermore, we observed a positive correlation between phenotypic plasticity and mortality in the
arid plot but not in the more humid plot. Based on these impacts of the climate on stomatal and leaf
traits of transferred provenances, we can improve the predictions of provenance reactions for future
scenarios of global climate change.

Keywords: acclimation; adaptation; common garden; drought; ecodistance; mortality; phenotypic
plasticity; stomatal frequency; stomatal size

1. Introduction

European beech forests may be seriously affected by climate change-induced drought due to their
well-known vulnerability to water shortages [1,2]. Combinations of heat and drought stress may cause
a decrease in the vitality and competitive ability of beech populations [3–5]. There have been reports of
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beech populations facing strong selective pressures [6], which are foreseen to become more intense
due to upcoming alterations in rainfall patterns and temperatures with ongoing climate change [7,8].
To mitigate these negative effects on the future performance of beech forests in afforestation programs
in Europe, there has been increased interest in research on the intraspecific variation in beech responses
to environmental changes [9–11].

Large intraspecific differences in morphological and physiological traits among the beech
provenances of distinct origin reflect possible strategies which are expected to modify their response
to drought. Beech populations show divergent water use strategies reflected in the differences of
photosynthetic performance, water-use efficiency, leaf water potential, xylem embolism resistance and
leaf morphology [10–13]. The intraspecific variation in tolerance of water deficit follows a pattern
shaped by both regional and local scale effects. Beech populations originating from the sites with
low precipitation [14–16], lower altitude [17] or marginal distribution range [9,18,19] show higher
drought resistance in comparison with the populations from more humid environments. The observed
functional variation between beech populations reaffirms the importance of local adaptation to water
deficit in the context of climate change [13,20].

Common garden experiments allow us to assess the relative importance of adaptation to the
site of origin and acclimation to the new environment in the expression of phenotypic traits, as
all provenances are exposed to the same conditions in provenance trial plots [21]. As a result of
adaptation to local original conditions, the performance and vitality of populations show a correlation
with ecological characteristics at the site of origin, even after their transfer to a new environment.
The effect of environmental change on a provenance planted at a given location can be expressed
as the difference between the ecological characteristics of the trial plot and the site of provenance
origin, called the ecodistance [22]. Moreover, if we study the performance of populations in different
provenance trial plots and the differences between plots are greater than within, we expect that the
differences between phenotypes are driven more by acclimation to current environmental conditions
than by local adaptation [23,24]. Stomatal and leaf morphological traits such as stomatal density,
potential conductance index and specific leaf area affect stomatal conductance and transpiration
(functional traits) which in return influence performance, growth and survival [13,19]. Therefore,
stomatal and leaf morphological traits represent a viable means to identify populations suitable for a
specific environment.

The populations that possess stomatal and leaf morphological traits adapted to drought and heat
stress will have an evolutionary advantage under future scenarios [3]. Hence, a plant strategy to
cope with differences in water regimes involves altering stomatal density and stomatal size [25–27].
Some studies have shown that smaller stomata close more quickly than larger stomata do, thus
indicating that this could enhance plant adaptation to drought [28]. However, there remains the
debated issue of how stomatal density varies within a particular environment. It has been reported
that drought resistant plants show higher stomatal density [27,29,30], but the results of more recent
studies performed in controlled environments suggest that lower stomatal density improves drought
tolerance [31,32]. Other functional traits frequently utilized in ecological studies and linked to drought
tolerance are specific leaf area and leaf size. Several studies have revealed that changes in environmental
factors such as light, temperature or nutrients strongly influence leaf traits [33,34]. Species with smaller,
thicker leaves mainly occur in more stressful habitats and exhibit lower specific leaf areas. This trait
is related to the species water use strategy [34], and it is highly plastic [35], although the precise
physiological regulation mechanism of specific leaf area is still uncertain [33,36].

Furthermore, the phenotypic plasticity, defined as the capacity for a genotype to alter its
morphology and/or physiology under altered environmental conditions [37], can play a major role
in the survival and sustainability of forest populations subjected to global change [38–40]. This is
generally seen as favourable under stress conditions because it enables plants to react to fluctuations
in the environment [41,42]. However, several studies have reported a potential trade-off between
phenotypic plasticity and individual fitness [43], suggesting reduced performance with increasing
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plasticity [38,44,45]. Therefore, it is crucial to assess the ability for stomatal and leaf morphological
traits to react plastically to their environment and to test the connection between their phenotypic
plasticity and plant fitness and performance.

We investigated stomatal and leaf morphological traits, their phenotypic plasticity and a link to the
climate of origin and current climate in nine European beech provenances located in two provenance trial
plots with contrasting climates (warmer and drier/colder and more humid) in Central Europe. Based on
the premise that environmental differences between provenance trial plots can alter the stomatal and leaf
morphological traits of European beech, we hypothesized that (i) provenances that grow in drier and
warmer provenance plots will exhibit lower values of measured traits than those growing in more humid
and colder plots to increase their performance under suboptimal conditions. We further expected to find
that (ii) the climate of the provenance’s original site would affect the provenance’s phenotype even 18 years
after transfer to a different environment. In addition to the relationship between the climate of origin
and phenotype itself, we also hypothesized that (iii) the provenance climate of origin should affect the
phenotypic plasticity of provenances, where provenances from more heterogeneous environments show
higher phenotypic plasticity. Finally, we hypothesized (iv) a negative relationship between phenotypic
plasticity and tree mortality, and provenances with higher value of plasticity would acclimate better under
different environments, thus mitigating the risk of mortality.

2. Materials and Methods

2.1. Locality Description and Plant Material

The material used for this experiment was collected from two European beech (Fagus sylvatica L.)
provenance trial plots: Tále in the Slovak Republic (near Zvolen, 48◦38′ N, 19◦02′ E, 810 m a.s.l.) and
Zbraslav in the Czech Republic (near Prague, 49◦57′ N, 14◦22′ E, 360 m a.s.l.). The Slovak provenance
plot included loam soil with good nutrient availability and high water holding capacity, while the
Czech provenance plot included sandy loam soil with poor nutrient availability and average water
holding capacity [12]. Climate data for the original provenance sites were obtained from the WorldClim
high-resolution climate database [46]. The climate characteristics of the Czech provenance plot were
obtained from the Praha-Libuš meteorological station, and freely available data were provided by the
Czech Hydrometeorological Institute (http://portal.chmi.cz). Climate data for the Slovak provenance
plot were obtained from the nearby Kremnické Bane meteorological station monitored by the Slovak
Hydrometeorological Institute. We calculated additional indices from the above climate data:

Ellenberg quotient (EQ) [47]

EQ = 1000 ×
Th

Prec
(1)

Th—mean temperature of the hottest month (here July), Prec—annual sum of precipitation.
Forest Aridity Index (FAI) [48]

FAI = 100 ×
T7−8

Prec5−7 + Prec7−8
(2)

T7–8—mean temperature of July and August, Prec5–7—precipitation sum for May to July,
Prec7–8—precipitation sum for July to August.
Isothermality (IsoT)

IsoT =
T × (Th − Tc)

TMAX − TMIN
× 100 (3)

T—annual mean temperature, Th—mean temperature of warmest month, Tc—mean temperature of
coldest month, TMAX—max temperature of warmest month, TMIN—min temperature of coldest month.
Precipitation seasonality (SeasPrec)

SeasPrec =
σPrec

Prec
(4)

http://portal.chmi.cz
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σPrec—annual standard deviation of precipitation, Prec—annual sum of precipitation.

All geographical and climatic data are presented in Table 1. Optimal hydric conditions of European
beech stands are represented by EQ values of below 20. European beech starts to lose its competitive
performance in environments with EQs of above 20 and is replaced by more xerotic tree species in
places with EQs of above 30 [49,50]. Moreover, locations with optimal rainfall patterns during the
vegetation season for European beech are defined by an FAI of under 4.75 [48,51]. The EQ for the
Czech provenance plot is 33.5, and the FAI is 5.1, which characterizes the plot as a location with
marginal environmental conditions for European beech occurrence. The Slovak provenance plot with
an EQ of 19.1 and FAI of 2.5 represents the optimal hydric environment according to the classifications
mentioned above. Both provenance plots were established in 1998 as a part of the European provenance
plot network, whereas proven ances were planted as two-year-old seedlings [52]. Both plots were
planted with 2 × 1 m spacing under a randomized block design with three blocks and fifty seedlings
per block. Nine provenances were chosen for the analysis to capture the whole altitude range of the
distribution of European beech (Figure 1). The distribution of provenance original sites regarding
climate characteristics is visualized in Figure A1 of the Appendix A. We were not able to sample
some of the provenances in multiple blocks due to high spatial mortality. The third block of the
Czech provenance plot completely died off, and some of the provenances remained only in one block.
Similarly, the third block of the Slovak provenance plot suffered high mortality, and we avoided this to
minimize sample heterogeneity due to unknown factors.

Table 1. Geographic and climate characteristics of provenance plots and their original locations.

Provenance Long Lat Alt T T59 Prec Prec59 EQ FAI IsoT Seasprec

FR04 2.58 44.15 850 10.8 16.8 804 344 23.8 5.4 3.8 14
LUX12 6.2 49.67 400 8.6 14.9 866 365 19.7 4.8 3.1 11
UK17 −3.42 57.67 10 8.2 12.7 671 303 21.8 5.3 3.6 19

SWE23 13.2 55.57 40 7.9 14.3 640 286 25.9 6.2 2.6 21
GER26 10.67 53.65 55 8.3 15 678 319 25.5 5.1 3.0 17
AU35 14.1 47.72 1250 2.4 9.2 1495 779 7.6 1.3 3.2 26
AU36 14.85 47.53 1100 2.9 9.9 1168 648 10.4 1.6 3.1 32
PL43 22.82 49.25 900 6.3 14.1 762 433 21.5 2.9 2.7 35
PL67 18.17 54.33 250 5.8 13.2 633 336 24.6 4.3 2.4 30

CZ Zbraslav 14.37 49.95 360 8.25 15.6 532 330 33.5 5.1 na na
SK Tále 19.03 48.63 850 6.58 14.1 842 441 19.1 2.5 na na

Long—longitude, Lat—latitude, Alt—altitude, T—annual average temperature, T59—average temperature during
the vegetation season, Prec—sum of annual precipitation, Prec59—sum of precipitation during the vegetation
season, EQ—Ellenberg quotient, FAI—Forest Aridity Index, IsoT—isothermality, Seasprec—precipitation seasonality,
na—not available.

Figure 1. Localities of the tested provenances (dots) and provenance plots (squares).
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2.2. Stomatal and Leaf Morphological Traits

The samples were taken during June 2016 from full sun-exposed leaves located in the upper third
of the crown to minimize irradiation and canopy position effects on stomatal and leaf morphology
development [53,54]. We sampled six individuals per provenance per plot and made two imprints per
individual. The imprints were made by the application of transparent nail polish to the abaxial side of
the leaves [55]. The layer of polish was then transferred to a microscope slide with transparent tape.
To avoid possible variations in stomatal distribution within the leaves, we took imprints between the
second and third veins from the base of the leaves [17]. Six images were taken from each imprint using
a Motic BA210 microscope with an integrated camera (Motic Electric, Linz, Austria). Three of these
images were captured at 40× 10 magnification, and three photos were captured at 10× 10 magnification.
The images at 10 × 10 magnification were used to assess stomatal density (SD). The number of stomata
was calculated within a 750 × 750 µm square per image with a random position using ImageJ 1.51k
software (National Institute of Health, Bethesda, MD, USA). The assessed value of the number of
stomata per square was converted to the number per square millimetre. The length of guard cells (LA)
was measured for ten stomata in a 40 × 10 magnification image using ImageJ software. The SD and LA
values were then averaged per individual for further analysis. Additional leaves from the same branch
were scanned with a HP Scanjet G4010 scanner (Hewlett Packard, California, USA), and the leaf size
(Sleaf) was subsequently measured by ImageJ software. The scanned leaves were stored in silica gel,
after which the leaves were dried at 75 ◦C to a constant weight (approximately 48 h). Afterwards, the
dry weight (mleaf) was assessed. From the measured parameters, we calculated the following traits:

The potential conductance index (PCI), an integrative variable of stomatal density and the length
of guard cells, which can be used as a proxy for the theoretical maximal stomatal water vapour
conductance [56,57]:

PCI = L2
A × SD × 10−4 (5)

LA—length of guard cells, SD—stomatal density.
Specific leaf area (SLA), a parameter that corresponds to the thickness and density of leaf

lamina [58,59]:

SLA =
Slea f

mlea f
(6)

Sleaf—leaf size and mleaf—dry weight of leaves.

2.3. Quantification of Phenotypic Plasticity

The plasticity index based on maximum and minimum means (PIv) was calculated for each trait
and provenance, respectively [37].

PIv =
xmax − xmin

xmax
(7)

xmax—maximum mean (mean of the group showing the maximal value relative to that of other groups);
xmin—minimum mean (mean of the group showing the minimal value relative to that of other groups).
In our case, the groups refer to identical provenances from two different provenance plots.

2.4. Statistical Analysis

Statistical analysis was performed using R statistical software (Version 4.0.3, R Core Team, Vienna,
Austria). Original climate characteristics of provenances were analysed by principal component
analysis to visualize likeness or disparity between the original sites of the provenances. The normal
distribution of the obtained data was first tested by the Shapiro–Wilk test. A two-way analysis of
variance was used where provenance and plots were set as factors with fixed effects. Moreover,
differences between provenances were tested separately for each plot by Fisher’s LSD post hoc test.
We used ecodistance to capture shifts between the climate of origin and the climate of the provenance
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plot. The ecodistance was defined as the difference between the investigated ecologically relevant
variables at the test site and at the population origin [22,60]. Furthermore, mixed models in the
R “nlme” package [61] were used to explore relationships between individual stomatal and leaf
morphological traits (dependent variables) and various explanatory variables, such as EQ, FAI, latitude
and longitude. To account for between-plot variability, we included plot as a random effect variable,
and the between-plot variance in the intercept estimation was quantified. We were not able to include a
block design in the mixed models, as there were missing data due to spatial mortality within the plots.
We used maximum likelihood to estimate the parameters of the model. To estimate the importance of
individual explanatory variables, we calculated the normalized model likelihoods (Akaike weights).
First, we fitted all possible model variants, including the null model (including only the intercept) and
full model (including all explanatory variables). Then, Akaike weights were calculated for each model
based on the corrected Akaike information criterion using the “Weights” function in the “MuMIn” R
package [62]. The models with the highest weights were further selected and interpreted. In addition
to that, we calculated marginal R2 (R2

m) and conditional R2 (R2
c) for better comparison of fixed and

random factors in model [63]. Statistical significance of differences between the plasticity of the traits
was assessed by analysis of variance and Tukey’s post-hoc test. The relationships between original
climate, phenotypic plasticity and tree mortality were tested by linear regression.

3. Results

3.1. Stomatal and Leaf Morphological Traits

The effects of the tested factors, provenance, plot and provenance-by-plot interactions were
statistically significant for all traits except in the case of specific leaf area (SLA) (Table 2, Table A1 in
Appendix A). Provenances growing in a warmer and drier site in the Czech Republic showed lower
guard cell length (LA, Figure 2A), stomatal density (SD, Figure 2B), potential conductance index (PCI,
Figure 2C), leaf dry weight (mleaf, Figure 2D) and leaf size (Sleaf, Figure 2E) values than the provenances
in the colder and more humid Slovak plot. Provenances in the Czech provenance plot showed an
average 57% reduction in the PCI for leaves that were 12% smaller than those in the Slovak provenance
plot. Based on the average mleaf, the provenances in the drier Czech plot accumulated 39% less biomass
per leaf than the provenances in the more humid Slovak plot. Values of SLA were higher on average
for the drier provenance plot, but changes were inconsistent and insignificant between provenances
(Figure 2F).

Table 2. Results of two-way ANOVAs for each stomatal and leaf morphological trait.

Factor Df Trait LA SD PCI mleaf Sleaf SLA

Provenance 1
F 57.95 17.65 11.59 3.79 10.83 0.69
p *** *** *** ** *** 0.64

Plot 8
F 1771.5 457.4 1221.25 31.35 21.58 9.48
p *** *** *** *** *** **

Provenance × Plot 8
F 18.09 4.642 7.66 2.72 3.92 1.64
p *** *** *** * *** 0.13

LA—length of guard cells, SD—stomatal density, PCI—potential conductance index, Sleaf—leaf size, mleaf—dry
weight per leaf, SLA—specific leaf area, significance levels *** <0.001 ** <0.01 * <0.05.
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Figure 2. Mean values and standard errors of stomatal and leaf morphological traits per provenance:
length of guard cell (LA, (A)), stomatal density (SD, (B)), potential conductance index (PCI, (C)), leaf
size (Sleaf, (D)), leaf dry weight (mleaf, (E)) and specific leaf area (SLA, (F)). The red colour represents
provenances growing in the Czech provenance plot, and the blue colour represents provenances
growing in the Slovak provenance plot. The dashed horizontal line represents the average per plot
with the surrounding standard error interval band. Provenances are arranged based on the Ellenberg
quotient of the original site (blue to red x axis band).

3.2. Impact of Climate Ecodistance on Stomatal and Leaf Morphological Traits

The multifactorial approach based on mixed models showed that the models with singular
explanatory variables performed better than those with multiple factors; thus, a further analysis
employed simple linear regression models (Tables A2 and A3). The degree of aridity and temperature
differences between provenances’ origins and new plots (ecodistance) had a significant effect on
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provenances’ stomatal development (Figure 3). The ecodistance of the Ellenberg quotient (EQED)
and forest aridity index (FAIED) had a significant negative influence on SD (Figure 3A,B) and the PCI
(Figure 3C,D). Provenances transferred to a drier environment relative to their original site showed a
proportionally lower density of stomata with lower potential conductance. The ecodistance of average
temperature (TED) and average temperature during the vegetation season (T59ED) also had a significant
negative influence on SD, and provenances transferred to a climate warmer than that of their original
site showed a proportional decrease in SD (Figure 3E,F). Other climate ecodistance indices showed no
significant correlations with stomatal and leaf morphological traits.

Figure 3. Linear regression results showing the relationship between ecodistance (EQED, FAIED,
TED, T59 ED) and stomatal morphological traits, stomatal density (SD, (A,B,E,F)) and the potential
conductance index (PCI, (C,D)). Positive values on the horizontal axis represent transfer to a drier/hotter
environment (red arrow), and negative values represent transfer to a more humid/colder environment
(blue arrow).
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3.3. Phenotypic Plasticity of Stomatal and Leaf Morphological Traits

To quantify the acclimation response, we calculated the phenotypic plasticity index for each trait
and provenance. Plasticity indices of the potential conductance index (PCIPI), leaf dry weight (mleaf PI)
and specific leaf area (SLAPI) showed the highest values of plasticity among the provenances. In contrast,
the plasticity index of the length of guard cells (LA PI) was the lowest among the provenances (Figure 4).
The climate of the original provenance locations affected the plasticity response of acclimation after
transfer to a new environment. Provenances from locations with more heterogeneous environmental
temperatures showed lower PCIPI and LA PI plasticity. We found a positive relationship between the
isothermality (IsoT) of the original location and provenances PCIPI and LA PI (Figure 5A,C). Moreover,
provenances from environments with more heterogeneous precipitation distributions showed lower
plasticity of LA. The seasonality of precipitation (SeasPrec) at the original locations of the provenances
negatively influenced the LA PI of the provenances (Figure 5D). Furthermore, the original latitude (Lat)
affected the PCIPI, as provenances from lower latitudes showed a higher PCIPI (Figure 5B). We found a
significant negative relationship between provenance mortality and the plasticity of stomatal and leaf
morphological traits (PCIPI and SLAPI) in the drier and hotter Czech provenance plot (Figure 6) but no
significant relationship between mortality and plasticity in the more humid Slovak provenance plot.

Figure 4. Phenotypic plasticity indices of stomatal density (SDPI), guard cell length (LA PI), the potential
conductance index (PCIPI), leaf size (Sleaf PI), leaf dry weight (mleaf PI) and specific leaf area (SLAPI) for
each provenance. Plasticity indices obtain values of 0 to 1, where 0 denotes no plasticity and 1 denotes
theoretical maximal plasticity. Confidence intervals represent standard error and the capital letters
correspond to results of post-hoc analysis.
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Figure 5. Linear regression results showing the relationship between isothermality (IsoT, (A,C)), latitude
(Lat, (B)) and precipitation seasonality (SeasPrec, (D)) of the provenance’s original site and plasticity
indices (LA PI, PCIPI).

Figure 6. Visualization of the relationship between plasticity indices (PCIPI, (A); SLAPI, (B)) and the
observed mortality of provenances in the Czech (red) and Slovak (blue) provenance plot. The linear
regression was significant only for drier Czech provenance plot.

4. Discussion

4.1. Functional Aspects of the Adaptive Response

Our study demonstrates that European beech provenances adjusted their stomatal and leaf
morphological traits in response to being transferred to a new environment. Provenances exhibited
significantly lower SD, LA, PCI, Sleaf and mleaf levels in the drier Czech provenance plot than in the
more humid Slovak provenance plot. There were no significant differences in SLA when we considered
provenance–plot interactions. Lack of significant differences regarding SLA might be caused by low
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sample size and high variability of the trait. Nevertheless, we observed that provenances in more
xeric plot showed higher overall SLA. This is in opposition to general consensus [13,36,64,65], but has
already been observed in some studies [66,67]. The adjustment of stomatal and leaf development
can be seen as an adaptive response to either suboptimal climatic conditions of the Czech plot or to
favourable climatic conditions of the Slovak plot. It has been reported that plants might improve
their drought tolerance and water use efficiency (WUE) by reducing SD [31,32,68] and LA [28,69].
Both herbaceous plants and trees react to episodic drought and long-term xericity of the environment
by decreasing SD [25,70] and developing smaller stomata with lower LA [26,56,71–73]. Combined
stomatal morphology (LA) and the distribution of stomata on leaves (SD), represented as the PCI,
might be seen as a proxy for structural constraints of maximal stomatal conductance. A reduction in
the PCI under xeric conditions should then ultimately reduce stomatal conductance [74] and water
loss, which can lead to improved WUE [73,75]. Acclimation through the development of smaller
leaves (Sleaf) under xeric conditions leads to less water loss through transpiration [76] and higher
WUE [77,78]. It should be mentioned that WUE is also influenced by photosynthetic capacity and
not just stomata related traits [13]. Plants exposed to water deficit show a reduction in mleaf [64,79].
The combination of lower Sleaf with mleaf in drier site might be explained by trees’ strategy to invest
more in root biomass with the cost of lower leaf biomass and leaf size [80]. The above-mentioned
traits, therefore, represent plants’ adaptive mechanisms in mitigating drought stress [81]. As these
stomatal and leaf morphological traits have a significant impact on plant performance under water
stress, their adjustment is vital for plants to successfully acclimate under changing conditions due to
either anthropogenic transport to new environments or accelerating global climate change.

On the other hand, an increase in SD and LA can enhance photosynthetic capacity [82,83], which
could enhance tree performance under optimal climatic conditions where the strongest selective
pressure is competition [84]. Leaves with higher SD and larger stomata (LA) show an increase in
maximal stomatal conductance [85–87], which leads to higher biomass accumulation and growth [88].
A higher PCI increases the maximal limit of stomatal conductance, which might improve photosynthetic
capacity [89]. Moreover, the PCI has also been found to be related to leaf hydraulic conductance [57],
which has been correlated with photosynthesis rates across plant species [89,90]. Higher Sleaf values
under favourable conditions lead to higher photosynthesis rates [91,92], which positively affect leaf
biomass production with higher mleaf values [93]. According to our results, provenances in the drier
and hotter Czech plot might acclimatise to their environment by undertaking a water conservation
strategy with decreasing SD, LA, PCI, Sleaf and mleaf values. Conversely, provenances growing on the
more humid Slovak plot could utilize the development of larger leaves (Sleaf, mleaf) with higher SD, LA
and PCI values to maximize photosynthetic activity and growth in a competitive environment. Despite
the clear theoretical basis for why the provenances showed significantly different values of the tested
traits, we did not find any significant relationship between the tested traits and mortality. To address
our first hypothesis (i), we found the morphological response as expected, but there is no evidence that
the alternation of stomatal and leaf morphological traits had a significant positive effect on provenance
performance. To capture the drought resistance profile of provenances for practical application, we
suggest analysing additional physiological and functional traits, such as WUE, cuticular conductance,
xylem embolism resistance and the turgor loss point [10,13,94]. Stomatal and leaf morphological traits
alone are not satisfactory to define which provenances would be favourable for hotter and more xeric
conditions in the near future.

4.2. Climate Ecodistance as an Effective Tool for Provenance Research

We found that the SD and PCI of provenances depend on the aridity ecodistance (EQED and
FAIED) and temperature ecodistance (TED and T59ED). The ecodistance represents the climatic shift
between the original provenance site and the provenance plot to which it is transferred. The connection
between both the climate of origin and the current climate and stomatal phenotype might suggest
strong coordination between genetic and environmental impacts on stomatal development. A previous
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provenance study showed strong significant relationships between temperature and ecodistance and
the phenology, morphology and dendrometric traits of European beech provenances [22]. Aridity
ecodistance (EQ) has been found to be a significant explanatory variable for the vitality [95] and
growth [96] of European beech provenances. A study of four temperate tree species (Fagus sylvatica,
Picea abies (L.) Karst., Pinus sylvestris L. and Quercus petraea (Matt.) Liebl.) has also shown a significant
relationship between aridity ecodistance (the annual aridity index) and the growth of provenances
after transfer to a new environment [97]. Our second hypothesis (ii) is confirmed by a significant
relationship between SD, the PCI and ecodistance, which incorporates the climate of origin as well
as the current climate of new plots. The ecodistance has not attracted much popularity since its
first formulation [22], but it seems that this simple mathematical formulation of climate transfer
could capture the physiological, morphological and growth reactions of tree provenances to their
new environments. More studies have focused on additional tree species, and other aspects of tree
phenotyping are needed to test whether ecodistance is robust enough to be useful and reliable for
forestry applications. The ecodistance could then be used not only to explain the effect of climatic shifts
caused by the spatial transfer of provenances but also to predict provenance reactions to temporal
changes caused by accelerating anthropogenic global climate change.

4.3. Phenotypic Plasticity

Populations with higher phenotypic plasticity can adapt to higher environmental variability and
thus can minimize the risk of mortality [65,98,99]. Our results suggest that the PCI, mleaf and SLA
are the most plastic, while LA is the least plastic trait among provenances. The low plasticity of LA

might suggest higher genetic control of stomatal size relative to the other tested traits. Similar results
of low plasticity for LA and high plasticity for the PCI and leaf morphology were also observed in
beech provenance studies [71,95]. Furthermore, we found a significant relationship between climate
heterogeneity of the original site (IsoT and SeasPrec) and the plasticity of LA and PCI (LA PI and PCIPI).
We expected populations that had evolved under more heterogeneous environments to favour higher
phenotypic plasticity to quickly adjust their phenotype if needed [11,37,99,100]. In contrast to what we
expected, the provenances from the most heterogeneous environment showed the lowest LA PI and
PCIPI values, so hypothesis (iii) cannot be confirmed. We also found a negative significant relationship
between latitude and PCIPI, which might be attributable to a reduction in genetic diversity from
lower to higher latitudes after the recolonization of habitats after the last glacial maximum [101–103].
A harsher northern environment or higher competition at the distribution edge may create more
selection pressure than elsewhere in the distribution range [44]. Therefore, populations that evolved
under strong selection pressure might favour more efficient strong genetic control over high phenotypic
plasticity within the population [104]. This could lead to trait canalization which might be translated
to lower phenotypic plasticity [105–107].

We found a significant positive relationship between PCIPI, SLAPI and mortality values, but only
in the drier and hotter Czech provenance plots. However, in this study with phenotyping data from
only the remaining trees, we cannot conclude that the high plasticity of these two traits causes high
provenance mortality as the plasticity was calculated from surviving individuals and thus might
be biased. Higher mortality, which created more open canopies and less competition among the
remaining trees, might have caused the higher values of phenotypic plasticity, as trees reacted to
newly available canopy space. High phenotypic plasticity is generally seen as a favourable property
of plants, trees or populations under global climate change [37,108,109]. We cannot confirm our
hypothesis that (iv) there is a negative relationship between phenotypic plasticity and tree mortality.
Despite this, we find it important to discuss phenotypic plasticity. Both recent and earlier studies
have shown that the high phenotypic plasticity of plants should not be universally seen as a positive
attribute [43,45,110,111]. The plasticity cost might not be pronounced under normal conditions, but
when plants are exposed to a highly stressful environment, the plasticity cost might outweigh the fitness
gain [112,113]. The results of several studies suggest reduced performance with increasing phenotypic
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plasticity under stress [38,44]. Thus, phenotypic plasticity, measured by common metrics [37], should
not be automatically interpreted as beneficial for plants under global climate change. The high
phenotypic plasticity of populations exposed to severe environmental stress might be associated with
increased mortality and reduced fitness.

5. Conclusions

European beech provenances have shown a high degree of both adaptation and acclimation after
transfer to a new environment. The observed differences in stomatal morphological traits were linked
to the long-term aridity and air temperature of both the original site and the current provenance
plot. The heterogeneity of the original site’s climate and latitude affected the phenotypic plasticity of
stomatal traits. Higher phenotypic plasticity was associated with higher mortality under suboptimal
conditions but not under favourable hydric conditions. Additional functional and physiological traits
should be considered to evaluate the resistance or performance of European beech provenances, as we
have not found any direct link between mortality and the tested stomatal and leaf morphological traits.
Ecodistance can be considered as an easy to use and robust tool for analysing adaptive responses of
tree provenances under global climate change. Studies of phenotypic plasticity should not interpret
the positive effects of high plasticity without taking into consideration the performance, fitness or
vitality of plants.
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Appendix A

Table A1. Results of Fisher LSD post-hoc test.

SK LA SD PCI Sleaf mleaf SLA

FR04 BC AC AB B A AB
LUX12 AB B A AB ABC BC
UK17 AB AB AB AB AB ABC

SWE23 AB C B AB ABCD A
GER26 A ABC AB A ABC C
AU35 A ABC AB AB BCD A
AU36 AB ABC AB A D AB
PL43 AB AB A AB A BC
PL67 C AC A A CD AB

CZ LA SD PCI Sleaf mleaf SLA

FR04 C ABCD AB B D A
LUX12 C AB B AB ACD A
UK17 AB ABCD ACD A ABC A

SWE23 AB D CD A B A
GER26 B CD D A AB A
AU35 AB ABC AC A AB A
AU36 AB A AB A ABC A
PL43 AC BCD ACD AB ABCD A
PL67 AC ABCD AB AB CD A

SD—stomatal density, LA—length of guard cells, PCI—potential conductance index, SLA—specific leaf area,
Sleaf—leaf size, mleaf—dry weight per leaf.
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Table A2. AICc based variable weights of mixed models. Green to red spectrum represents the
explanatory power of individual parameters and their combinations. Full model consists of all three
parameters: aridity (expressed as the EQ and FAI), longitude and latitude.

Trait EQED LongED LatED EQED + LongED EQED + LatED LongED + LatED Full Model
SD 0.704 0.014 0.007 0.125 0.131 0.002 0.016
LA 0.222 0.31 0.168 0.202 0.031 0.047 0.021
PCI 0.211 0.461 0.151 0.065 0.032 0.073 0.007
SLA 0.312 0.239 0.292 0.044 0.06 0.046 0.006
Sleaf 0.16 0.472 0.152 0.069 0.031 0.102 0.014

FAIED LongED LatED FAIED + LongED FAIED + LatED LongED + LatED Full model
SD 0.263 0.056 0.029 0.046 0.532 0.009 0.065
LA 0.286 0.284 0.154 0.163 0.049 0.043 0.021
PCI 0.177 0.482 0.158 0.068 0.031 0.076 0.008
SLA 0.316 0.241 0.296 0.047 0.048 0.047 0.005
Sleaf 0.149 0.345 0.111 0.273 0.021 0.075 0.027

SD—stomatal density, LA—length of guard cells, PCI—potential conductance index, SLA—specific leaf area,
Sleaf—leaf size, EQED—Ellenberg quotient ecodistance, FAIED—Forest Aridity Index ecodistance, LongED—longitude
ecodistance, LatED—latitude ecodistance.

Table A3. Values of the marginal and conditional R2 of mixed models presented in Table A2.

SD LA PCI SLA Sleaf

R2
m R2

c R2
m R2

c R2
m R2

c R2
m R2

c R2
m R2

c

EQED 0.38 0.76 0.03 0.87 0.01 0.89 0.04 0.86 0.02 0.38
LongED 0.01 0.84 0.02 0.78 0.01 0.91 0.01 0.75 0.12 0.18
LatED 0.00 0.84 0.00 0.78 0.00 0.91 0.01 0.77 0.03 0.22

EQED + LongED 0.38 0.75 0.07 0.92 0.01 0.91 0.04 0.86 0.19 0.75
EQED + LatED 0.37 0.77 0.03 0.86 0.01 0.88 0.04 0.86 0.05 0.40

LongED + LatED 0.02 0.84 0.02 0.78 0.01 0.91 0.02 0.77 0.15 0.29
Full model 0.37 0.76 0.07 0.91 0.01 0.91 0.04 0.86 0.21 0.77

SD LA PCI SLA Sleaf

R2
m R2

c R2
m R2

c R2
m R2

c R2
m R2

c R2
m R2

c

FAIED 0.06 0.82 0.02 0.83 0.00 0.90 0.02 0.80 0.09 0.43
LongED 0.01 0.84 0.02 0.78 0.01 0.91 0.01 0.75 0.12 0.18
LatED 0.00 0.84 0.00 0.78 0.00 0.91 0.01 0.77 0.03 0.22

FAIED + LongED 0.06 0.82 0.04 0.85 0.01 0.91 0.02 0.79 0.23 0.58
FAIED + LatED 0.11 0.86 0.02 0.83 0.00 0.90 0.02 0.79 0.09 0.40

LongED + LatED 0.02 0.84 0.02 0.78 0.01 0.91 0.02 0.77 0.15 0.29
Full model 0.11 0.86 0.05 0.85 0.01 0.90 0.02 0.78 0.23 0.56

Figure A1. The principal component analysis biplot of provenance’s original climate.
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