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Abstract: Trees play a vital role in urban cooling. The present study tested if key canopy characteristics
related to tree shade could be used to predict the cooling potential across a range of urban
surface materials. During the austral summer of 2018-2019, tree and canopy characteristics of
471 free-standing trees from 13 species were recorded across Greater Sydney, Australia. Stem girth
and tree height, as well as leaf area index and ground-projected crown area was measured for every
tree. Surface temperatures were recorded between noon (daylight saving time) and 3:00 p.m. under the
canopy of each tree in the shade and in full sun to calculate the temperature differential between
adjacent sunlit and shaded surfaces (ATs). The limited control over environmental parameters was
addressed by using a large number of randomly selected trees and measurement points of surface
temperatures. Analyses revealed that no systematic relationship existed among canopy characteristics
and AT; for any surface material. However, highly significant differences (p < 0.001) in AT existed
among surface materials. The largest cooling potential of tree shade was found by shading bark mulch
(ATs = —24.8 °C + 7.1), followed by bare soil (ATs = —22.1 °C + 5.5), bitumen (ATs = =20.9 °C £ 5.8),
grass (ATs = —18.5 °C + 4.8) and concrete pavers (ATs = —17.5 °C + 6.0). The results indicate that
surface material, but not the tree species, matters for shade cooling of common urban surfaces.
Shading bark mulch, bare soil or bitumen will provide the largest reductions in surface temperature,
which in turn results in effective mitigation of radiant heat. This refined understanding of the
capacity of trees to reduce thermal loads in urban space can increase the effectiveness of urban
cooling strategies.

Keywords: Urban Heat Island; surface temperature; green space; Western Sydney; microclimate;
thermal management

1. Introduction

The Urban Heat Island Effect (UHIE) is one of the most prominent impacts of urbanisation and is
accelerated by climate change [1,2]. The UHIE can be defined as the discernible temperature difference
between urban and adjacent rural areas caused by emission of excess heat and the solar energy trapped
by infrastructure [3]. Mitigation of urban heat has become a pressing issue as more than half of the
world’s population is currently living in cities [4], where they are exposed to increased levels of heat
that, during heat wave conditions, adversely impact public health and accelerate rates of mortality [4].
People that live in urban areas highly depend on air-conditioned buildings, artificial lighting and
(air conditioned) transport. The additional waste heat generated by this lifestyle further contributes to
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the UHIE [3,5,6]. Increased night-time temperatures in urban settings are mainly caused by buildings
and paved areas with low albedo and high heat storage capacity [7]. Buildings and paved areas are
made from concrete, asphalt, bricks and tiles, which absorb short-wave solar radiation during daytime
and re-radiate long-wave radiation in the night, thereby increasing air temperatures at night.

Retaining existing trees and planting additional trees is one of the most effective strategies to
mitigate UHIE. Urban trees provide surface cooling through shading and additional cooling benefits
can be generated by latent heat removal through evapotranspiration [8]. Shade from tree canopies
reduces the amount of sunlight absorbed by infrastructure, such as buildings and pavement, and thus
decreases the amount of energy that is re-radiated into the surrounding environment. The cooling
effect of tree canopies on single domestic dwellings has been known for decades [9]. A recent study
revealed that the cooling effect provided by shading from trees is more significant than that by
evapotranspiration [10]. It was estimated that urban trees in the United States reduce the national
residential energy consumption by 7.2% per year and provide a reduction of 38.8 million MWh of
electricity (worth USD 4.7 billion) [11]. The presence of trees is also linked with higher property
values [12-14]. As a direct effect on the human body, tree shade alters the perceived temperature which
depends more on radiation and less on convection of heat from the local environment [15]. Hence,
reducing radiant heat loads through shade from tree canopies improves human thermal comfort and
can have a positive effect on public health [16,17].

Shade provided by a tree has a quantitative and a qualitative dimension. The quantity of shade is
dependent on the size of the tree crown and can be approximated by projecting the crown perimeter
onto the ground surface. The quality of tree shade depends on the density of the canopy. The Leaf Area
Index (LAI) can be used to determine the canopy density [18]. LAl is defined as the total projected
area of leaves of a single tree or group of trees over a unit of land (m? m~2) and is known to have a
direct influence on microclimate below the canopy [19,20]. A low LAI indicates a more open canopy
arrangement that provides a lower quality of shade, whereas a high LAI indicates a dense canopy
which provides very high quality of shade. The canopy characteristics vary among tree species, age and
location, and thus could influence air and surface temperature below the canopy [21]. However,
the shading efficiency of tree canopies is likely the result of a combination of the density and size of
tree crowns. Surface temperature under a tree with a wide but open crown may be higher compared to
that under a tree with a narrower but dense crown.

Although there are numerous studies on the effect of tree canopy cover on air temperature in urban
settings [22,23], far fewer studies have assessed the influence of tree canopies or species differences
in shading efficiency on surface temperatures at a microscale. Moreover, studies that do assess the
relationship between surface temperature and urban tree canopy cover regularly use remotely sensed
infrared data [24-26], which cannot be used to assess the impact of shading on temperature of surface
materials under tree canopies. However, it is this type of information that urban planners, landscape
architects and land managers often seek when selecting tree species to improve microclimates and
reduce radiant heat loads.

Further, the albedo of a surface material plays a significant role in UHIE. The albedo can be defined
as the fraction of shortwave radiative energy reflected from a surface [27]. Light-coloured surfaces
with high albedo generally absorb less solar radiation than dark-coloured ones with low albedo [28].
Consequently, decreases in albedo increase the radiative energy absorption by the urban land surface,
lead to increased air and surface temperatures and contribute to the UHIE [28,29]. Typical albedo
values range from 0.10 to 0.50, with higher values usually associated with metallic surfaces [28].

Here, we present surface temperature measurements of common urban surface types under
tree shade and adjacent sunlit areas and investigate species-specific relationships between tree size,
using the stem diameter at breast height (DBH), LAI and the vertical projection of the crown area (Ac).
A range of common urban tree species planted throughout Greater Sydney were tested for this purpose,
and we hypothesised (1) that species with higher LAI and larger Ac are most effective in reducing
surface temperature, (2) that the surface temperature underneath tree canopies also depends on the
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surface material and (3) that darker surface materials with low albedo would exhibit higher surface
temperatures compared to surface materials with high albedo. We were interested in identifying
species-specific and also surface-specific trends and thus did not control tree age, canopy size or any
environmental parameter, except time of day and that no meaningful rainfall had occurred in the days
preceding our data collections. We countered the limited control by assessing a large number of trees
and randomizing data collection points for surface temperatures.

2. Materials and Methods

2.1. Study Area

Greater Sydney in the state of New South Wales (NSW), Australia, was selected as the study
area for this project. The area has a temperate climate with dry and hot summers. A natural rainfall
gradient exists along an east (coastal)/west (inland) gradient where mean annual precipitation declines
from 1300 to 880 mm [30]. Mean annual air temperature of the area is around 18 °C. Greater Sydney,
especially the western part, experiences extreme heatwave conditions annually with a peak temperature
of 48.9 °C in January 2020 [31]. Moreover, Parramatta, a city in the geographic centre of Greater Sydney,
has been identified to have the highest UHIE in NSW [32]. On average, Parramatta experiences 13 days
each year with air temperatures of 35 °C and above [33]. The frequency of hot and extreme heat days
is increasing in Parramatta and Western Sydney more broadly [34]. Additionally, urban development
has transformed rural land in the west of Greater Sydney to residential suburbs [35]. The estimated
population of this part of Greater Sydney in 2018 is 2.2 million which is 10% higher compared
to 2011 [36]. It is expected that the population of Western Sydney will reach 2.9 million by 2036,
representing more than 50% of the total population of Grater Sydney. Due to continued urbanisation
in the region, canopy cover in the western part of Greater Sydney decreased by 0.83% from 2009 to
2016, a rate more than twice as high as what was observed across the State of NSW [33].

2.2. Tree Morphological Measurements

For the present work, 471 healthy and well-established individual trees belonging to 13 different
species were sampled from November 2018 to March 2019 across Greater Sydney. Sampled trees
included (e)native, (o)exotic, (~)evergreen and (=)deciduous species that are widely planted in parks and
streets across Greater Sydney, namely: o=Australian pine (Casuarina equisetifolia L.), o’=camphor tree
(Cinnamomum camphora L.), o-=Chinese banyan (Ficus macrocarpa L.f.), o'screpe myrtle (Lagerstroemia L.),
oroflowering pear (Pyrus calleryana Decne.), o’sjacaranda (Jacaranda mimosifolia D.Don.), e’ =lemon-scented
gum (Corymbia citriodora Hook.), e=lilly pilly (Waterhousea floribunda (FMuell.) B.Hyland), o’*paperbark
(Melaleuca quinguenervia (Cav.) S.T.Blake), o’eplanetree (Platanus acerifolia (Aiton.) Willd.), e *Queensland
box (Lophostemon confertus (R.Br.) Peter G.Wilson & ].T.Waterh.), o'ssweetgum (Liquidambar styraciflua
L.) and e'=Sydney blue gum (Eucalyptus saligna Sm.). Physical characteristics of the studied trees are
shown in Table 1. Figure 1 shows examples of common tree species and surface types that were
examined in the study.

Stem diameter at breast height (DBH) was measured for each individual tree using a diameter
tape. Here we used DBH as rough indicator of tree age. A clinometer (Suunto Tandem 360PC/360RDG,
Suunto, Vantaa, Finland) was used to measure tree and crown height. Crown radii (r) in six sub
cardinal directions were measured using an optical laser (DISTO D810, Leica Geosystems, St Gallen,
Switzerland). For this purpose, a perpendicular was dropped at the edge of the canopy from where
the laser was pointed to the centre of the stem at parallel height to the ground surface. Half of the DBH
(i.e., the stem radius) was added to each measurement to represent the distance from the crown edge
to the centre of the stem. To estimate Ac we used the following modified equation [37]:

6 .
i X Tig1 X 60°
Ac = Z Ti XTi1 2SIH( ) )
i=1
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where r; and r;;1 are adjacent radii. LAI was measured using a digital canopy analyser (CI-110 Plant
Canopy Imager, CID Bio Science Inc., Camas, WA, USA). Two independent measurements were taken
at randomly selected positions under each tree canopy. All images were collected under appropriate
light conditions. During post-processing of the images, the Otsu method was applied for image
thresholding and gap fraction analysis. This method was selected, because of its robustness in image
segmentation, using a least-square method based on a grey-scale histogram [38]. Zenith and azimuth
divisions of canopy images were selected manually for each image to ensure an accurate calculation
of LAL

Table 1. Alphabetic list of tree species with their mean diameter at breast height (DBH), total height,
vertical crown projected area (Ac) and leaf area index (LAI). N denotes number of trees. Minimum and
maximum values for DBH and height, as well as 1 Standard Deviation (SD) are shown.

Species n Mean DBH + SD Min /Max DBH Mean Tree Min/Max Tree Mean Ac + SD  Mean LAI + SD
(m) (m) Height = SD (m) Height (m) (m?) (m? m~2)
Camphor laurel 48 0.72 +0.20 0.48/1.31 133+27 9.8/22.3 745 +26.3 19+05
Casuarina equisetifolia 58 0.45+0.24 0.06/1.12 14.0+59 3.8/22.8 59.1 +39.6 1.7+ 05
Corymbia citriodora 15 0.31 +0.20 0.09/0.70 11.0 + 4.4 5.7/21.0 242 +103 09+0.2
Eucalyptus saligna 19 0.64 +0.22 0.38/1.30 263 +43 17.8/35.3 92.3 +46.9 14+03
Ficus macrocarpa 48 0.26 +0.17 0.06/0.93 93+44 4.1/21.0 29.6 £22.6 34+05
Jacaranda mimosifolia 40 0.51+0.26 0.09/0.96 13.5+45 5.6/22.74 99.5 + 85.5 2.0+0.6
Lagerstroemia 55 0.12 + 0.05 0.03/0.25 82+28 3.9/13.5 129+ 8.6 26+04
Liquidambar styraciflua 13 0.59 + 0.30 0.10/1.12 16.8 +5.7 5.6/27.9 95.5 +74.4 25+03
Lophostemon confertus 49 0.35 +0.33 0.04/1.26 125+ 6.9 4.6/28.0 36.1+43.4 21+04
Melaleuca quinquenervia 19 0.84 +0.33 0.34/1.60 171 +£25 13.8/24.0 55.1+234 21+03
Platanus acerifolia 17 0.52 +0.26 0.08/0.97 16.8 +5.1 4.3/24.8 96.5 + 44.5 28+04
Pyrus calleryana 46 0.19 +0.13 0.04/0.68 8.0+22 4.5/13.3 17.8 +18.4 2.6+0.8
Waterhousea floribunda 44 0.13 £ 0.07 0.04/0.29 73+1.8 4.0/12.2 94+6.8 29+0.5

Figure 1. Examples of common tree species and surface types. (A) Crepe myrtle (Lagerstroemia L.) with
brick pavers and grass in sunlight and shade. (B) Jacaranda (Jacaranda mimosifolia D.Don) with asphalt
and grass in sunlight and shade. (C) Paperbark (Melaleuca quinquenervia (Cav.) S.T.Blake) with bark
mulch in sunlight and shade. (D) Queensland box (Lophostemon confertus (R.Br.) Peter G.Wilson &
J.T.Waterh.) with grass, bark mulch and asphalt in sunlight and shade.

2.3. Surface and Globe Temperature Measurements

Surface and black globe temperatures were recorded between 12:00 and 15:00 h (local daylight-saving
time) under each tree canopy and in full sun adjacent to each tree. Black globe temperature is an indirect
measurement of human thermal comfort obtained with a thermometer installed inside a hollow copper
sphere painted in matte black [39]. It is a composite measurement that incorporates air temperature,
relative humidity, direct sunlight, wind speed and radiant heat.

A tripod-mounted weather station (Kestrel 5400, Kestrel Meters, Boothwyn, PA, USA) was used
to record black globe temperature at 30-s intervals. The weather station was positioned 1 m above the
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ground. The air temperature sensor of the weather station was shielded from direct solar radiation and
was well aspirated. The weather station was first positioned under the tree for 15 min before moving it
into the sun adjacent to the tree for another 15 min. Data for the last 3 min of each measurement interval
were averaged, to ensure only data after the weather station had adjusted to ambient conditions were
used. The resulting six measurements were averages. These measurements were not independent,
thus one average temperature per time interval was used to calculate means among surface types.
We note that black globe temperatures were only recorded for each location and light condition, not for
specific surface types at individual locations. The reason for this approach was the limited ability to
exclude microclimatic ‘noise” from adjacent surface types, especially in the sun.

An infrared (IR) camera (FLIR C3, FLIR Systems Inc., Wilsonville, OR, USA) was used to record
surface temperature at five random locations under the canopy and in full sun adjacent to each
tree. The camera has a fixed focus, field of view is 41 x 31°, image size is 640 X 480 pixel and
thermal sensitivity is 0.1 °C. The IR camera was held 1 m above the surface when taking the image
perpendicular to the ground. The area covered by the image was approximately 56 x 77 cm (4312 cm?).
The temperatures of different surface types (grass, bark mulch, bare soil, concrete pavers and bitumen)
were assessed in both light conditions. Care was taken that no shade was introduced to the area
imaged in sunlight or under tree canopies on readily shaded surfaces. We noticed that two or more
different types of surface could be found underneath tree canopies, and consequently, the number of
surface temperature assessments exceeded the number of trees in our study. We measured surface
temperatures on 414 locations covered by grass, 135 covered by bitumen, 69 covered by bark mulch,
62 covered by pavers and 28 had bare soil.

FLIR Tools+ software was used to extract five random point measurements from each image for a
single, uniform surface type to calculate a representative surface temperature for each image. Similar to
Black Globe Measurements, these measurements were also not independent, and consequently,
one average temperature per image was used to calculate means among surface types. Measurements
of air temperature were used to normalize surface and black globe temperatures. Surface and black
globe temperatures differentials (ATg and ATg) were calculated by subtracting temperatures measured
in the shade from those measured in the sun. To represent the effect of shading as ‘cooling effect’,
all delta values are presented with a negative prefix.

To document the warm summer conditions during which the black globe and surface temperatures
were collected, we provide information about mean, minimum and maximum ambient air temperatures
measured in the sunlight (Tasp) and in the shade of trees (Tag) and their differential (AT,) as
Supplementary Materials. Table S1 provides these temperatures according to tree species while
Table S2 provides this information according to the five surface types we investigated (i.e., bare soil,
bark mulch, bitumen, grass, and concrete pavers).

2.4. Data Analysis

All statistical tests were done using JMP software (JMP 14 SW, SAS Institute Inc, Cary, NC, USA).
All data were first tested for normal distribution. Mean values were calculated for Ac and LAI for each
tree species. Surface and globe temperature data were normalized to account for day-to-day variation
in air temperatures. Surface temperature normalization was done for each surface type separately by
using the following equation:
T — To — Tiin )
Timax — Thmin
where T” is the normalized temperature, T, is the observed temperature, T}, is the minimum recorded
temperature and Ty is the maximum recorded temperature. Linear regression analysis was performed
between tree physical traits and all the temperature measurements. Generalized Linear Models (GLM)
were used to determine relationships among Ac, LAI, surface, globe temperature and surface types.
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3. Results

3.1. Relationships of Physical Traits

Of the 471 urban trees that we sampled, Casuarina equisetifolia accounted for of the most trees
of a single species (n = 58) followed by Lagerstroemia (n = 55) and Lophostemon confertus (n = 49),
while Liquidambar styraciflua had the lowest representation (n = 13) (Table 1). DBH of the sampled tree
population ranged from 0.03 m (Lagerstroemia) to 1.6 m (Melaleuca quinquenervia) and tree height varied
from 3.8 m (Casuarina equisetifolia) to 35.3 m (Eucalyptus saligna) (Table 1).

Jacaranda mimosifolia trees generally had the largest Ac (99.47 + 85.74 m?) followed by Platanus
acerifolia (96.50 + 44.52 m?) and Liquidambar styraciflua (95.50 + 73.43 m?) while Waterhousea floribunda
had the smallest Ac (9.42 + 6.85 m?) among all sampled species (Table 1). Furthermore, Ficus macrocarpa
was the species with the highest LAI (3.4 + 0.5 m? m~2) and Waterhousea floribunda had the second
largest LAT (2.9 + 0.5 m? m~2). In contrast, Corymbia citriodora had the lowest LAI (0.9 + 0.2 m? m~2)
among the sampled tree species (Table 1).

Across all species, tree height and DBH followed a clear positive trajectory (R? = 0.68, p < 0.001),
as did Ac (R = 0.75, p < 0.001) (Figure 2). At the individual tree level, there were no significant
relationships between LAI and DBH or Ac. Tree species with dense canopies and medium height
(e.g., Ficus macrocarpa, Lagerstroemia) had a smaller Ac and higher LAI compared to tall, species with
more open canopies (e.g., Casuarina equisetifolia, Corymbia citriodora) (Table 1).
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Figure 2. Relationships between stem diameter at breast height (DBH) and total tree height (panel (A)
and vertically projected crown area (Ac; panel (B)) of 471 free-standing trees from 13 species growing in
urban environments across greater Sydney, Australia. Dotted lines show best-fit functions (A: Tree height
=19.38 x DBH"4¢; B: Ac =136.23 x DBH1'29). Coefficients of determination are shown.
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3.2. Influence of Urban Trees on Different Types of Temperature

No significant effect of Ac or LAI on the shaded surface temperature (Tsg) or surface temperature
differential (ATs) (p > 0.05) was found (Figure 3). Figure 4 shows the distribution of ATs and LAI for
each species, further demonstrating that there was no systematic relationship between LAl and ATg
among the investigated tree species. Species-specific measurements for mean, minimum, maximum
and the differential of surface temperatures measured in the shade and sun are provided in Table S3.

-45

0 100 200 300 400

| (B)

ATs(°C)

0.0 1.0 2.0 3.0 4.0 5.0
LAI (m?m3)

Figure 3. Relationships between tree crown characteristics and surface cooling, calculated as differential
between the surface temperature in the sun and shade of a given surface type (ATs). Panel (A):
vertical crown projected area (Ac) and surface temperature differential (ATg); panel (B): Leaf Area
Index (LAI) and surface temperature differential (ATs). Data are shown for 471 individual trees
from 13 species growing in urban environments across greater Sydney, Australia. Dotted lines show
linear fits.
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Figure 4. Distribution of the surface temperature differential (ATs; panel (A)) and Leaf Area Index
(LAIL panel (B)) in each tree species. Distribution of LAI in each species is arranged from the highest
mean LAI to the lowest mean LAL The lower and upper line of the box shows the first and third
quartile; the line and cross inside the box show the median and mean; the whiskers show minimum
and maximum values.

However, the effect of surface type on Tss, Tsp, and ATs was highly significant (p < 0.001). Tsg ranged
from 20.4 °C to 54.7 °C and bitumen had the highest mean Tsg (33.5 + 4.2 °C) followed by bark mulch
(33.4 £ 3.1 °C), concrete pavers (33.1 + 4.8 °C), bare soil (33.0 £ 2.9 °C) and grass (31.0 + 2.7 °C) (Table 2).
Tgr, ranged from 30.1 °C to 76.9 °C and bark mulch had the highest mean Tgy, (58.2 + 8.1 °C) followed
by bare soil (55.2 + 5.9 °C), bitumen (54.5 + 6.2 °C) and grass (49.4 + 5.1 °C). Bark mulch showed the
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largest ATg (—24.8 £ 7.1 °C) followed by bare soil (-22.1 + 5.6 °C), bitumen (—20.9 + 5.8 °C) and grass
(—18.5 + 4.8 °C) respectively. Concrete pavers showed the smallest ATg (-17.5 + 6.0 °C).

Table 2. Mean, minimum and maximum shaded surface temperature (Tsg), sunlit surface temperature
(Tsp) and surface temperature differential (ATg) recorded on bare soil, grass, bark mulch, concrete pavers

and bitumen.

Mean Tgg + SD Min /Max Tsg Mean Tgp + SD Min/Max Tgp, Mean ATg + SD Min/Max ATg
Surface Types e e ©Q) Q) Q) O
Bare soil 33.0+29 27.5/40.4 55.2+59 44.8/69.9 -221+55 -9.9/-34.3
Grass 31.0+27 22.5/40.2 494 +5.1 30.1/64.0 -185+4.8 —6.3/-30.9
Bark mulch 334+3.1 27.6/42.5 58.2 + 8.1 42.8/76.9 -248+7.1 -8.2/-41.1
Pavers 33.1+438 20.4/54.7 50.1 +5.6 33.6/60.5 -175+6.0 -7.0/-32.0
Bitumen 33.5+42 25.9/44.9 545+62 40.7/69.6 -209+58 —-8.6/-35.9

A Tukey HSD test revealed that Tg, was significantly different between all surface types except
between bark mulch and bare soil, bitumen and bare soil and pavers and grass (Figure 5). Similarly,
Tss was significantly different between grass and bitumen, grass and bark mulch, grass and pavers,
and also between grass and bare soil. Further, ATg was significantly different among all the surface
types except bark mulch and bare soil, bitumen and bare soil and grass and pavers (Table 3).

0
-5 _A_ A
B,C < B T
-10
-15 —‘7
O -20
g 25 X
230 J 4
-35
-40 1
-45
Bare soil Bark mulch Bitumen Grass Pavers
Surface types

Figure 5. Box whisker plot illustrates the distribution of surface temperature differential (ATg) in
surface types: bare soil, bark mulch, bitumen, grass and pavers. Levels not connected by the same
letter are significantly different. The lower and upper line of the box shows the first and third quartile;
the line and cross inside the box show the median and mean; the whiskers show minimum and
maximum values.

Shaded globe temperature (GTg) and globe temperature differential (ATg) did not show any
significant relationship with the tree morphological parameters (p > 0.05). Data for species-specific
globe temperature measurements collected in the shade and sun, as well as ATg are provided in
Table S4. Absolute GTg ranged from 26.3 to 44.5 °C and bark mulch had the highest mean GTg
(37.9 + 2.8 °C) followed by bitumen (36.9 + 2.2 °C), pavers (36.1 + 2.4 °C), bare soil (34.4 + 2.2 °C) and
grass (33.3 £ 3.2 °C) (Table 4). Absolute globe temperature in the sun light (GTg ) ranged from 28.4 to
54.1 °C and, consistently with rankings found in the shade, bark mulch had the highest mean GTg,
(48.8 + 2.8 °C) followed by bitumen (46.1 + 2.2 °C), bare soil (41.5 + 2.2 °C), pavers (40.4 + 2.4 °C)
and grass (36.5 + 3.2 °C). Bark mulch showed the largest ATg (—10.9 + 0.5 °C) and grass showed the
lowest ATg (=3.2 + 0.2 °C). The effect of surface types on GTs, GTgp, and AT was highly significant
(p < 0.001). Tukey’s HSD test showed that GTs was significantly different among all the surface types
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except bitumen-bare soil. Similarly, GTgy, was significantly different between all surface types except
bitumen-pavers, pavers-bare soil and bitumen-bare soil. Further, ATg significantly differed between
all surface types (p < 0.001) (see Table 3).

Table 3. Tukey’s HSD pairwise comparison of the surface temperature differential (ATs) and black
globe temperature differential (ATg) observed among the five surface types: concrete pavers, grass,
bitumen, bark mulch and bare soil.

Pavers Grass Bitumen Bark Mulch Bare Soil

(a) Surface temperature differential (ATg)

Pavers 0.5917 0.2432 <0.0001 <0.0001
Grass 0.5917 <0.0001 <0.0001 0.0187
Bitumen 0.2432 <0.0001 <0.0001 0.8692
Bark mulch <0.0001 <0.0001 <0.0001 <0.0001
Bare soil <0.0001 0.0187 0.8692 <0.0001
(b) Black globe temperature differential (ATg)
Pavers <0.0001 <0.0001 0.0096 <0.0001
Grass <0.0001 <0.0001 <0.0001 <0.0001
Bitumen <0.0001 <0.0001 <0.0001 0.0166
Bark mulch 0.0096 <0.0001 <0.0001 <0.0001
Bare soil <0.0001 <0.0001 0.0166 <0.0001

Table 4. Mean, minimum and maximum shaded globe temperature (GTg), sunlit globe temperature
(GTsL), and globe temperature differential (ATg) recorded over bare soil, grass, bark mulch,
concrete pavers and bitumen.

Surface Types Mean GTg + SD Min /Max GTg Mean GTg + SD Min/Max GTgp Mean ATg + SD Min/Max ATg

(°C) O (@] (o] Q) °0)
Bare soil 344422 26.3/41.5 415+22 33.4/48.6 -72+0.1 -7.3/-7.0
Grass 33.3+32 25.3/43.1 36.5+3.2 28.4/46.3 -32+0.1 -3.4/-3.0
Bark mulch 379+28 32.2/43.0 488 +2.8 39.3/58.3 -109+0.3 -10.3/-11.5
Pavers 36.1+24 29.6/39.6 404 +24 33.8/43.9 -43+0.1 —4.3/-4.3
Bitumen 369 +22 33.4/44.5 46.1+22 38.1/54.1 -9.5+£0.2 -10.5/-8.5

4. Discussion

4.1. Influence of Urban Trees on Surface and Globe Temperature

Tree shade reduced the surface temperatures by 20 °C on average, and species like Lophostermon
confertus, Pyrus calleryana and Liquidambar styraciflua provided the largest surface temperature reduction
of around 40 °C. Although this can be due to having a comparatively larger LAI, the correlation
analysis between Ac, LAI and the ATg did not show a strong, significant relationship. For example,
Waterhousea floribunda had the second largest LAl among the sampled tree species, however, it had the
lowest average ATg. Similar results were found in the globe temperature measurements. There is a
globe temperature reduction up to 13 °C from the sun to the tree shade. Nevertheless, results do not
support that LAI or the Ac have systematically influenced this temperature reduction. Despite having
both the largest LAI, Ficus macrocarpa accounted for the highest globe temperatures.

Our findings are different from the findings of other studies. For example, the study conducted
by Hardin and colleagues [40] in Terre Haute, Indiana, USA, on the effect of urban leaf area on
summertime urban surface temperatures found that leaf area index and surface temperature were
negatively correlated. In this study, LAI accounted for 62% of variation in surface temperature.
Moreover, a study by Yusof and colleagues [24] suggested that surface temperature reduction is
positively correlated with LAI They also found that tree shade reduces the surface temperature by an
average of 12 °C. A study carried out in the Suzhou Industrial Park, Shanghai, China [41] concluded that
the cooling effect of green areas were positively correlated with LAL Similar findings were presented
by Napoli and colleagues [42] where they found a strong relationship between ATg on asphalt and LAI



Forests 2020, 11, 1141 11 of 14

and a weaker relationship between ATs on grass and LAI Studies have found that the amount of solar
radiation blocked by tree shade is strongly related to size of the crown and height of the tree [43,44],
and thereby improves surface cooling. In this study, we were unable to build such a relationship with
tree height or Ac. There is no doubt that tree shade reduces the amount of heat absorbed by the surface
underneath during the daytime; however, our study provided evidence that microclimate underneath
the trees and the temperature of surface material greatly depends on the type of surface material.

4.2. Effect of Surface Types on Surface and Globe Temperature

The results showed that grass had the lowest recorded surface temperature and globe temperature
both in shade and sun. This can be due to the combined effects of evapotranspiration and albedo of
this surface material. Albedo can be defined as the fraction of the incident sunlight that the surface
reflects [45,46]. Grass has the highest albedo (0.3-0.25) [47] of all the surface types investigated here,
thus it absorbs less and reflects more radiation than the other surface types. However, it does not
store incoming solar radiation and emits this energy as sensible heat like the other surface materials.
The energy absorbed by grass is used to fuel the biochemical processes of photosynthesis and latent
heat flux cooling, which reduces air temperature. On the contrary, bark mulch had the highest Tgg Tg,
and GTs. It has a very low albedo 0.05 [48] compared to the other surfaces (bare soil (0.26-0.16) [49],
bitumen (0.2-0.05) and concrete pavers (0.13-0.1) [47]) and thus increases the surface temperature by
absorbing more radiation. However, it is worth noting that there are other factors, such as the thermal
emissivity and thermal mass of surface materials, which influence the surface temperatures [50] and
the extent to which surface materials contribute to the UHIE. Further experimentation is needed to
evaluate individual effects of these parameters on surface temperature variations. Largest surface
cooling from tree shade was observed for bark mulch followed by bare soil, bitumen, grass and
pavers. The results indicated that the surface material had a strong and significant influence on
surface temperature. This finding is backed-up by the globe temperature recorded above each surface
material; the highest GTg|, was recorded over bark mulch whereas the lowest was recorded over grass.
Black globe temperature combines the effects of air movement, dry-bulb temperature, wind speed
and radiant heat received from the surfaces [51]. The novel finding of this study advances our
understanding of cooling provided by trees. Planting trees with wider canopies and larger LAI does
not directly support urban cooling through surface temperature reduction. Rather, the surface material
has a larger influence in reducing thermal loads in urban space. This finding should be integrated in
urban planning and cooling strategies to mitigate UHIE.

4.3. Limitations of the Study

The majority of the sampled trees were well-established trees with a DBH of 10-50 cm. This is a
clear indication that the urban landscape of Western Sydney does primarily accommodate younger
mature trees and that older mature trees with wide canopies are lower in number. Research has
demonstrated that the shade profile of a tree depends on the maturity, overlapping canopies and
canopy extents [52-54]. The major proportion of our study was comprised of young mature trees
with smaller and separate canopies which can influence the amount of solar radiation reaching the
ground. We did not include measurements of soil moisture, which potentially influenced our surface
temperature measurements of bare soil, grass and bark mulch. However, surface temperatures were
only recorded during midday on a hot sunny day following one or two days of zero precipitation.
Only during 2 out of 13 days did we experience a light shower (<10 mm total daily precipitation) two
days prior to data collection. We thus expect that any influence of soil moisture on surface temperatures
would be marginal.

5. Conclusions

This study gave a novel insight into the relationship between surface temperature and canopy
characteristics. It showed that canopy characteristics such as LAI, shaded area and crown projected
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area do not have a strong influence on the temperature loads on surfaces. Although these canopy
characteristics varied among the tested species, they were unrelated to surface temperature reductions
in shade. Nevertheless, we found that surface types play a significant role in absorbing and
reflecting radiation, thereby controlling surface temperatures and cooling arising from tree shade.
Evapotranspiration will have an effect on surface cooling; however, further studies are needed to
determine the cumulative effects of surface material and tree evapotranspiration on surface cooling.
This novel finding can be integrated in urban cooling and urban planning strategies. Landscape planners
and architects should consider the choice of surface materials in urban settings as a higher priority
than tree species for shade quality alone when implementing urban greening strategies to mitigate
urban heat.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/11/1141/s1.
Table S1: Tree species with their mean, minimum and maximum air temperature in the shade (TAS), in the sun
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and maximum shaded surface temperature (TSS), sunlit surface temperature (TSL) and surface temperature
differential (ATS). Table S4: Tree species with their mean, minimum and maximum globe temperature in the shade
(GTS), in the sunlight (GTSL) and the differential between the them (ATG).
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