Predicting the Potential Distribution of Two Varieties of Litsea coreana (Leopard-Skin Camphor) in China under Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Distribution
2.2. Environmental Variables
2.3. Model Optimization
2.4. MaxEnt Modeling
2.5. Classification of Potentially Suitable Area
3. Results
3.1. Potential Distribution of Two Leopard-Skin Camphor Varieties under Current Climate and Model Accuracy
3.2. Potential Distribution of Two Leopard-Skin Camphor Varieties under Future Climatic Scenario
3.3. Relationship between Environmental Variables and Distribution of Two Leopard-Skin Camphor Varieties
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- IPCC. Annex I: Atlas of Global and Regional Climate Projections. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Cambridge, UK; New York, NY, USA, 2013; p. 1311. [Google Scholar]
- CMA. The Third National Assessment Report on Climate Change was Released; China Meteorological Administration. Available online: http://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/201412/t20141207_269047.html (accessed on 23 November 2015).
- IPCC. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; p. 881. [Google Scholar]
- Qin, H.; Dong, G.; Zhang, Y.; Zhang, F.; Wang, M. Patterns of species and phylogenetic diversity of Pinus tabuliformis forests in the eastern Loess Plateau, China. For. Ecol. Manag. 2017, 394, 42–51. [Google Scholar] [CrossRef]
- Parmesan, C.Y.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, J.; Gegout, J.C.; Marquet, P.A.; Ruffray, P.D.; Brisse, H.A. Significant Upward Shift in Plant Species Optimum Elevation During the 20th Century. Science 2008, 320, 1768–1771. [Google Scholar] [CrossRef]
- Mckenney, D.W.; Pedlar, J.H.; Lawrence, K.; Campbell, K.; Hutchinson, M.F. Potential impacts of climate change on the distribution of north American trees. Bioence 2007, 57, 939–948. [Google Scholar] [CrossRef]
- Kumar, P. Assessment of impact of climate change on Rhododendrons in Sikkim Himalayas using Maxent modelling: Limitations and challenges. Biodivers. Conserv. 2012, 21, 1251–1266. [Google Scholar] [CrossRef]
- Chen, I.C.; Hill, J.K.; Ohlemuller, R.; Roy, D.B.; Thomas, C.D. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Pauli, H.; Gottfried, M.; Dullinger, S.; Abdaladze, O.; Akhalkatsi, M.; Alonso, J.L.B.; Coldea, G.; Dick, J.; Erschbamer, B.; Calzado, R.F.; et al. Recent Plant Diversity Changes on Europe’s Mountain Summits. Science 2012, 336, 353–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Hirzel, A.H.; Hausser, J.; Chessel, D.; Perrin, N. Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology 2002, 83, 2027–2036. [Google Scholar] [CrossRef]
- Duan, Y.Z.; Wang, H.T.; Wang, C.; Du, Z.Y. Potential distribution of endangered plant Helianthemum songaricum in China under climate change. J. Plant. Resour. Environ. 2020, 29, 55–68. [Google Scholar]
- Tognelli, M.F.; ROIG-JuÑENT, S.A.; Marvaldi, A.E.; Flores, G.E.; Lobo, J.M. An evaluation of methods for modelling distribution of Patagonian insects. Rev. Chil. Hist. Nat. 2009, 82, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Jiang, C.; Guo, X.; Chen, D.; You, C.; Zhang, Y.; Wang, M.; Li, Q. Potential distribution of Spodoptera frugiperda (J.E. Smith) in China and the major factors influencing distribution. Glob. Ecol. Conserv. 2020, 21, e00865. [Google Scholar] [CrossRef]
- Halvorsen, R. A strict maximum likelihood explanation of MaxEnt, and some implications for distribution modelling. Sommerfeltia 2013, 36, 1–132. [Google Scholar] [CrossRef]
- Jia, X.; Li, P.; Wan, J.; He, C. A review on phytochemical and pharmacological properties of Litsea coreana. Pharm. Biol. 2017, 55, 1368–1374. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Feng, K.; Wang, W.-Z.; Wang, Y.-J.; Lu, J.-L.; Li, E.-W.; Niu, S.-B.; Jiao, Y.-G. Comparative study on the essential oils of six Hawk tea (Litsea coreana Levl. var. lanuginosa) from China: Yields, chemical compositions and biological activities. Ind. Crops Prod. 2018, 124, 126–135. [Google Scholar] [CrossRef]
- Pan, J.W.; Hu, X.L.; Guo, Q.Q. Construction of the chloroplast genome of Litsea coreana var. sinensis and phylogeny of Lauraceae. Mitochondrial DNA Part B 2019, 4, 1786–1787. [Google Scholar]
- Tang, Q.; Liu, J. A Preliminary study on biological characteristics and Domestication and Culturing technology of Litsea coreana Leve. J. Guizhou Tea 2001, 4, 13–15. [Google Scholar]
- Yu, J.P.; Gu, L.Q. The chemical constituents of Laoying Tea from Guizhou. J. Plant. Resour. Environ. 2001, 3, 61–62. [Google Scholar]
- Zhao, X.; Shao, L.N.; Zheng, Y.F. Antimutagenic and in vitro anticancer effect of Litsea coreana levl. var. lanuginisa. Food Eng. 2008, 4, 29–31. [Google Scholar]
- Wang, J.H.; Zhang, L.; Qi, X.; Yao, S.L. Effects of the Mother Trees Age on Cuttings Rooting Capability of Litsea coreana var. lanuginosa. Seed 2015, 34, 118–121. [Google Scholar]
- Fan, C.; Li, W.X.; Zhang, J.; Pan, Y.; Wang, J.; Pu, Y.B. Physiological response of Litsea coreana var. sinensis seedling to clod stress. For. Sci. Technol. 2009, 34, 8–11. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Vuuren, D.P.V.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Tao, J. Predicting the Potential Distribution of Paeonia veitchii (Paeoniaceae) in China by Incorporating Climate Change into a Maxent Model. Forests 2019, 10, 190. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Berry, P.M.; Dawson, T.P.; Pearson, R.G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 2005, 28, 385–393. [Google Scholar] [CrossRef]
- Rong, Z.; Zhao, C.; Liu, J.; Gao, Y.; Zang, F.; Guo, Z.; Mao, Y.; Wang, L. Modeling the Effect of Climate Change on the Potential Distribution of Qinghai Spruce (Picea crassifolia Kom.) in Qilian Mountains. Forests 2019, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Cobos, M.E.; Peterson, A.T.; Barve, N.; Osorio-Olvera, L. Kuenm: An R package for detailed development of ecological niche models using Maxent. Peerj 2019, 7, e6281. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Zhou, Z.; Wang, R.; Ye, M.; Pu, B. Modeling the distribution of Zanthoxylum armatum in China with MaxEnt modeling. Glob. Ecol. Conserv. 2019, 19, e00691. [Google Scholar] [CrossRef]
- Janitza, S.; Strobl, C.; Boulesteix, A.L. An AUC-based permutation variable importance measure for random forests. BMC Bioinform. 2013, 14, 119. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Valverde, A.; Lobo, J.M. Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol. 2007, 31, 361–369. [Google Scholar] [CrossRef]
- Jackson, C.R.; Robertson, M.P. Predicting the potential distribution of an endangered cryptic subterranean mammal from few occurrence records. J. Nat. Conserv. 2011, 19, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.T.; Fei, S.; Liang, L.; Rieske, L.K. Mapping eastern hemlock: Comparing classification techniques to evaluate susceptibility of a fragmented and valued resource to an exotic invader, the hemlock woolly adelgid. For. Ecol. Manag. 2012, 266, 216–222. [Google Scholar] [CrossRef]
- Slater, H.; Michael, E. Predicting the Current and Future Potential Distributions of Lymphatic Filariasis in Africa Using Maximum Entropy Ecological Niche Modelling. PLoS ONE 2012, 7, e32202. [Google Scholar] [CrossRef]
- Li, S.S.; Yang, S.N.; Liu, X.F. Spatiotemporal variability of extreme precipitation in north and south of the Qinling-Huaihe region and influencing factors during 1960–2013. Prog. Geogr. 2015, 34, 354–363. [Google Scholar]
- Ren, G.Y.; Zhan, Y.J.; Ren, Y.Y.; Chen, Y.; Wang, T.; Liu, Y.J.; Sun, X.B. Spatial and temporal patterns of precipitation variability over mainland China: I: Climatology. Adv. Water Sci. 2015, 26, 299–310. [Google Scholar]
- Li, S.S.; Lu, J.Y.; Yan, J.P.; Liu, X.F.; Kong, F.; Wang, J. Spatiotemporal variability of temperature in northern and southern Qinling Mountains and its influence on climatic boundary. Ace Geogr. Sin. 2018, 73, 13–24. [Google Scholar]
- Fernández, V.; Sancho-Knapik, D.; Guzmán, P.; Peguero-Pina, J.J.; Gil, L.; Karabourniotis, G.; Khayet, M.; Fasseas, C.; Heredia-Gurrero, J.A.; Heredia, A.; et al. Wettability, Polarity, and Water Absorption of Holm Oak Leaves: Effect of Leaf Side and Age. Plant Physiol. 2014, 166, 168–180. [Google Scholar]
- Eigenbrode, S.D.; Jetter, R. Attachment to plant surface waxes by an insect predator. Integr. Comp. Biol. 2002, 42, 1091–1099. [Google Scholar] [CrossRef] [Green Version]
- Gniwotta, F.; Vogg, G.; Gartmann, V.; Carver, T.L.; Riederer, M.; Jetter, R. What do microbes encounter at the plant surface? Chemical composition of pea leaf cuticular waxes. Plant. Physiol. 2005, 139, 519–530. [Google Scholar] [CrossRef] [Green Version]
- Ripley, B.S.; Pammenter, N.W.; Smith, V.R. Function of leaf hairs revisited: The hair layer on leaves Arctotheca populifolia reduces photoinhibition, but leads to higher leaf temperatures caused by lower transpiration rates. J. Plant Physiol. 1999, 155, 78–85. [Google Scholar] [CrossRef]
- Markus, R.; Lukas, S. Protecting against water loss: Analysis of the barrier properties of plant cuticles. J. Exp. Bot. 2001, 52, 2023–2032. [Google Scholar]
- Reicosky, D.A.; Hanover, J.W. Physiological effects of surface waxes. Plant Physiol. 1978, 62, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Booth, T.H. Assessing species climatic requirements beyond the realized niche: Some lessons mainly from tree species distribution modelling. Clim. Chang. 2017, 145, 259–271. [Google Scholar] [CrossRef]
- Richardson, D.M.; McMahon, J.P. A bioclimatic analysis of E. nitens to identify potential planting regions in southern Africa. S. Afr. J. Sci. 1992, 88, 380–387. [Google Scholar]
- Zheng, W.Y.; Cao, K.F. Impact of Future Climate Change on the Potential Geographical Distribution of Four Litsea Species in China. Guihaia. Available online: http://www.guihaia-journal.com/ch/reader/view_abstract.aspx?file_no=201904110000002&edit_id=20190731085151001&flag=2# (accessed on 29 July 2019).
- Ran, Q.; Wei, H.Y.; Zhao, Z.F.; Zhang, Q.Z.; Liu, J.; Gu, W. Impact of climate change on the potential distribution and habitat fragmentation of the relict plantCathaya argyrophylla Chun et Kuang. Acta Ecol. Sin. 2019, 39, 2481–2493. [Google Scholar]
- Ma, B.; Sun, J. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. Bmc Ecol. 2018, 18, 10. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.F.; Zhou, N.F.; Bi, Y. Analyses of the Impacts of Upper-Level Temperature and Height Anomalies on Surface Air Temperature and Precipitation in China. Plateau. Meteorol. 2008, 4, 417–428. [Google Scholar]
- Bachman, G.R.; McMahon, M.J. Day and night temperature differential (DIF) or the absence of far-red light alters cell elongation in ‘Celebrity White’ Petunia. J. Am. Soc. Hortic. Sci. 2006, 131, 309–312. [Google Scholar] [CrossRef] [Green Version]
- Patil, G.G.; Moe, R. Involvement of phytochrome B in DIF mediated growth in cucumber. Sci. Hortic. 2009, 122, 164–170. [Google Scholar] [CrossRef]
- Gent, M.N. Carbohydrate level and growth of tomato plants: I The effects of carbon dioxide enrichment and diurnally fluctuation. Plant Physiol. 1984, 76, 694–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elin, T.; Sissel, T.; Arild, E.; Roar, M. Day and night temperature responses in Arabidopsis: Effects on gibberellin and auxin content, cell size, morphology and flowering time. Ann. Bot. 2003, 92, 601–612. [Google Scholar]
- Papadopoulos, A.P.; Hao, X. Effects of day and night air temperature in early season on growth, productivity and energy use of spring tomato. Can. J. Plant Sci. 2001, 81, 303–311. [Google Scholar] [CrossRef]
- Qin, B.B.; Jing, Y.S. A Study on the Rule of Sap Flow in Camphor Tree and Its Relation to Meteorological Factors. Acta Agric. Univ. Jiangxiensis 2017, 39, 349–356. [Google Scholar]
- Gaston, K.J. Global patterns in biodiversity. Nature 2000, 405, 220–227. [Google Scholar] [CrossRef]
- Chapin, F.S.; Bloom, A.J.; Field, C.B.; Waring, R.H. Plant Responses to Multiple Environmental Factors Physiological ecology provides tools for studying how interacting environmental resources control plant growth. Bioscience 1987, 37, 49–57. [Google Scholar] [CrossRef]
- Xu, K.Y.; Ye, W.H.; Li, J.; Li, G.m. Phenotypic plasticity in response to soil nutrients in the invasive species Alternanthera philoxeroides. Ecol. Environ. 2005, 14, 723–726. [Google Scholar]
- Engler, R.; Randin, C.F.; Vittoz, P.; Czáka, T.; Beniston, M.; Zimmermann, N.E.; Guisan, A. Predicting future distributions of mountain plants under climate change: Does dispersal capacity matter? Ecography 2009, 32, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Pitelka, L.F. Plant migration and climate change. Am. Sci. 1997, 85, 464–473. [Google Scholar]
- Davis, M.B.; Shaw, R.G. Range shifts and adaptive responses to quaternary climate change. Science 2001, 292, 673–679. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, B.; Feeley, K.J.; Wang, G.G.; Zhang, J.; Zhai, L. Ecological contingency in species shifts: Downslope shifts of woody species under warming climate and land-use change. Environ. Res. Lett. 2019, 14, 114033. [Google Scholar] [CrossRef]
Code | Environment Variables | Unit | L. Coreana Levl. var. Sinensis | L. Coreana Levl. var. Lanuginosa |
---|---|---|---|---|
Bio1 | Annual mean temperature | °C | ||
Bio2 | Mean daily diurnal range | °C | 24.0 | 19.1 |
Bio3 | Isothermality (Bio2/Bio7) | % | 11.2 | |
Bio4 | Temperature seasonality | — | 0.2 | |
Bio5 | Max temperature of the warmest month | °C | ||
Bio6 | Min temperature of the coldest month | °C | 41.7 | 60.4 |
Bio7 | Temperature annual range (Bio5−Bio6) | °C | ||
Bio8 | Mean temperature of the wettest quarter | °C | 1.0 | |
Bio9 | Mean temperature of the driest quarter | °C | ||
Bio10 | Mean temperature of the warmest quarter | °C | ||
Bio11 | Mean temperature of the coldest quarter | °C | ||
Bio12 | Annual precipitation | mm | ||
Bio13 | Precipitation of the wettest month | mm | ||
Bio14 | Precipitation of the driest month | mm | 12.9 | 1.6 |
Bio15 | Precipitation seasonality coefficient of variation | mm | 8.4 | |
Bio16 | Precipitation of the wettest quarter | mm | ||
Bio17 | Precipitation of the driest quarter | mm | ||
Bio18 | Precipitation of the warmest quarter | mm | 0.4 | 0.5 |
Bio19 | Precipitation of the coldest quarter | mm | ||
Ele | Elevation | m | 7.8 | 0.7 |
UVB | Annual mean ultraviolet-B radiation | Jm−2·day−1 | 1.8 | 4.8 |
VAP | Annual mean vapor pressure | hPa | 0.1 | 3.6 |
Species | Climatic Scenarios | Total Suitable Area | Lowly Suitable Area | Moderately Suitable Area | Highly Suitable Area | ||||
---|---|---|---|---|---|---|---|---|---|
Area (104 km2) | Ratio (%) | Area (104 km2) | Ratio (%) | Area (104 km2) | Ratio (%) | Area (104 km2) | Ratio (%) | ||
L. coreana Levl. var. sinensis | 1970–2000 | 234.78 | — | 141.18 | — | 86.87 | — | 6.73 | — |
2050-RCP2.6 | 236.08 | 100.55 | 177.87 | 125.99 | 56.99 | 65.60 | 1.21 | 18.04 | |
2050-RCP4.5 | 241.90 | 103.03 | 177.41 | 125.67 | 62.38 | 71.80 | 2.11 | 31.27 | |
2050-RCP8.5 | 245.45 | 104.54 | 189.52 | 134.24 | 54.55 | 62.79 | 1.38 | 20.43 | |
2070-RCP2.6 | 239.26 | 101.90 | 170.91 | 121.06 | 66.02 | 75.99 | 2.34 | 34.69 | |
2070-RCP4.5 | 237.39 | 101.11 | 177.58 | 125.79 | 57.16 | 65.80 | 2.64 | 39.24 | |
2070-RCP8.5 | 253.47 | 107.96 | 223.29 | 158.16 | 29.48 | 33.94 | 0.69 | 10.27 | |
L. coreana Levl. var. lanuginosa | 1970–2000 | 248.65 | — | 131.47 | — | 103.98 | — | 13.21 | — |
2050-RCP2.6 | 252.98 | 101.74 | 150.85 | 114.74 | 90.94 | 87.46 | 11.19 | 84.74 | |
2050-RCP4.5 | 257.33 | 103.49 | 171.34 | 130.33 | 79.94 | 76.88 | 6.06 | 45.87 | |
2050-RCP8.5 | 264.31 | 106.30 | 189.66 | 144.27 | 73.47 | 70.66 | 1.18 | 8.96 | |
2070-RCP2.6 | 256.14 | 103.01 | 163.11 | 124.07 | 85.10 | 81.85 | 7.92 | 60.00 | |
2070-RCP4.5 | 260.71 | 104.85 | 188.29 | 143.22 | 71.78 | 69.04 | 0.63 | 4.79 | |
2070-RCP8.5 | 267.96 | 107.77 | 219.56 | 167.00 | 48.38 | 46.53 | 0.03 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Fan, X.; Luo, S.; Zhang, Y.; Yao, S.; Guo, Q.; Qian, Z. Predicting the Potential Distribution of Two Varieties of Litsea coreana (Leopard-Skin Camphor) in China under Climate Change. Forests 2020, 11, 1159. https://doi.org/10.3390/f11111159
Pan J, Fan X, Luo S, Zhang Y, Yao S, Guo Q, Qian Z. Predicting the Potential Distribution of Two Varieties of Litsea coreana (Leopard-Skin Camphor) in China under Climate Change. Forests. 2020; 11(11):1159. https://doi.org/10.3390/f11111159
Chicago/Turabian StylePan, Jinwen, Xin Fan, Siqiong Luo, Yaqin Zhang, Shan Yao, Qiqiang Guo, and Zengqiang Qian. 2020. "Predicting the Potential Distribution of Two Varieties of Litsea coreana (Leopard-Skin Camphor) in China under Climate Change" Forests 11, no. 11: 1159. https://doi.org/10.3390/f11111159
APA StylePan, J., Fan, X., Luo, S., Zhang, Y., Yao, S., Guo, Q., & Qian, Z. (2020). Predicting the Potential Distribution of Two Varieties of Litsea coreana (Leopard-Skin Camphor) in China under Climate Change. Forests, 11(11), 1159. https://doi.org/10.3390/f11111159