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Abstract: Poor agricultural productivity has led to food shortages for smallholder farmers in Ethiopia.
Agroforestry may improve food security by increasing soil fertility, crop production, and livelihoods.
Agroforestry simulation models can be useful for predicting the effects of tree management on
crop growth when designing modifications to these systems. The Agricultural Production Systems
sIMulator (APSIM) agroforestry tree-proxy model was used to simulate the response of maize yield
to N fertilizer applications and tree pruning practices in the parkland agroforestry system in the
Central Rift Valley, Ethiopia. The model was parameterized and tested using data collected from an
experiment conducted under trees and in crop-only plots during the 2015 and 2016 growing seasons.
The treatments contained three levels of tree pruning (100% pruned, 50% pruned, and unpruned) as
the main plots, and N fertilizers were applied to maize at two rates (9 or 78 kg N ha−1) as sub-plots.
Maize yield predictions across two years in response to tree pruning and N applications under tree
canopies were satisfactorily simulated (NSE = 0.72, RSR = 0.51, R2 = 0.8). Virtual experiments for
different rates of N, pruning levels, sowing dates, and cultivars suggest that maize yield could be
improved by applying fertilizers (particularly on crop-only plots) and by at least 50% pruning of
trees. Optimal maize yield can be obtained at a higher rate of fertilization under trees than away from
them due to better water relations, and there is scope for improving the sowing date and cultivar.
Across a 34-year range of recent climate, small increases in yields due to optimum N-fertilizing and
pruning were probably limited by nutrient limitations other than N, but the highest yields were
consistently in the 2–4 m zone under trees. These virtual experiments helped to form hypotheses
regarding fertilizers, pruning, and the effects of trees on soil that warrant further field evaluation.
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1. Introduction

Crop production in Ethiopia and other sub-Saharan Africa countries is strongly affected by low
levels of soil fertility [1,2] as well as inadequate or poorly distributed rainfall [3,4]. Cereal crops including
maize constitute a crucial part of the diet in Ethiopia. Maize accounts for 27% of Ethiopia’s total cereal
production and is critical for the food security of smallholder subsistence farmers [5]. However, average
maize yield (3.2 t ha−1) at the farm level [6] remains far below the yields (5–10 t ha−1) reported from
experimental stations [5,7], mainly due to more nutrient and water stresses on farms, which indicates
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that the maize yield there could be increased by improving nutrient and water availability to the crops.
Trees can reduce surface soil temperatures, wind, and evapotranspiration, and enhance biological
and ecological processes such as nutrient cycling, nitrogen fixation, and soil microbial activity [8].
Growing crops with leguminous trees in the parklands of Ethiopia, where scattered mature trees occur
as an integral part of crop and livestock production landscapes, therefore could potentially provide
sustainable and affordable strategies to improve crop productivity and livelihoods for smallholder
farmers with limited access to N fertilizer [9].

Parklands are one of the oldest agroforestry systems and are common features of the agricultural
landscape of Ethiopia. For example, in the Central Rift Valley (CRV) of Ethiopia, Faidherbia is the
most common tree species, and crops such as maize (Zea mays L.), wheat (Triticum aestivum L.),
teff (Eragrostis tef (Zucc.) Trotter), and beans (Phaseolus vulgaris L.) are grown under it. These trees
are considered to improve crop productivity and provide services such as shade, erosion control,
soil fertility, and tree products [10]. Despite these positive effects, tree competition for light, nutrients,
and water can reduce crop yields [11]. Thus, an understanding of how trees affect crop productivity
is critical to managing the potential impacts of competition on crop yields [12]. Pruning is useful
for reducing competition for light [13,14] and smaller canopies can have reduced water and nutrient
demands that thereby also reduce below-ground competition. Prunings are also needed for fencing
materials and fuel wood. As a result, farmers in the current study area totally prune tree branches
(pollarding) at intervals of 3–4 years. A study in the parkland of the CRV on the impacts of F. albida
(Delile) A. Chev. trees and fertilizer management on maize production found that maize yields could
be maintained or improved by partial pruning of F. albida and by preferentially applying fertilizers in
normal and wet years [15].

Ethiopia is a country that is quite vulnerable to the impacts of climate variability and change
due to its heavy reliance on small-scale rain-fed farming systems. Climate variability, particularly
rainfall variability and associated droughts, have been reported as major causes of food insecurity in
Ethiopia [7]. Thus, there is a high demand for quantitative information on climate variability and their
impacts on crop yields. The application of simulation models is important for improved understanding
of the variability and expected future changes of climatic conditions and to evaluate the climate risk
management options [16].

APSIM (the Agricultural Production Systems sIMulator) is a modular modeling framework
developed to simulate biophysical processes in farming systems at plot and farm scales [17]. The model
has been applied to explore management options, genetic trait evaluation, crop choice, and farming
system design [18]. This modeling framework was validated for agroforestry use by successfully
simulating maize yield, soil water content, and soil carbon in response to interactions of N fertilizer and
intercropping with shrubs or small trees of Gliricidia sepium (Jacq.) Kunth) in row systems in Kenya and
Malawi [19]. Their simulations were undertaken using field data collected over two years (short-term)
in Kenya and 11 years (long-term) in Malawi. Successful application of the model indicated that this
agroforestry model warranted further application including in widely spaced (circular, single-tree)
geometries of tree–crop interactions and using trees with large canopies. The capability to simulate crop
growth in response to competition for solar radiation (shading) is one of this model’s capabilities [20,21],
which provides an opportunity to simulate crop production under tree canopies.

Simulation models can be applied to quantitatively understand the interactions amongst
components of agroforestry systems including management for improved productivity [19,22].
Understanding the mechanisms by which factors influence crop growth under a range of biophysical
and socioeconomic conditions is necessary for enhancing crop productivity [23]. Crop models like
APSIM can be employed to quantitatively integrate key processes governing crop growth including
climate, soil conditions, genotype, and management [16,24]. For example, a study in a Faidherbia
parkland showed that interacting levels of tree pruning and fertilizer determined crop productivity,
and that N fertilizers should be preferentially applied in normal and wet years [25]. The study
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recommended that further research in these parklands include the simulation of crops as affected by
management options such as cultivar, sowing date, and N fertilization rate.

The objectives of this study were to: (i) calibrate and test the APSIM model for predicting the
response of maize to different tree and fertilizer management treatments under trees and in crop-only
areas, observed in field experiments; (ii) test the sensitivity of maize yield to shading, N fertilizer
rate, sowing date, and cultivar using virtual experiments, and (iii) determine the range of simulated
maize yield as impacted by climate variability at low and optimum combinations of N fertilizers
and pollarding.

2. Materials and Methods

2.1. Site Description

Data from the field experiments conducted in a parkland at Adulala Village were used for both
model calibration and evaluation. The parkland is in the CRV in Ethiopia, located approximately 104 km
southeast of Addis Ababa [7]. The study area is situated at 8◦29.5′ N latitude, 39◦20.5′ E longitude
and has an elevation of 1688 m above sea level. The location has a bimodal rainfall distribution,
with mean annual rainfall of 820 mm. The short rainy season extends from March to May and the long
rainy season from June to October. Annual means of daily minimum and maximum temperatures are
13.9 ◦C and 28.5 ◦C, respectively. The soil is classified as a Fluvisol [26], and texture classes of the soils
are dominated by sandy loam and loam soils. Surface soil (0–20 cm) in crop-only areas had pH 7.6,
0.11% total N, 4.3% organic matter, 21.89 µg g−1 Olsen extractable P [7], and 155 mg g−1 available
water holding capacity [26]. Soil at the site was at ca. 3.5 m deep. Natural vegetation in the region is
dominated by tree species such as Acacia tortilis (Forssk.) Hayne, A. seyal Delile, and F. albida (previously
A. albida) [27,28], but overall, tree density in the study area was sparse (ca. 5.8 trees ha−1, [7]). Maize,
teff, and wheat were the main crops grown in the area, and livestock (cattle, sheep, and goats) graze
crop residues.

2.2. Field Experiments for Model Calibration and Testing

2.2.1. Experimental Design and Maize Establishment

Data were collected during the growing seasons of 2015 and 2016 from an experiment in the
farmers’ fields in the Adulala watershed, as described previously [7]. The treatments were laid out as a
split-plot design with six replications. The main-plot treatments (one tree at the center of each main-plot)
included three levels of tree crown pruning (i.e., unpruned, 50% pruned, and 100% pruned (pollarding))
and crop-only plots (about 30 m from any tree trunks; a study by [7] estimated that mean tree crown
radius in the parkland is about 4.31 m, mean height is 8.95 m, and shading by trees may not exceed
30 m). Sub-plot treatments were fertilizer applications on four maize sub-plots (i.e., one sub-plot in each
quarter of a main plot was randomly allocated a fertilizer treatment). At sowing, urea (46 kg N ha−1)
was added to one sub-plot, di-ammonium phosphate (9 kg N ha−1 and 23 kg P ha−1) to the second
sub-plot, both urea and di-ammonium phosphate were added to the third sub-plot (55 kg N ha−1

and 23 kg P ha−1), and the fourth sub-plot was left as a control (no fertilizer applied). Additional
urea at half the sowing rate (23 kg N ha−1) was applied to the first and third sub-plots 10 days after
sowing. Maize (Melkassa cultivar) was sown on May 15 during the 2015 and 2016 cropping seasons.
Maize seeds were sown in each sub-plot (a total of 18 trees, i.e., six trees per pruning level, plus six
crop-only main-plots. and the seeds were sown at a spacing of 0.75 m between and 0.30 m within rows
(4.44 plants/m2)). Weeding was applied manually every two weeks.

2.2.2. Measurements

In 2015, soil samples were taken prior to sowing of the maize from each tree position (zone):
0–2 m, 2–4 m, and 4–6 m, and the crop-only zone at 0–20 cm, 20–40 cm, 40–60 cm, and 60–80 cm depths.
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Samples were analyzed for gravimetric water content, organic C (Walkley & Black), total N (Kjeldahl),
and available P (Olsen). Further details of soil sampling can be found in [7]. These measured data
were used to parameterize the soil module of APSIM (described below).

Photosynthetically active radiation (PAR, µmol s−1 m−2) was measured under a total of nine trees
(three randomly selected trees from each of the unpruned, 50% pruned, and 100% pruned trees) at
different positions from the tree trunks (positions): 0–2 m, 2–4 m, and 4–6 m, and in each crop-only
plot, in order to estimate the amount of radiation under trees and in crop-only plots. Measurements
were located at the center of each crop-only plot; and at four aspects (north, south, east, and west)
around each tree to provide an average value for each position. Measurements were taken after
sowing at different times of the day: approximately 9:00 AM, 10:30 AM, 12:00 PM, 1:30 PM, 3:00 PM,
and 4:00 PM. PAR under each tree was measured for three consecutive days. Maize yield (grain weight)
was measured per plant on maize harvested at physiological maturity from 1 m2 quadrats (1 m × 1 m
including two rows of maize plants) located randomly in the sub-plots under each tree position (within
each zone) and in the crop-only plot.

Root samples were taken from soils collected under trees (unpruned trees) at 0−2, 2−4, 4−6,
and 6−8 m distances from the tree trunk at depths of 0−10, 10−30, 30−60, 60−120 cm (i.e., a total of
16 soil samples were collected per tree for root measurements). Roots in the samples were carefully
washed out of the soil over a 0.5 mm sieve. The samples were then spread out on a clear plastic tray
that was filled with water, and root samples were separated from the organic debris using tweezers.
Tree roots were distinguished from crop roots by their color and morphology. Lengths of fine roots
(diameters ≤2 mm) were estimated using the line intercept method: L = πND/4, where L (cm) = root
length, N = number of counts, and D (cm) = grid size. Root lengths were divided by the known
volume of soil sampled to calculate root length densities.

2.2.3. Modeling

The agroforestry proxy tree model of APSIM Next Generation (www.apsim.info, [18]) was used
for all simulations. As this version of APSIM did not have a P capability, and a response to P fertilizer
was observed, only the N effect in the P-fertilized sub-plot treatments was simulated. Fertilization was
simulated as an ammonium-N addition for both urea and DAP applications). Datasets for daily
temperature, rainfall, and radiation were obtained from the Melkassa weather station (located about
6 km from the experimental site). Management (e.g., cultivar, sowing date, depth, and fertilization) and
initial soil properties for simulation were based on measurements where available (Tables 1–3, [20]).

Table 1. Measured shade values used to set up the model.

Pruning Level
Shade (%)
Zone (m)

0–2 2–4 4–6 6–8 Crop-Only

Unpruned 46.3 41.7 27.4 0 0
50% Pruned 31 24 14 0 0

100% Pruned 17 9 9 0 0

Daily temperatures and rainfall above canopies were to be assumed unaffected by trees,
but microclimatic effects of tree canopies were estimated by the model by reducing light (radiation),
surface soil temperature, and potential evapotranspiration. Radiation inputs to the model were based
on light measurements for each tree pruning level and position (Table 1). Tree root length density
values were also based on the measured values from the experiment (Table 2). Maize root length
density was simulated by the maize model using the Melkassa cultivar provided in the model. Maize
roots were assumed to have full access to soil down to a 2 m depth and no access below that depth.

www.apsim.info
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Table 2. Measured tree root length density (cm cm−3, unpruned) values used to set up the model.
Root length densities were reduced by an assumed 25% in the 50% pruned treatment and by 50% in the
100% pruned treatment.

Depth
(cm)

Zone (m)

0–2 2–4 4–6 6–8 Crop-Only

0–20 0.51 0.44 0.24 0.10 0
20–40 0.48 0.30 0.23 0.14 0
40–60 0.16 0.06 0.14 0.02 0
60–80 0.06 0.03 0.06 0.01 0

80–120 0.03 0.01 0.01 0.01 0
120–200 0.02 0.01 0.01 0.01 0
200–350 0.01 0.01 0.01 0.01 0

Table 3. Soil properties (0–80 cm) used for simulations.

Zone Depth BD 1,2 OC NO3 NH4 Fbiom Finert DUL LLmaize KLmaize PAWCmaize

(g cm−3) (%) (µg g−1) (µg g−1) (mm mm−1) (d) (mm mm−1)

0–2 m

0–20 1.150 1.700 2.174 0.870 0.020 0.650 0.350 0.160 0.005 0.190
20–40 1.150 1.400 0.870 0.435 0.020 0.700 0.350 0.170 0.004 0.180
40–60 1.340 1.300 0.373 0.187 0.010 0.800 0.350 0.200 0.004 0.150
60–80 1.340 1.200 0.187 0.000 0.010 0.900 0.350 0.210 0.004 0.140

2–4 m

0–20 1.150 1.48 2.174 0.870 0.020 0.650 0.350 0.160 0.006 0.190
20–40 1.150 1.46 0.870 0.435 0.020 0.700 0.350 0.170 0.005 0.180
40–60 1.340 1.42 0.373 0.187 0.010 0.800 0.350 0.200 0.004 0.150
60–80 1.340 1.35 0.187 0.000 0.010 0.900 0.350 0.210 0.003 0.140

4–6 m

0–20 1.150 1.33 2.174 0.870 0.020 0.650 0.350 0.160 0.005 0.190
20–40 1.150 1.12 0.870 0.435 0.020 0.700 0.350 0.170 0.004 0.180
40–60 1.340 0.90 0.373 0.187 0.010 0.800 0.350 0.200 0.004 0.150
60–80 1.340 0.76 0.187 0.000 0.010 0.900 0.350 0.210 0.004 0.140

Crop-only

0–20 1.150 1.07 2.174 0.870 0.010 0.600 0.230 0.180 0.005 0.050
20–40 1.150 0.86 0.870 0.435 0.010 0.650 0.260 0.190 0.004 0.070
40–60 1.340 0.79 0.373 0.187 0.001 0.650 0.297 0.220 0.004 0.077
60–80 1.340 0.70 0.187 0.000 0.000 0.750 0.330 0.230 0.004 0.100

1 Abbreviations: bulk density (BD), organic C (OC), nitrate (NO3), ammonium (NH4), fraction of C in microbial
biomass (Fbiom), fraction of inert C (Finert), crop lower limit (LLmaize), daily maximum proportion of water extraction
by roots (KLmaize), and plant available water content (PAWCmaize). 2 BD and OC were measured values, others
were calibrated.

Soil properties such as initial available water, nitrogen parameters (NO3 and NH4), and fraction of
C in microbial biomass (Fbiom), and maize root parameters such as the lower limit of soil water content
from which roots could extract water, were based on the literature [24,29] and examples available
in the software (Table 3). These values were then further calibrated to achieve adequate predictions
of grain yield in the unpruned treatment and crop-only zones in both years and for both fertilized
and unfertilized treatments. For example, maize KL (daily maximum proportion of water extraction
by roots) values (i.e., the proportion of available water that could be taken up each day from each
depth) were set very low as a surrogate for non-N nutrient deficiencies. Predictions in other treatment
combinations (i.e., all zones unfertilized and fertilized with 50% or 100% pruning in both years) were
then tested against observations. A C:N ratio of 19.8 and pH of 7.6 were assumed across all soil zones
and depths. Compared to crop-only areas, soil conditions under trees were assumed to provide better
nutrient availability for other nutrients in addition to N, and higher soil water contents, which were
supported by field observations [7]. Together, these effects were assumed to manifest in the model
through improved maximum plant available soil water content to a 2 m depth: 280 mm under tree
zones, 165 mm in the crop-only zone.

The following statistics were used to evaluate the model performance [30–32]: (1) Linear regression
of observed (O) vs. predicted (P) data as summarized by its coefficient of determination (R2); (2) Nash
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Sutcliffe efficiency (NSE), which describes the relative magnitude of the residual variance was
compared to the measured variance; and (3) root mean square error to standard deviation ratio (RSR),
which provides a standardized value of the root mean square error. ‘Very good’ performance equated
to NSE 0.75–1.00 or RSR 0.00–0.50, ‘good’ NSE 0.65–0.75 or RSR 0.50–0.60, ‘satisfactory NSE 0.50–0.65
or RSR 0.60–0.70, and ‘unsatisfactory’ if NSE < 0.50 or RSR > 0.70 [31]. An R2 > 0.70 was judged
satisfactory [33].

2.2.4. Virtual Experiments

Simulation models can provide the opportunity to explore hypothetical outcomes by imposing
a wider range of treatments. Therefore, the model calibrated on the experimental study described
above was used in virtual experiments to explore the short-term influence of pruning level (daily
radiation), N fertilizer rates, cultivar, and sowing date on a simulated maize yield in a high-rainfall year.
Scenarios are reported for 2016, which was a high rainfall year that de-emphasized water stress relative
to N stress. Rainfall in 2015 was highly drought-affected and therefore unsuitable for this virtual
experiment as it would have suppressed responses to N fertilizer. In addition, the effect of climate
variability was used to explore long-term patterns experienced at the study location. All aspects of
the simulations were based on those presented earlier to test the model performance, except for the
variables examined in each scenario.

Light experiment: For the crop-only treatment, radiation was reduced in 5% steps from full light
to determine its effect on crop yield under trees, and light reduction was related to pruning level
using observed data. Soil from the 0–2 m zone under trees was used to indicate the light effects on
growth in that zone without the confounding effect of other micro-climate factors such as temperature
and evapotranspiration.

N fertilizer, pruning, and tree position experiment: Effect of N fertilizer rate on grain yield 16 days
after sowing (0, 25, 50, 100, and 200 kg N ha−1), in crop-only and under-tree zones, was determined for
each pruning level (0%, 50%, and 100% pruning). The optimum rate of N fertilizer was defined as the
rate that resulted in 90% of maximum yield.

Genotype and sowing date experiment: Early (15 May) and late (30 June) sowing of two cultivars
Melkassa (early-medium maturing cultivar) and mh19 (medium-late maturing cultivar), in relation to
rates of fertilizers (0, 6, 12.5, 25, 50 and 200) in crop-only and 2–4 m zones of 100% pruned trees.

Climate variability experiment (from 1977–2016): To determine the response of maize yield to
climate variability (rainfall, temperature and radiation) under contrasting growing conditions and
0 kg N ha−1 with no pruning or 200 kg N ha−1 with 100% pruning. Weather data for the period were
provided by the Melkassa Agricultural Research Center.

3. Results

3.1. Evaluation of Model Performance

For the calibration dataset, two years of grain yield in unpruned combinations of all zones
and fertilizer applications showed the model performance was very good (R2 = 0.92; NSE = 0.91,
RSR = 0.29).

Although the uncalibrated dataset had reduced performance compared to the calibrated dataset
(NSE = 0.72, RSR = 0.51, R2 = 0.81), it provided a good fit (Figure 1). Yields in 2015 were substantially
lower than in 2016 due to low rainfall, and model predictions with higher rainfall in 2016 generally
reflected the observed effects of pruning, zone, and fertilizer (i.e., highest yields in (1) the 2–4 m or
4–6 m zones, (2) N fertilizer, and (3) 50% or 100% pruning).
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Figure 1. Uncalibrated comparison of observed and predicted maize grain yield grown in all zones
under trees in the 2015 and 2016 cropping seasons. Lines are linear regression (solid) and 1:1 (broken).

3.2. Virtual Experiments

3.2.1. Light Experiment

There was an approximate linear reduction in shading from 46% to 9% as pruning increased from
0 to 100% (data not presented). Over this range of pruning, simulated maize yield increased from 69
to 105 g m−2. Maximum maize yield was therefore simulated at 100% pruning, because it provided
maximum radiation.

3.2.2. N Fertilizer, Pruning, and Zone Experiment

In crop-only plots, maize yield increased directly with N inputs. Simulated maize yield response
to rates of N fertilizer applied 16 days after sowing in crop-only and under-tree zones for the different
pruning levels is shown in Figure 2. Optimum yield was simulated without any 16-day N fertilizer
addition (Figure 2), which reflects the limitations imposed by lower water availability and other factors
not specifically included in the model (e.g., low P and K availability). Optimum fertilizer rate increased
with maximum yield, and pruning was most important for reaching the maximum yield at the 0–2 m
zone and least at 4–6 m (Figure 2). Each soil zone has different soil characteristics, which also affects
the maximum attainable yield.

Scenarios under trees with radiation reduced by 46% (unpruned), 23% (50% pruned), and 9%
(totally pruned) predicted higher responses by maize to N fertilizer in the 2–4 m and 4–6 m zones
under all light conditions (Figure 2, 2016 data presented). Optimum rates of N fertilizer under trees
ranged from 0 kg N ha−1 without pruning in the 0–2 m and 2–4 m zones to 14.6 kg N ha−1 for all
under-tree zones with 100% pruning.
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Figure 2. Simulated maize yield response to rates of N in crop-only and under-tree zones (0–2 m, 2–4 m,
and 4–6 m) for 100% pruned, 50% pruned, and unpruned conditions in the 2016 cropping season.
Circles indicate yield at the optimum fertilizer rate, simulated values for all pruning levels (0%, 50%,
and 100% pruning) were approximately identical and therefore indistinguishable on the graph.

3.2.3. Genotype and Sowing Date Experiment

For the Melkassa cultivar of maize in the crop-only zone, delaying sowing in 2016 from 15 May to
30 June approximately decreased the simulated yields by 25%, and there was no response to N fertilizer
(Figure 3). A change to the mh19 cultivar increased yields and responsiveness to N fertilizer, but the
highest yields and responses to fertilizer were in the 2–4 m zone where sowing date had little effect.Forests 2020, 11, x FOR PEER REVIEW 9 of 16 
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3.2.4. Climate Variability Experiment

Under past climate conditions without N fertilizer and pruning, simulated maize yields ranged
between 50 and 330 g m−2 in the crop only zone, and between 0 and 380 g m−2 under-trees, depending
on zone (Figure 4a). With pruning and N fertilizer, maize yield increased to 550–590 g m−2 with optimal
climate, depending on zone (Figure 4b), but these treatments led to only minor increases in yield at
less than optimal climates. Within each set of pruning and N fertilizer conditions, crop-only and 4–6 m
zones had similar yields at all probabilities, highest yields were in the 2–4 m zone, and lowest in the
0–2 m zone, which emphasizes the importance of soils over other factors.Forests 2020, 11, x FOR PEER REVIEW 10 of 16 
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4. Discussion

Reasonably accurate predictions of maize yield in the current study, despite a range of low to
moderate yields (91–468 g m−2, Figure 1), showed that APSIM can be used to simulate crop responses
to radiation, N fertilizer, soil, and micro-climate in F. albida parklands in the CRV in Ethiopia. APSIM is
already known to perform credibly in predicting yield responses to N fertilizer [34,35] and variability
in radiation and air temperature in this region [36] and in Northern Rwanda [37], but this is the first
application of the APSIM agroforestry model that involved tree pruning and soil gradients in relation
to zones under tree crowns. An earlier use of the model was in alley-cropping systems in Kenya
and Malawi but did not include soil and light gradients [19]. Thus, the model can be considered for
research and decision-making in relation to fertilizer and other tree and crop management strategies
for improving crop productivity in a range of farming systems.

The APSIM model tended to marginally underestimate maize yield at the lowest light level
(Figure 1). Low maize yield prediction by APSIM at shade levels >50% was also reported in this region
where the model was used to predict the response of maize to three levels of artificial shading (25%,
50%, and 75%) [7]. Results suggested a need to improve the mechanistic processes simulated in APSIM
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governing responses to >50% shade. However, where competition for light is low to medium, as in
most of the area under trees, the model could be employed to simulate the impacts of light competition
on understory crop production. Shading levels under Faidherbia trees in the current study were within
this range of acceptability, even close to the trunk (0–2 m zone) and without pruning. Hence, our results
support the earlier recommendation that APSIM can adequately simulate responses to shading down
to 50% of full sunlight.

Maize grain yield in all zones under trees increased with pruning relative to that in the crop-only
zone (Figure 1). This result suggests that adequate pruning can reduce the negative effect of shade
in agroforestry systems and enable better utilization of available soil water and N under trees by
outweighing any negative effects of shading remaining after pruning.

A virtual experiment indicated that maize yield was sensitive to both pruning and N fertilizer
when grown under trees, and there was little response to fertilizer in the crop-only zone (Figure 2).
Greater response of maize yield to N fertilizer under trees than in the crop-only zone can be attributed
to higher water and nutrient availability in soils under trees. Lower responsiveness to N fertilizer in
the crop-only zone compared to under trees is an emergent property of the calibration process that is
consistent with non-N nutrients being generally less limiting under trees due to generally higher soil
fertility [38,39]. In the current study, we also calibrated the maximum water holding content of soils,
in part to compensate for the higher levels of nutrients under trees. Strong responses to N fertilizer or
green manures in crop-only areas can occur and be simulated where other factors are less limiting
than N (e.g., in Malawi) [35]. These hypothesized interactions with non-N fertility emphasize the need
for further field experimentation to improve our understanding of these processes and improve their
representation in models.

A virtual experiment using different cultivars and sowing dates showed that, at whatever rate of
N fertilizer was applied above zero, the ranking of simulated yield was consistently mh19 (hybrid
cultivar) sown early > mh19 sown late > Melkassa (open pollinated cultivar) sown early > Melkassa
sown late (Figure 3). Additionally, responsiveness to N fertilizer was greatest for the mh19 cultivar
in the 2–4 m zone, without reaching a plateau in response at the top rate of 50 kg N ha−1. Hence,
there is scope to tailor the cultivar, sowing date, and N fertilizer rate, but in this case (using 2016
climate), there was only a minor response to sowing date. In contrast, resource poor farmers claim
that local open pollinated cultivars (such as the Melkassa cultivar) are better adapted to shade than
hybrids (such as mh19) under agroforestry [40], and landraces of maize are also used extensively in
Ethiopia. A recent study explored the performance of maize cultivars, open pollinated, and hybrids
in agroforestry systems in Rwanda and Ethiopia [37]. They reported that hybrids yielded more than
open pollinated cultivars under Grevillea robusta A.Cunn. ex R.Br. and Senna spectabilis (DC.) Irwin and
Barneby in Rwanda, but they performed equally well under A. tortilis in Ethiopia. Like the current
study, their result suggests scope for tailoring the genotype to growing conditions of local agroforestry
systems [37].

The long-term simulations, with varied climate conditions, indicated that high maize yields could
be obtained in some years with pruning and a high 16-day fertilizer rate of (200 kg N ha−1), but with
50% probability, this high rate of N fertilizer yielded only 300 g m−2, which further emphasizes the
need to identify and remove other limitations to crop growth (Figure 4). Results also showed that
zones close to tree trunks (0–2 m) consistently produced less maize yield than the crop-only zone,
despite having the highest soil nutrient concentration. This result can be attributed to competition for
resources between crops and trees in that position [41]. Although yield suppression in the 0–2 m zone
was offset by that in the 2–4 m zone on a g m−2 basis, the 2–4 m zone had a total area 3-fold that of the
0–2 m zone, and therefore contributes to overall more yield under trees than in crop-only zones.

As already mentioned, nutrients other than N (such as P and K) were probably limiting factors at
the current study site, particularly in crop-only conditions [7]. As the APSIM model did not consider P
as a limiting factor, simulated yields in response to N fertilizers were compared with observed values
at a base P fertilizer rate of 23 kg P ha−1, and the rates of N and P used probably only partially met the
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demand for these nutrients. As a surrogate for non-N nutrient deficiencies, maize KL values were set
very low, which limited water uptake, instead to below that which would normally be experienced in
the study area with adequate levels of those other nutrients. Hence, the model would benefit from
further improvement to explicitly simulate nutrients such as P and K. Research is also needed to refine
the types, rates, and timings of fertilizers for maize production in the CRV, as it appears that some shift
of investment from N fertilizer to other types of fertilizer might be worthwhile.

Integrating more trees such as F. albida into crop fields in the CRV might provide sustainable options
that would enhance crop production, ecosystem services such as C sequestration [7], biodiversity
conservation [42], and livelihoods. Tree numbers could be increased by promoting the use of tree
seedlings or natural regeneration as free grazing presents substantial risks in Ethiopia, which necessitates
substantial tree protection methods. However, increasing tree stocking (as recommended by Ethiopian
policy, [43]) should be pursued with caution as there are several uncertainties regarding such an
approach. First, two or more decades of tree growth will be needed before substantial effects on soil
properties can be expected. Meanwhile, the use of coppicing agroforestry ‘fertilizer’ shrubs could
be tested in combination with fertilizers, which would boost nutrient cycling and positively affect
crop production within just a few years [44]. Second, tree and crop behavior at higher population
densities might not be the same as found in this study, particularly tree growth rates, radial patterns of
tree influence, and animal behavior. Third, we are uncertain to what extent higher concentrations of
C and available nutrients found in this study and others are directly attributable to litter inputs by
the trees. Trees can also reduce soil erosion, which leads to higher proportions of silt and clay under
trees, which would favor better soil development. Livestock preferentially congregate under trees and
drop manure that fertilizes under-tree soils, which is effectively a concentration of crop residues under
trees. The droppings of birds perched in trees also enriches the soil below. Fourth, some researchers
have noted a high proportion of trees growing on old termite mounds, but it is unknown how that
observation developed (e.g., natural regeneration might be highest on those fertile microsites leading to
larger seedlings that might have been preferentially retained by farmers). Fifth, higher concentrations
of C and nutrients under trees might also be the result of less decomposition under trees due to lower
temperatures as low rates of fertilizer use, as used in the CRV, can be expected to promote the net
loss of soil C [19]. Higher rates of fertilizer than currently used will probably be needed for both
food production and maintenance or increase of soil C. Sixth, trees can obstruct mechanization of
agriculture, which is concurrently being promoted. Thus, compatible tree spacing designs might need
to be explored. Finally, labor, fertilizer, fodder, fuel costs, and other socio-economic aspects have not
yet been fully evaluated in relation to increasing tree population densities. Simulations indicate that an
increase in maize yield can be achieved with partial tree pruning and moderate (recommended) N
fertilization scenarios (Figure 1). Moderate pruning, reducing total canopy volume by about 35% before
the onset of the rainy season, may not appreciably reduce tree growth [45], would be less demanding
of labor.

A good fit between simulated and observed values confirmed that APSIM provided a scientifically
sound prediction of maize yields in response to N fertilizer use and tree pruning management and
could be employed for a large-scale maize yield analysis in agroforestry systems of Ethiopia. The model
could also provide the opportunity to assess a range of farming practices over several seasons that
cannot be easily done using field experimental trials. In smallholder farming systems, experimental
options are limited spatially and temporally (e.g., space, labor, and machinery constraints [46]) and a
whole farm modeling approach may be required to allow exploration of the combined interactions of
system components. With regard to these factors, modeling presented here did not consider farm-scale
context factors like animals, manure amounts and distribution, residue removal, tree litter inputs,
and pests and diseases. Moreover, starting values of nitrogen parameters such as NO3 and NH4 and
microbial biomass were taken from the literature and part of the calibration process, which would have
affected the modeled results as these parameters change rapidly. Crop models have been developed
to adequately simulate crop yield and other crop variables across a range of conditions, but large
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uncertainties remain in all of these models for the prediction of soil N dynamics [47]. Thus, some caution
is needed when using the results to provide recommendations to farmers and policy makers.

Generally, our study demonstrated that the highest yields could be attained when using fertilizers
at moderate-to-high rates alone (in crop-only plots) or in combination with agroforestry trees,
which highlights the need to add external inputs to the soil in these systems. Other studies in
Sub-Saharan Africa also reported that declining soil fertility is one of the causes of low agricultural
productivity, and that the soils are low in fertility due to continuous cultivation without external
inputs [48]. The use of chemical fertilizers in these regions is limited by the high cost of fertilizers,
untimely distribution in rural areas, and shortage of nutrients not supplied by the chemical fertilizers
as well as the associated environmental risk [49]. Though agroforestry options provide alternatives for
resource poor farmers, the adoption of practices such as intercropping and crop rotation with legumes
is constrained by limited land and immediate food concern (i.e., the cost of leaving land fallow to
conserve soil fertility for two years is high) [49]. Thus, combined application of chemical fertilizers and
organic matter (e.g., from agroforestry trees) provide a better alternative in improving crop yields [50].
Further research to address soil fertility problems should focus on understanding the mechanisms
related to the combined use of organic and chemical fertilizers.

5. Conclusions

Simulations using the APSIM agroforestry model were adequate for reproducing the observations
that tree pruning and fertilization can improve maize productivity by increasing light, water, and N
availability to understory crops. Virtual experiments for rates of N, pruning levels, sowing dates,
and cultivars suggested optimum combinations of these inputs for maize production depends due
to soil and micro-climate on the position under tree canopies or in crop-only areas, but generally,
maize yield could be improved by applying fertilizers and by pruning at least 50% of each tree
canopy. Nutrients other than N (such as P and K) were probably factors that limited crop growth,
which indicates the need for further field experimentation and modeling studies in the parkland
agroforestry systems of Ethiopia.

Author Contributions: A.M.D., P.J.S. and N.I.H. designed the experiment and performed data analysis; A.M.D.
conducted the experiment; A.M.D. and P.J.S. wrote the manuscript; N.I.H. and K.M.B. revised the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by ACIAR and project partners (including CSIRO) under the auspices of the
CGIAR research program on Forests, Trees, and Agroforestry.

Acknowledgments: This research was conducted as part of the Trees-for-Food-Security project (http://aciar.gov.
au/aifsc/projects/trees-food-security-improving-sustainableproductivityfarming-systems-and-evergreen), under
the auspices of the CGIAR research program on Forests, Trees, and Agroforestry. The project was managed by
ICRAF with financial support from ACIAR and project partners (including CSIRO). We thank the staff at the
Melkassa Agricultural Research Center and ICRAF Ethiopia for field and laboratory support. We thank Catherine
Muthuri for her professional advice at the inception of the project proposal, and also the development agents and
farmers at Adulala Village for their assistance and cooperation during field work. Comments on earlier drafts by
Daniel Mendham, Allan Peake, Stephen Roxburgh, and anonymous reviewers were also appreciated.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tittonell, P.; Giller, K.E. When yield gaps are poverty traps: The paradigm of ecological intensification in
African smallholder agriculture. Field Crop Res. 2013, 143, 76–90. [CrossRef]

2. Vågen, T.-G.; Winowiecki, L.A.; Tondoh, J.E.; Desta, L.T.; Gumbricht, T. Mapping of soil properties and land
degradation risk in Africa using MODIS reflectance. Geoderma 2016, 263, 216–225. [CrossRef]

3. Cooper, P.; Dimes, J.; Rao, K.; Shapiro, B.; Shiferaw, B.; Twomlow, S. Coping better with current climatic
variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future
climate change? Agric. Ecosyst. Environ. 2008, 126, 24–35. [CrossRef]

http://aciar.gov.au/aifsc/projects/trees-food-security-improving-sustainableproductivityfarming-systems-and-evergreen
http://aciar.gov.au/aifsc/projects/trees-food-security-improving-sustainableproductivityfarming-systems-and-evergreen
http://dx.doi.org/10.1016/j.fcr.2012.10.007
http://dx.doi.org/10.1016/j.geoderma.2015.06.023
http://dx.doi.org/10.1016/j.agee.2008.01.007


Forests 2020, 11, 1175 13 of 15

4. Thornton, P.K.; Jones, P.G.; Ericksen, P.J.; Challinor, A.J. Agriculture and food systems in sub-Saharan Africa
in a 4 C+ world. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 2011, 69, 117–136. [CrossRef]

5. Legesse, W.; Mosisa, W.; Berhanu, T.; Girum, A.; Wende, A.; Solomon, A.; Tolera, K.; Dagne, W.; Girma, D.;
Temesgen, C.; et al. Genetic improvement of maize for mid-altitude and lowland sub-humid agro-ecologies
of Ethiopia. In Meeting the Challenges of Global Climate Change and Food Security through Innovative Maize
Research; CIMMYT: Mexico City, Mexico, 2011; p. 24.

6. Abate, T.; Shiferaw, B.; Menkir, A.; Wegary, D.; Kebede, Y.; Tesfaye, K.; Kassie, M.; Bogale, G.; Tadesse, B.;
Keno, T. Factors that transformed maize productivity in Ethiopia. Food Secur. 2015, 7, 965–981. [CrossRef]

7. Dilla, A.M.; Smethurst, P.J.; Barry, K.; Parsons, D.; Denboba, M.A. Tree pruning, zone and fertiliser interactions
determine maize productivity in the Faidherbia albida (Delile) A. Chev parkland agroforestry system of
Ethiopia. Agrofor. Syst. 2019, 93, 1897–1907. [CrossRef]

8. Snapp, S.S.; Grabowski, P.; Chikowo, R.; Smith, A.; Anders, E.; Sirrine, D.; Chimonyo, V.; Bekunda, M.
Maize yield and profitability tradeoffs with social, human and environmental performance: Is sustainable
intensification feasible? Agric. Syst. 2018, 162, 77–88. [CrossRef]

9. Lin, B.B. Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee
agriculture. Agric. For. Meteorol. 2007, 144, 85–94. [CrossRef]

10. Sileshi, G.W.; Nyoka, B.I.; Beedy, T.L.; Chanyenga, T. Modelling the scaling of stem growth with crown size
and optimum stocking densities for systematic grid plantation of Faidherbia albida. New For. 2014, 45, 699–714.
[CrossRef]

11. Bayala, J.; Sanou, J.; Teklehaimanot, Z.; Ouedraogo, S.; Kalinganire, A.; Coe, R.; Van Noordwijk, M.
Advances in knowledge of processes in soil–tree–crop interactions in parkland systems in the West African
Sahel: A review. Agric. Ecosyst. Environ. 2015, 205, 25–35. [CrossRef]

12. García-Barrios, L.; Ong, C. Ecological interactions, management lessons and design tools in tropical
agroforestry systems. In New Vistas in Agroforestry; Springer: Berlin/Heidelberg, Germany, 2004; pp. 221–236.

13. Semwal, R.; Maikhuri, R.; Rao, K.; Singh, K.; Saxena, K. Crop productivity under differently lopped canopies
of multipurpose trees in Central Himalaya, India. Agrofor. Syst. 2002, 56, 57–63. [CrossRef]

14. Siriri, D.; Ong, C.; Wilson, J.; Boffa, J.; Black, C. Tree species and pruning regime affect crop yield on bench
terraces in SW Uganda. Agrofor. Syst. 2010, 78, 65. [CrossRef]

15. Demeke, A.B.; Keil, A.; Zeller, M. Using panel data to estimate the effect ofrainfall shocks on smallholders
food security and vulnerability in rural Ethiopia. Clim. Chang. 2011, 108, 185–206. [CrossRef]

16. Kassie, B.; Van Ittersum, M.; Hengsdijk, H.; Asseng, S.; Wolf, J.; Rötter, R.P. Climate-induced yield variability
and yield gaps of maize (Zea mays L.) in the Central Rift Valley of Ethiopia. Field Crop Res. 2014, 160, 41–53.
[CrossRef]

17. Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.;
Hargreaves, J.N.; Meinke, H.; Hochman, Z. An overview of APSIM, a model designed for farming systems
simulation. Eur. J. Agron. 2003, 18, 267–288. [CrossRef]

18. Holzworth, D.; Huth, N.I.; Fainges, J.; Brown, H.; Zurcher, E.; Cichota, R.; Verrall, S.; Herrmann, N.I.;
Zheng, B.; Snow, V. APSIM Next Generation: Overcoming challenges in modernising a farming systems
model. Environ. Model. Softw. 2018, 103, 43–51. [CrossRef]

19. Smethurst, P.J.; Huth, N.I.; Masikati, P.; Sileshi, G.W.; Akinnifesi, F.K.; Wilson, J.; Sinclair, F. Accurate crop
yield predictions from modelling tree-crop interactions in gliricidia-maize agroforestry. Agric. Syst. 2017,
155, 70–77. [CrossRef]

20. Dilla, A.; Smethurst, P.J.; Parsons, D.; Barry, K.; Denboba, M. Potential of the APSIM model to simulate
impacts of shading on maize productivity. Agrofor. Syst. 2018, 92, 1699–1709. [CrossRef]

21. Knörzer, H.; Lawes, R.; Robertson, M.; Graeff-Hönninger, S.; Claupein, W. Evaluation and performance of
the APSIM crop growth model for German winter wheat, maize and fieldpea varieties in monocropping and
intercropping systems. J. Agric. Sci. Technol. B 2011, 9, 698–717.

22. Dufour, L.; Metay, A.; Talbot, G.; Dupraz, C. Assessing light competition for cereal production in temperate
agroforestry systems using experimentation and crop modelling. J. Agron. Crop Sci. 2013, 199, 217–227.
[CrossRef]

23. Cooper, M.; Messina, C.D.; Podlich, D.; Totir, L.R.; Baumgarten, A.; Hausmann, N.J.; Wright, D.; Graham, G.
Predicting the future of plant breeding: Complementing empirical evaluation with genetic prediction.
Crop Pasture Sci. 2014, 65, 311–336. [CrossRef]

http://dx.doi.org/10.1098/rsta.2010.0246
http://dx.doi.org/10.1007/s12571-015-0488-z
http://dx.doi.org/10.1007/s10457-018-0304-9
http://dx.doi.org/10.1016/j.agsy.2018.01.012
http://dx.doi.org/10.1016/j.agrformet.2006.12.009
http://dx.doi.org/10.1007/s11056-014-9432-x
http://dx.doi.org/10.1016/j.agee.2015.02.018
http://dx.doi.org/10.1023/A:1021189113673
http://dx.doi.org/10.1007/s10457-009-9215-0
http://dx.doi.org/10.1007/s10584-010-9994-3
http://dx.doi.org/10.1016/j.fcr.2014.02.010
http://dx.doi.org/10.1016/S1161-0301(02)00108-9
http://dx.doi.org/10.1016/j.envsoft.2018.02.002
http://dx.doi.org/10.1016/j.agsy.2017.04.008
http://dx.doi.org/10.1007/s10457-017-0119-0
http://dx.doi.org/10.1111/jac.12008
http://dx.doi.org/10.1071/CP14007


Forests 2020, 11, 1175 14 of 15

24. Seyoum, S.; Rachaputi, R.; Chauhan, Y.; Prasanna, B.; Fekybelu, S. Application of the APSIM model to exploit
G× E×M interactions for maize improvement in Ethiopia. Field Crop Res. 2018, 217, 113–124. [CrossRef]

25. Dilla, A.M.; Smethurst, P.J.; Barry, K.; Parsons, D. Preliminary estimate of carbon sequestration potential of
Faidherbia albida (Delile) A. Chev in an agroforestry parkland in the Central Rift Valley of Ethiopia. For. Trees
Livelihoods 2019, 28, 79–89. [CrossRef]

26. Goma, M. Characterization of Climate Variability and Water Harvesting System for Crop Production in Adulala
Watershed, Central Rift Valley of Ethiopia; Haramaya University: Haramaya, Oromia, Ethiopia, 2015.

27. Argaw, M.; Teketay, D.; Olsson, M. Soil seed flora, germination and regeneration pattern of woody species in
an Acacia woodland of the Rift Valley in Ethiopia. J. Arid Environ. 1999, 43, 411–435. [CrossRef]

28. Endale, Y.; Derero, A.; Argaw, M.; Muthuri, C. Farmland tree species diversity and spatial distribution
pattern in semi-arid East Shewa, Ethiopia. For. Trees Livelihoods 2017, 26, 199–214. [CrossRef]

29. Araya, A.; Girma, A.; Getachew, F. Exploring impacts of climate change on maize yield in two contrasting
agro-ecologies of Ethiopia. Asian J. Appl. Sci. Eng. 2015, 4, 26–36.

30. Dawson, I.K.; Lengkeek, A.; Weber, J.C.; Jamnadass, R. Managing genetic variation in tropical trees: Linking
knowledge with action in agroforestry ecosystems for improved conservation and enhanced livelihoods.
Biodivers. Conserv. 2009, 18, 969–986. [CrossRef]

31. Moriasi, D.N.; Arnold, J.G.; Liew, M.W.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation
guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50,
885–900. [CrossRef]

32. Yang, J.M.; Yang, J.Y.; Liu, S.; Hoogenboom, G. An evaluation of the statistical methods for testing the
performance of crop models with observed data. Agric. Syst. 2014, 127, 81–89. [CrossRef]

33. Ritter, A.; Muñoz-Carpena, R. Performance evaluation of hydrological models: Statistical significance for
reducing subjectivity in goodness-of-fit assessments. J. Hydrol. 2013, 480, 33–45. [CrossRef]

34. MacCarthy, D.S.; Sommer, R.; Vlek, P.L. Modeling the impacts of contrasting nutrient and residue management
practices on grain yield of sorghum (Sorghum bicolor (L.) Moench) in a semi-arid region of Ghana using
APSIM. Field Crop Res. 2009, 113, 105–115. [CrossRef]

35. Robertson, M.; Sakala, W.; Benson, T.; Shamudzarira, Z. Simulating response of maize to previous velvet
bean (Mucuna pruriens) crop and nitrogen fertiliser in Malawi. Field Crop Res. 2005, 91, 91–105. [CrossRef]

36. Sida, T.S.; Baudron, F.; Kim, H.; Giller, K.E. Climate-smart agroforestry: Faidherbia albida trees buffer wheat
against climatic extremes in the Central Rift Valley of Ethiopia. Agric. For. Meteorol. 2018, 248, 339–347.
[CrossRef]

37. Ndoli, A.; Baudron, F.; Schut, A.G.; Mukuralinda, A.; Giller, K.E. Disentangling the positive and negative
effects of trees on maize performance in smallholdings of Northern Rwanda. Field Crop Res. 2017, 213, 1–11.
[CrossRef]

38. Kho, R.; Yacouba, B.; Yayé, M.; Katkoré, B.; Moussa, A.; Iktam, A.; Mayaki, A. Separating the effects of trees
on crops: The case of Faidherbia albida and millet in Niger. Agrofor. Syst. 2001, 52, 219–238. [CrossRef]

39. Sileshi, G.W. The magnitude and spatial extent of influence of Faidherbia albida trees on soil properties and
primary productivity in drylands. J. Arid Environ. 2016, 132, 1–14. [CrossRef]

40. Tiwari, T.P.; Brook, R.M.; Wagstaff, P.; Sinclair, F.L. Effects of light environment on maize in hillside agroforestry
systems of Nepal. Food Secur. 2012, 4, 103–114. [CrossRef]

41. Jose, S.; Gillespie, A.; Seifert, J.; Biehle, D. Defining competition vectors in a temperate alley cropping system
in the midwestern USA: 2. Competition for water. Agrofor. Syst. 2000, 48, 41–59. [CrossRef]

42. Pardon, P.; Reubens, B.; Reheul, D.; Mertens, J.; De Frenne, P.; Coussement, T.; Janssens, P.; Verheyen, K.
Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agric. Ecosyst.
Environ. 2017, 247, 98–111. [CrossRef]

43. Mekonnen, K.; Amede, T.; Duncan, A.; Gebrekirstos, A. Sustainable agricultural intensification and its role
on the climate resilient green economy initiative in Ethiopia. In Proceedings of the 3rd National Platform
Meeting on Land and Water Management in Ethiopia, Addis Ababa, Ethiopia, 23–24 July 2012; International
Livestock Research Institute: Nairobi, Kenya, 2013.

44. Makumba, W.; Janssen, B.; Oenema, O.; Akinnifesi, F.K.; Mweta, D.; Kwesiga, F. The long-term effects of a
gliricidia–maize intercropping system in Southern Malawi, on gliricidia and maize yields, and soil properties.
Agric. Ecosyst. Environ. 2006, 116, 85–92. [CrossRef]

45. Boffa, J.-M. Agroforestry Parklands in Sub-Saharan Africa; FAO: Rome, Italy, 1999.

http://dx.doi.org/10.1016/j.fcr.2017.12.012
http://dx.doi.org/10.1080/14728028.2018.1564146
http://dx.doi.org/10.1006/jare.1999.0532
http://dx.doi.org/10.1080/14728028.2016.1266971
http://dx.doi.org/10.1007/s10531-008-9516-z
http://dx.doi.org/10.13031/2013.23153
http://dx.doi.org/10.1016/j.agsy.2014.01.008
http://dx.doi.org/10.1016/j.jhydrol.2012.12.004
http://dx.doi.org/10.1016/j.fcr.2009.04.006
http://dx.doi.org/10.1016/j.fcr.2004.06.009
http://dx.doi.org/10.1016/j.agrformet.2017.10.013
http://dx.doi.org/10.1016/j.fcr.2017.07.020
http://dx.doi.org/10.1023/A:1011820412140
http://dx.doi.org/10.1016/j.jaridenv.2016.03.002
http://dx.doi.org/10.1007/s12571-012-0165-4
http://dx.doi.org/10.1023/A:1006289322392
http://dx.doi.org/10.1016/j.agee.2017.06.018
http://dx.doi.org/10.1016/j.agee.2006.03.012


Forests 2020, 11, 1175 15 of 15

46. Rodriguez, D.; Cox, H.; Power, B. A participatory whole farm modelling approach to understand impacts
and increase preparedness to climate change in Australia. Agric. Syst. 2014, 126, 50–61. [CrossRef]

47. Yin, X.; Kersebaum, K.C.; Beaudoin, N.; Constantin, J.; Chen, F.; Louarn, G.; Manevski, K.; Hoffmann, M.;
Kollas, C.; Armas-Herrera, C.M.; et al. Uncertainties in simulating N uptake, net N mineralization, soil
mineral N and N leaching in European crop rotations using process-based models. Field Crop Res. 2020,
255, 107863. [CrossRef]

48. Akinnifesi, F.K.; Chirwa, P.W.; Ajayi, O.C.; Sileshi, G.; Matakala, P.; Kwesiga, F.R.; Harawa, H.; Makumba, W.
Contributions of agroforestry research to livelihood of smallholder farmers in Southern Africa: 1. Taking
stock of the adaptation, adoption and impact of fertilizer tree options. Agric. J. 2008, 3, 58–75.

49. Mafongoya, P.; Bationo, A.; Kihara, J.; Waswa, B.S. Appropriate technologies to replenish soil fertility in
southern Africa. Nutr. Cycl. Agroecosyst. 2006, 76, 137–151. [CrossRef]

50. Vanlauwe, B.; Aihou, K.; Aman, S.; Iwuafor, E.N.; Tossah, B.K.; Diels, J.; Sanginga, N.; Lyasse, O.; Merckx, R.;
Deckers, J. Maize yield as affected by organic inputs and urea in the West African moist savannah. Agron. J.
2001, 93, 1191–1199. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.agsy.2013.04.003
http://dx.doi.org/10.1016/j.fcr.2020.107863
http://dx.doi.org/10.1007/s10705-006-9049-3
http://dx.doi.org/10.2134/agronj2001.1191
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Site Description 
	Field Experiments for Model Calibration and Testing 
	Experimental Design and Maize Establishment 
	Measurements 
	Modeling 
	Virtual Experiments 


	Results 
	Evaluation of Model Performance 
	Virtual Experiments 
	Light Experiment 
	N Fertilizer, Pruning, and Zone Experiment 
	Genotype and Sowing Date Experiment 
	Climate Variability Experiment 


	Discussion 
	Conclusions 
	References

