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Abstract: In this paper, site-specific allometric biomass models were developed for European beech
(Fagus sylvatica L.) and silver fir (Abies alba Mill.) to estimate the aboveground biomass in S, inca
virgin forest, Romania. Several approaches to minimize the demand for site-specific observations in
allometric biomass model development were also investigated. Developing site-specific allometric
biomass models requires new measurements of biomass for a sample of trees from that specific site.
Yet, measuring biomass is laborious, time consuming, and requires extensive logistics, especially for
very large trees. The allometric biomass models were developed for a wide range of diameters
at breast height, D (6–86 cm for European beech and 6–93 cm for silver fir) using a logarithmic
transformation approach. Two alternative approaches were applied, i.e., random intercept model
(RIM) and a Bayesian model with strong informative priors, to enhance the information of the
site-specific sample (of biomass observations) by supplementing with a generic biomass sample.
The appropriateness of each model was evaluated based on the aboveground biomass prediction of a
1 ha sample plot in S, inca forest. The results showed that models based on both D and tree height (H)
to predict tree aboveground biomass (AGB) were more accurate predictors of AGB and produced
plot-level estimates with better precision, than models based on D only. Furthermore, both RIM and
Bayesian approach performed similarly well when a small local sample (of seven smallest trees) was
used to calibrate the allometric model. Therefore, the generic biomass observations may effectively
be combined with a small local sample (of just a few small trees) to calibrate an allometric model
to a certain site and to minimize the demand for site-specific biomass measurements. However,
special attention should be given to the H-D ratio, since it can affect the allometry and the performance
of the reduced local sample approach.
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1. Introduction

Forests play an important role in mitigating the effects of climate change [1–3], contributing significantly
to the uptake of atmospheric carbon dioxide [4]. However, the large uncertainties usually associated with
the estimation of forest biomass stock and stock change are an important limitation for the successful
implementation of forest-based mitigation programs [2]. As a result, there is an increasing interest from the
international scientific community to reduce the uncertainties of forest biomass estimates [5,6].

Forest biomass estimates usually rely on allometric biomass models, which are regression models
that predict individual tree aboveground biomass (AGBi) as a function of easy-to-measure independent
variable xi (e.g., diameter at breast height, D, and/or tree height, H):

AGBi = β0 · xi
β1 + εi. (1)

Allometric biomass models describe how tree biomass varies with the predictor(s). For trees
of similar sizes, the variation in AGB is determined by the genotype, the environmental conditions,
and their interaction [7]. For example, the environmental conditions such as temperature and
precipitation were shown to affect the allocation of biomass within trees [8], whereas a change in
tree biomass allocation due to different levels of tree competition was shown to significantly affect
tree biomass allometry [9]. It is well documented that allometric biomass models are species- and
site-specific [10–14], and, therefore, specific model parameters should be used for each species and
each site. Developing species-specific allometric models, based on sample trees from multiple sites,
requires the models to be applied in those same sites. This is required because the mean of site-effects
would tend to zero and, therefore, the mean biomass per unit area is unbiased [10]. However, applying a
model calibrated for different sites to one single site, could yield biased biomass estimates [13,15].
As a result, calibration of allometric models at the site level becomes compulsory to obtain accurate
estimates of biomass at the site level. Moreover, given the small forest property size, especially in the
case of private owners [16], estimates of forest biomass over small forest areas are often needed.

Development of unbiased allometric models for new sites requires measuring the biomass
of a large enough number of trees from the total tree population [17]. However, measuring the
biomass requires extensive logistics and resources, limiting, therefore, the possibility to calibrate the
model for each site. The most common fitting method for allometric models is the ordinary least
squares regression [18–21]. However, because the residuals of allometric models are heteroscedastic,
i.e., the variance increases with a predictor, a weighting approach should be used to account for
the heteroscedasticity, which is usually the inverse of the predicted variance for a given value of
the predictor. Since the variance is greatest for the largest trees, these trees will bring less effective
information into the model (because the weights are calculated as the inverse of variance, large trees
are weighted less compared to small trees) [22]. These large trees are also the most difficult to measure
(for biomass); therefore, the logistics limitations of measuring biomass make the calibration of these
models at site level a very low cost-effective task. Because of that, much interest has been invested in
finding ways to make local calibration more affordable. For example, [23] proposed the “small sampling
scheme” method, where the smallest two trees were used to detect the most appropriate parameters of
the local allometric model from a database of allometric models.

When species-specific biomass observations from other sites are available, the mixed-effects models
can be used to enhance the local information (of the site-specific sample). In a similar conceptual
approach to [23], just a few local trees can be used to calibrate the intercept of a random intercept model
to local conditions, whereas the slopes remain similar for all locations. Therefore, the assumption
here is that, at a species level, the allometric scaling is invariant. Although the assumption of
invariant allometric scaling has been widely disputed, it was demonstrated that allometric scaling is
species-specific [12], but there is no information to support a site-specific allometric scaling. However,
it has been shown that the intercept of allometric models vary by site [10]. This approach can be very
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convenient since the intercept can be calibrated based on a few small trees, for which the biomass can
more easily be measured.

Another approach extensively promoted lately is the Bayesian modelling, since it is considered an
effective way to combine prior information with the local observations [24,25]. Compared to random
intercept model, the Bayesian approach does not need the observations (biomass data) from other
locations; it only needs the parameter values (it could be either theoretical or estimated) which can
be integrated with new local information. Therefore, the Bayesian approach can be more versatile,
as demonstrated by [26].

The few remnant natural forests, located in remote mountain areas with steep slopes in Eastern
and Southern Europe are often dominated by pure and mixed beech and coniferous forests [27–30].
European beech (Fagus sylvatica L.) represents one of the widely distributed tree species across
Europe [31], in Romania accounting for a third of the Romanian growing stock [32]. Allometric biomass
models for European beech have been developed in numerous studies [33–39]. In contrast, fewer studies
reported allometric models for silver fir (Abies alba Mill.), another species often present in the few
remaining mixed virgin forests, sometimes, from the point of view of allometry, being assimilated to
Norway spruce [40,41].

The following aims were set for this study: (i) developing allometric biomass models for European
beech and silver fir to be used to estimate biomass of a European beech-silver fir virgin forest located in
Southern Carpathians; (ii) investigating whether the local calibration of allometric models can be done
appropriately based on a reduced sample of site-specific observations using a random intercept model
or a Bayesian model; and (iii) assessing how these models and approaches perform in predicting AGB
in a 1-ha sample plot of this virgin forest.

2. Materials and Methods

2.1. Materials

2.1.1. Study Site

The study was conducted in Făgăras, Mountains (45◦40′0.420′′ N and 25◦10′14.359′′ E,
Southern Carpathians, Romania). Having the aim to develop allometric models to estimate the
biomass in the UNESCO S, inca virgin forest (351.8 ha), the study site is located in the immediate
neighborhood of the virgin forest. The study site has similar composition and structure to the virgin
forest and, before 2009, when the first silvicultural interventions were applied, was itself regarded as a
virgin forest. The species composition is dominated by European beech (Fagus sylvatica L.) and silver
fir (Abies alba Mill.). The climate is temperate continental with a mean annual temperature of 6.1 ◦C
and average annual rainfall of 1100 mm. The bedrock consists of crystalline schists, and the soils are
predominantly cambisols [42].

2.1.2. Biomass Datasets

Dataset #1

Dataset #1 consists of site-specific biomass observations from the study site. A destructive
sampling method took place in July and August 2018 for European beech trees and in 2019, for silver
fir trees. To avoid the effects of thinning on tree allometry, the sample trees were selected from stand
patches that presented no stumps from silvicultural interventions. Since the trees within the virgin
forests have a large range of diameters and reach greater dimensions than those in managed forests [27],
the trees felled for the biomass determination were selected to cover a large range of diameters at breast
height (D-range) as wide as possible, with at least one tree in each 10 cm D-class. The information
from a 1-ha sample plot (presented in the next section) was used to determine the D-range. A total of
29 trees were destructively sampled, 15 European beech and 14 silver fir trees (Table 1).
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Table 1. The characteristics of site-specific sample trees (full sample). Note: D is the diameter at breast
height; H is the tree height; AGB is the aboveground biomass.

Characteristic European Beech Silver Fir

Sample size 15 14
D range (cm) 5.7–86.3 6.3–92.6
D mean (standard deviation) (cm) 32.8 (26.1) 35.8 (27.0)
H range (m) 6.2–40.3 3.5–43.5
H mean (standard deviation) (cm) 22.8 (12.5) 21.2 (13.8)
AGB range (kg) 6.0–8447.1 4.2–4042.9
AGB mean (standard deviation) (kg) 1561.4 (2382.7) 1034.6 (1316.9)

For each sample tree, D (in cm, with a precision of 0.1 cm) and the total height (H, in m, with a
precision of 0.01 m) were recorded. The selected trees were cut down and fresh biomass was measured.
The trees were first separated into stem and branches (with the leaves/needles attached) and then each
fraction was weighed. For large stem sections and big branches, we used a crane with ±0.001 Mg
precision and 3 Mg capacity [43], whereas for smaller branches, we used an electronic scale with a
precision of ±0.1 kg. For each stem, at least 5 sample discs were taken from different tree heights,
to determine moisture content. The wood discs were weighed fresh, and then transported to the
laboratory and dried in the oven at 70 ◦C for at least 5 days, until the constant weight was achieved and
weighed again. The mean value of dry-to-fresh weight ratio of sampled wood discs for each tree was
used to convert the fresh stem mass into dry stem mass. Tree crown was divided into three sections
(i.e., lower, middle, and upper) and 3–4 branches per section were randomly selected to determine
the branch-to-foliage ratio. Each sampled branch was weighed in the field with a ±0.1 kg precision.
For European beech, the leaves were detached from the branches in the field, and each fraction was
weighed. For silver fir, the sample branches were taken into the laboratory and dried in the oven for
1–2 days (at 70 ◦C) to ease separation of needles from branches. After separation, the two fractions
were dried until constant weight. Each fraction was weighed again, and the ratio of foliage/branches
weight was determined. To determine the moisture content of branches and foliage, fresh samples for
each fraction were randomly selected within each crown layer and weighed with a precision of ±0.01 g.
The samples were dried in the oven at 70 ◦C until the constant mass was reached. The dry biomass of
each component was determined, and then the dry AGB was calculated for each individual tree.

Dataset #2

Dataset #2 (the reduced site-specific sample) was derived from Dataset #1 (Table 1) and consisted
of the smallest 7 trees for each of the two species (European beech and silver fir); the sample size was
set to 7, because it was considered to be the minimum sample size that could be used in this context.
The range of the sample trees attributes is presented in Table 2.

Table 2. The characteristics of reduced site-specific sample (Dataset #2).

Characteristic European Beech Silver Fir

Sample size 7 7
D range (cm) 5.7–20.0 6.3–27.9
D mean (standard deviation) (cm) 11.1 (5.8) 14.2 (7.9)
H range (m) 6.2–19.8 3.5–19.8
H mean (standard deviation) (m) 11.4 (5.2) 9.3 (5.8)
AGB range (kg) 6.0–182.2 4.2–358.9
AGB mean (standard deviation)
(kg) 65.1 (73.9) 84.2 (128.8)
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Dataset #3

Dataset #3 consists of Dataset #1, plus a generic dataset (Table 3), that was not specific to our site.
The generic observations were extracted, for each of the two species, from two international databases
of tree biomass observations [35,44].

Table 3. The characteristics of the generic biomass sample and Dataset #3.

Characteristic
Generic Dataset Dataset #3

European Beech Silver Fir European Beech Silver Fir

Sample size 144 102 159 116
D range (cm) 5.2–62.1 5.1–64.0 5.2–86.3 5.1–92.6
H range (m) 9.2–33.0 4.1–28.9 6.2–40.3 3.5–43.5
AGB range (kg) 6.6–3116.2 7.0–1652.3 6.0–8447.1 4.2–4042.9
Number of sites 10 10 11 11
References [35,44] [35,44] and this study

Dataset #4

Dataset #4 consists of the generic dataset presented in Table 3, plus the reduced site-specific
sample, presented in Table 2.

2.1.3. Inventory Plot

A one-hectare permanent inventory plot (100 m × 100 m) was established in S, inca virgin forest in
2003 and reinventoried in 2013. Each living tree with a D greater than 5 cm was recorded by species
and measured for D using a caliper and for H using a Vertex IV hypsometer (Haglöf, Sweden). In total,
259 silver fir and 153 European beech trees were recorded. The range of D was between 5 and 99.2 cm
for silver fir and between 5 and 97.5 cm for European beech.

We applied all allometric models developed in this study to estimate the total plot AGB in order
to investigate how the models behaved. Since the true AGB at plot level is unknown, our analysis was
not meant to show which model gives the most accurate AGB estimate at plot level, but to highlight
any relative differences between AGB estimates, as resulted from different allometric models.

2.2. Development of Allometric Biomass Models

2.2.1. Linear Regression Model on Log-Transformed Data (LM)

To fit the allometric biomass models, two approaches are common: (i) fitting nonlinear models
directly in the original scale, accounting, however, for the commonly heterogeneous variance of
residuals and (ii) log-transforming all variables and fitting a linear model on log–log transformed data.
However, using log-log transformation implies a bias during back transformation, since the normal
distribution of residuals in logarithmic scale becomes lognormal after back transformation, and because
the mean of the lognormal distribution is usually larger than 1.0 (i.e., the 1.0 value represents the back
transformed mean of residuals in log-scale, exp(0) = 1). In this study, we adopted the logarithmic
transformation approach, because the generally small sample size available would not be sufficient
for developing specific functions to account for heteroscedasticity, necessary with the first approach.
A second reason is that the transformation did account well for the heteroscedasticity of residuals.

Within this approach, the models rely exclusively on local data (on Dataset #1). The linear
allometric models on log-log transformed data have the following forms:

ln(AGB)i = β01 + β11 ln(D)i + ε1 (2)

ln(AGB)i = β02 + β12 ln(D)i + β22 ln(H)i + ε2 (3)
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After back transformation, Equations (2) and (3) become:

ˆAGBi = exp(β̂01) ·Di
β̂11 · exp

(
σ̂1

2

2

)
· exp(ε1) (4)

ˆAGBi = exp(β̂02) ·Di
β̂12 ·Hi

β̂22 · exp
(
σ̂2

2

2

)
· exp(ε2), (5)

where exp
(
σ1

2

2

)
and exp

(
σ2

2

2

)
are the correction factors and CF [45,46], based on residual variances σ1

2

and σ2
2 resulted from Equations (2) and (3), respectively. For Equations (2) and (3), we checked all

regression assumptions and presented the results only if the assumptions were violated.

2.2.2. Random Intercept Models (RIM)

The model forms presented in Equations (2) and (3) were used to develop mixed-effects models
with random intercept effect (the random effect was represented by the site), whereas the coefficients of
the variables were entered in the models as fixed-effects. Four models were fitted for each tree species:
(i) Equation (2) based on Dataset #3, (ii) Equation (3) based on Dataset #3, (iii) Equation (2) based on
Dataset #4, and (iv) Equation (3) based on Dataset #4. For each of these models, the slope was similar
for all sites, whereas the intercept varied by site. The total number of sites was 11, for each model and
each dataset, see Tables 3 and 4. The parameter estimates corresponding to the study site (S, inca forest)
were retained for further analysis and used to derive biomass predictions for European beech and
silver fir trees.

Table 4. The characteristics of Dataset #4.

Characteristic European Beech Silver Fir

Sample size 151 (i.e., 144 + 7) 109 (i.e., 102 + 7)
D range (cm) 5.2–62.1 5.1–64.0
H range (m) 6.2–33.0 3.5–28.9
AGB range (kg) 6.0–3116.2 4.2–358.9
Number of sites 11 11

2.2.3. Bayesian Models

The structure of the fitted Bayesian models is similar to Equations (2) and (3). The Bayesian
model requires prior information for model parameters and residuals. The prior information was
derived from the generic dataset (Table 3) for each of the two species. We fitted random intercept
and slope models (with the site grouping factor as random effect) to the generic dataset in order to
obtain the parameter estimates and their standard errors, that were further used to construct the
priors. The priors were defined in JAGS (Just Another Gibbs Sampling) as probability density functions
(“dnorm” function in R [47]), characterized by parameter estimates and the precision term that was
calculated as the inverse of parameter variance. For example, the intercept of model based on D only
for European beech was −1.94, and its standard error was 0.171. The precision term was calculated as
the inverse of squared 0.171, which was 34.

As for the RIM, we developed four types of Bayesian models for each of the two species:
(i) Equation (2) based on Dataset #1, (ii) Equation (3) based on Dataset #1, (iii) Equation (2) based on
Dataset #2, and (iv) Equation (3) based on Dataset #2.
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2.3. Evaluation of Calibration Approaches

To evaluate the fitting approaches, we compared the predicted tree AGB with the observed tree
AGB in logarithmic scale and further calculated the root mean squared deviation (RMSD):

RMSD =

√∑n
i=1

[
ˆln(AGB)i − ln(AGB)i

]2

n
, (6)

where ˆln(AGB)i is the predicted ln(AGB) for ith tree, ln(AGB)i is the observed ln(AGB) of ith tree, and n
is the sample size.

Evaluation of model calibration is often performed at goodness of fit level only. However, [22] showed
that the coefficient of variation was not a good indicator of predictive performance of allometric models.
As a result, we propagated the model parameters through a Monte Carlo error propagation procedure to
calculate the mean predicted biomass at plot level and its standard error.

The Monte Carlo propagation procedure was defined as:

(1) For the kth replication (K = 5000, K is the total number of replications), a set of allometric model
parameters and residuals were sampled from a multivariate normal distribution and a univariate
normal distribution, respectively.

(a) Sampling a residual value from a normal distribution with the mean zero and standard
deviation equal to residual standard error of the allometric model;

(b) Sampling a set of model parameter values from a bivariate normal distribution (for models
using only D as predictor of AGB) or a trivariate normal distribution (for models based on
both D and H to predict AGB);

(c) Calculate the predicted ln(AGB) for each tree within the 1 ha inventory plot (Section 2.1.3),
based on the model parameters sampled at step 1.b and the residual sampled at step 1.a;

(d) Back transform the predicted ln(AGB), using a correction factor (CF) calculated as in
Section 2.2.1;

(e) Calculate the total plot AGB by addition of individual tree predictions;

(2) Steps (1.a) to (1.e) were repeated for a number of K = 5000 times to calculate:

(a) Mean predicted plot biomass, as the mean of values obtained at step 1.e;
(b) Standard error of the mean (values at step 1.e), which, because of using a single plot,

equals the standard deviation of the sample mean.

Step 2 was repeated nrep = 5000, to stabilize the mean and the standard error. The values further
reported are (i) the mean of mean values at step 2.a and (ii) the mean of the standard error values at
step 2.b.

To highlight the role of variance–covariance matrix in the plot-level biomass estimation,
we calculated the plot biomass also based on model parameter point estimates.

2.4. Data Processing

The analysis was performed in R [48] and Jags (Bayesian models) [49] using the packages
“nlme” [50] and “R2jags” [47].

3. Results

3.1. Allometric Biomass Models

The parameter estimates of the different allometric biomass models are presented in Table 5.
Both the models based on a single predictor (D only) and on two predictors (D and H) were fitted.
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The simple regression models (i.e., LM; Table 5) fitted well to the data, and, despite of relatively limited
sample size, the coefficients of determination (R2) for models based on single predictor were 0.9972
for European beech and 0.9862 for silver fir, whereas for models based on D and H, the R2 increased
to 0.9986 for European beech and to 0.9921 for silver fir. The reason for these large coefficients of
determination is related to the wide D range of the sample trees (Table 1).

Table 5. The parameters of allometric biomass models predicting tree aboveground biomass (AGB),
by fitting approach and predictor combination. Standard errors of model parameters are presented in
parenthesis. RSE is the residual standard error; CF is the correction factor and was calculated as in
Equations (4) or (5); LM is the linear regression model on log-transformed data (Section 2.2.1); RIM is
the random intercept model (Section 2.2.2); ln(D) is the logarithm of diameter at breast height; ln(H) is
the logarithm of tree height.

Fitting Approach Dataset Predictors Model Form β0(SE) β1(SE) β2(SE) RSE CF

European Beech

LM #1
ln(D) Equation (2) −2.6634

(0.1254)
2.6368
(0.0384) N.A. 0.1337 1.0089

ln(D),
ln(H) Equation (3) −3.1632

(0.1761)
2.1468
(0.1489)

0.6909
(0.2060) 0.1000 1.0050

RIM
#3

ln(D) Equation (2) −2.1312
(0.0901)

2.4714
(0.0253) N.A. 0.1712 1.0148

ln(D),
ln(H) Equation (3) −3.0039

(0.1389)
2.1151
(0.0495)

0.6733
(0.0845) 0.1450 1.0106

#4
ln(D) Equation (2) −2.1625

(0.0997)
2.4368
(0.0284) N.A. 0.1683 1.0143

ln(D),
ln(H) Equation (3) −2.9793

(0.1593)
2.1191
(0.0511)

0.6512
(0.0916) 0.1474 1.0109

Bayesian model
#1

ln(D) Equation (2) −2.1768
(0.1148)

2.4884
(0.0345) N.A. 0.2042 1.0211

ln(D),
ln(H) Equation (3) −3.0637

(0.1076)
2.1497
(0.0445)

0.6553
(0.0605) 0.1091 1.0060

#2
ln(D) Equation (2) −2.1456

(0.1115)
2.4349
(0.0398) N.A. 0.2363 1.0283

ln(D),
ln(H) Equation (3) −2.9856

(0.1508)
2.1347
(0.0525)

0.6324
(0.0680) 0.1475 1.0109

Silver Fir

LM #1
ln(D) Equation (2) −3.4141

(0.3106)
2.6997
(0.0922) N.A. 0.2965 1.0449

ln(D),
ln(H) Equation (3) −2.9687

(0.2907)
1.3301
(0.4839)

1.4460
(0.5051) 0.2344 1.0278

RIM
#3

ln(D) Equation (2) −2.4756
(0.1106)

2.4219
(0.0346) N.A. 0.2033 1.0209

ln(D),
ln(H) Equation (3) −2.8079

(0.0984)
1.7737
(0.0708)

0.8745
(0.0920) 0.1624 1.0133

#4
ln(D) Equation (2) −2.5086

(0.1205)
2.3561
(0.0375) N.A. 0.1824 1.0168

ln(D),
ln(H) Equation (3) −2.7987

(0.1126)
1.8076
(0.0751)

0.8040
(0.0992) 0.1548 1.0121

Bayesian model
#1

ln(D) Equation (2) −2.3284
(0.1598)

2.3859
(0.0471) N.A. 0.3965 1.0818

ln(D),
ln(H) Equation (3) −2.7679

(0.1609)
1.9264
(0.0771)

0.6847
(0.0897) 0.2788 1.0396

#2
ln(D) Equation (2) −2.3553

(0.1591)
2.3316
(0.0552) N.A. 0.4064 1.0861

ln(D),
ln(H) Equation (3) −2.6917

(0.1707)
1.9063
(0.0810)

0.6305
(0.0969) 0.3192 1.0523

The alternative calibration approaches (i.e., RIM and Bayesian) produced parameter estimates
that were more or less comparable to those obtained with the regression approach, depending on
the species and on whether using the full site-specific sample of trees (i.e., Dataset #3 for RIM and
Dataset #1 for Bayesian model) or the reduced one (i.e., Dataset #4 for RIM and dataset #2 for Bayesian).
Compared to the Bayesian approach, the RIMs produced more similar parameter estimates to the
log-linear regression (Table 5). However, since the parameters of these models are inversely correlated,
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it is expected that large slope estimates are paired to small intercept values and vice-versa. The models
based on reduced sample size (i.e., RIM based on Dataset #4 and Bayesian model based on Dataset #2)
produced parameter estimates that were very similar to those resulted from the full sample (Table 5).

Notable differences in parameter estimates were observed for silver fir, especially when the two
predictors (D and H) were used together. The parameter of D, which usually is close to 2.0 (in models
where D and H are used together to predict AGB), was in this case 1.3301 and the parameter of H,
which normally is less than 1.0, was 1.4460. This means that for trees of similar H, an increase in D by
1% produced an increase in AGB of 1.33%; likewise, for trees of similar D, a 1% increase in H yielded
1.446% increase in AGB. The parameters of the alternative fitting approaches were slightly different,
the parameter of D being closer to 2.0 (i.e., 1.77–1.92; Table 5), whereas the parameter of H was lower
than 1.0 (i.e., 0.63–0.87; Table 5).

The residual standard errors (RSE), which in the case of log-transformed allometric models,
shows a form of the coefficient of variation of predicted biomass [22,51] and, in turn, indicates the
intrinsic variability of AGB for any given tree size (i.e., D or D and H), were generally smaller for
European beech than for silver fir (Table 5). This implies that the correction factors of the back
transformation were also smaller.

We plotted the predicted AGB against the observed AGB (for Dataset #1, see Figure 1) to highlight
any anomalies in models fitting the data. Figure 1 shows that predicted AGB followed better the
observed AGB for European beech compared to silver fir. Addition of H as a predictor of AGB resulted
in improvements of AGB prediction accuracy for both species. The accuracy levels are reflected by the
RMSD values presented in Figure 1, which, alternatively, can be visually assessed by looking at how
closely the observations are to the diagonal (i.e., 1:1) line.

Figure 1. The observed ln(AGB) against the predicted ln(AGB). Note: AGB is the aboveground biomass;
the values are presented in log-scale for two species, two predictor combination, and five fitting
approaches. The data used for validation is from Dataset #1. LM is the linear regression model on
log-transformed data (Section 2.2.1); RIM is the random intercept model (Section 2.2.2); ln(D) is the
logarithm of diameter at breast height; ln(H) is the logarithm of tree height; ln(AGB) is the logarithm of
aboveground biomass; RMSD is the root mean squared deviation (Section 2.3).
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As expected, the models based on reduced sample (i.e., RIM based on Dataset #4 and Bayesian
model based on Dataset #2) showed a slight reduction in prediction accuracy compared to models
based on full local sample (i.e., RIM based on Dataset #3 and Bayesian model based on Dataset #1)
and to the regression model (LM). The increase in RMSD was larger for silver fir than for European
beech and, as expected, was larger for models based on D only compared to models based on D and
H. Therefore, the reduced sample gives better results when used with models based on D and H
(as predictors of AGB).

For European beech, the Bayesian approach showed similar accuracy to RIM (RMSD was 0.0923 vs.
0.0996 for full sample and 0.1041 vs. 0.1013 for reduced sample). For silver fir, however, RIM performed
better, producing smaller RMSD values (Figure 1).

3.2. Comparison of Biomass Estimates on 1 ha Sample Plot

Applying the allometric models, to estimate the biomass at plot level, provides a way to examine
the performance of the models. Since the true biomass at plot level is not known, we just compared the
model estimates against each other.

The individual tree predictions (from 1 ha sample plot) that are based on parameter estimates
(Table 3) are shown in Figure 2. The AGB tree predictions resulted from RIM or Bayesian approaches
were compared to the regression approach predictions (i.e., LM vs. RIM and LM vs. Bayesian).
The results confirm the above observation that models based on D and H give more reliable (or consistent)
predictions of AGB (Figure 2, b vs. a).

The models based on full sample (i.e., models based on Dataset #1 and Dataset #3) produced more
consistent estimates when compared to those based on the reduced sample. However, the differences
were not substantially large. For example, the RIM approach based on Dataset #3 produced tree
AGB predictions that were on average +0.1% and −0.4% different (for European beech and silver fir,
respectively) to LM (Figure 2b1). However, the RIM based on Dataset #4 (reduced sample) were on
average −2.8% and −6.7% (for European beech and silver fir, respectively) different to LM (Figure 2b2).
The full sample (Dataset #1) Bayesian-based estimates differed by −0.1% and +2.9% (for European
beech and silver fir, respectively) to LM; for the Bayesian-based reduced sample, the differences were
−3.9% and −6.0% (for European beech and silver fir, respectively). The relative differences in tree
AGB predictions between LM and the alternative fitting approaches (Figure 2) were larger for small
trees, especially for silver fir. This result may have been the consequence of the anomalous parameter
estimates for silver fir, when D and H were used as predictors of AGB.

Mean biomass per hectare varied between 370,296 kg ha−1 for RIM using the reduced sample
(Dataset #4) and based on single predictor and 542,758 kg ha−1 for simple regression model based on D
only (Table 6). Therefore, the plot AGB estimates varied more when a single predictor of AGB was
used. On the other hand, the models based on both D and H produced more stable AGB estimates at
plot level (i.e., differences between estimates resulted from different fitting approaches were smaller).
In addition, the standard errors of mean AGB were smaller when both D and H were used as predictors.
Overall, the Bayesian models resulted in larger standard errors compared to both RIM and LM.
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Figure 2. The Bland-ltman plots comparing individual tree AGB predictions. Note: the mean differences
are calculated as the mean of relative individual differences (not differences between sum of individual
AGB estimates).
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Table 6. Mean biomass per hectare and its standard error by model type and predictor combinations,
presented for both species and for each individual species.

Fitting Approach Biomass Dataset Model Type Both Species European Beech Silver Fir

Mean
(kg/ha)

SE
(kg/ha)

Mean
(kg/ha)

SE
(kg/ha)

Mean
(kg/ha)

SE
(kg/ha)

LM #1
Equation (2) 542,758 71,118 410,860 57,906 131,881 41,260
Equation (3) 505,277 49,181 378,396 39,159 126,881 29,754

RIM
#3

Equation (2) 455,408 68,745 350,901 64,759 104,514 23,054
Equation (3) 484,465 59,552 368,402 56,126 115,934 19,398

#4
Equation (2) 370,296 55,126 293,328 52,952 76,972 15,297
Equation (3) 459,387 57,947 354,853 55,409 104,537 16,992

Bayesian
#1

Equation (2) 487,053 100,743 364,564 77,672 122,523 64,197
Equation (3) 497,354 76,448 376,447 68,229 120,921 34,488

#2
Equation (2) 438,556 175,137 318,630 129,117 119,831 118,287
Equation (3) 460,279 76,274 352,865 61,428 107,410 45,214

The reduced sample approach resulted in similar AGB estimates at plot level. The RIM (based on
Dataset #4) predicted 459,387 kg ha−1, whereas the Bayesian model (based on Dataset #2) predicted
460,279 kg ha−1. However, both values are smaller compared to AGB estimate resulted from
LM, by approximately 9% (Table 6). At the species level, the differences were larger for silver fir
(approximately 15%–17%) than for European beech (approximately 6%).

The alternative fitting approaches based on full sample (i.e., Dataset #1 with Bayesian model and
Dataset #3 with RIM) predicted plot AGB values that were closer to LM estimate (i.e., 505,277 kg ha−1).
Nevertheless, at the species level, the situation was similar: the differences to LM estimate were larger
for silver fir (approximately 4%–8%) than for European beech (approximately 0.5%–2%).

4. Discussion

In this paper, we developed site-specific allometric biomass models for European beech and
silver fir to be used in S, inca virgin forest, Romania. The parameters of the site-specific allometric
models, developed within this study, that use D to predict AGB (Equation (2)) differ slightly from those
reported, for the same species, at European level [35,38,52]. For example, for European beech, the slope
(also called the scaling exponent) of the generic allometric model based on D was 2.36 [38] and 2.45 [52],
whereas for our site-specific model was 2.64. The intercepts (of the models in log-scale), however,
were bigger for the generic model (i.e., −1.66 and −2.07, respectively) and smaller for our site-specific
sample (i.e., −2.66). For silver fir, the differences were as large as for European beech. The scaling
exponent of the generic model was 2.45 and for the site-specific model was 2.70, whereas the intercepts
were −2.39 and −3.41, respectively. For both species in this study, we reported slope values that were
close to the theoretical scaling exponent value of 2.67 predicted by the “General model for the origin
of allometric scaling laws” [53]. For our study, the slope estimates indicate that an increase in D by
1.0% causes an increase in AGB, of 2.64% and 2.70%, for European beech and silver fir, respectively;
a lower increase is documented at European level (2.36% for European beech and 2.45% for silver
fir). These larger parameters for our site indicate that trees of similar D exhibit greater AGB in S, inca
compared to European averages, which may have been caused by a larger H for any given D or by
a larger crown for any given D and H in the virgin forest, with respect to the averages in European
forests. However, more similar parameters to our models were reported for European beech in the
Netherlands, where the reported slope was 2.60 and the intercept was −2.53 [34].

When both D and H were used as predictors of AGB the effect of D on AGB was conditional on a
constant H. Therefore, the parameter of D shows the increase in AGB produced by 1% increase in D
while H was constant. For European beech, the scaling exponents were in line with those published in
the literature; the scaling exponent of D was 2.15, which was similar to that reported by [33] and very
close to the value of 2.20 reported by [36]. The scaling exponent of H (that shows the proportional
increase in AGB caused by 1% increase in H, under constant D) was somehow different; a value of
0.69 was derived in this study, whereas [36] reported a value of 0.56 and [33] reported a value of 1.14.
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Therefore, compared to our sample of European beech trees from S, inca forest, the trees sampled from
Czech Republic seems to have a greater effect of H on AGB. The increase in H by 1%, for trees of similar
D, produced more AGB in Czech Republic than in our site.

For models based on D and H, the scaling exponent of D was approximately 2.0, whereas the
scaling exponent of H was smaller than 1.0 for most species [35]. Consequently, it has also been shown
that the ratio between the parameter estimate of D and parameter estimate of H (i.e., the Q-ratio) is
frequently larger than 2.0, usually between 3 and 4 [54]. In the case of silver fir, the parameters showed
quite a different pattern compared to European beech and other species. The scaling exponent of D
(i.e., 1.33), surprisingly, was smaller than the scaling exponent of H (i.e., 1.45), showing a Q-ratio of
0.92 [54]. That means, in the case of silver fir, a 1% increase in D (while H constant) produced a 1.33%
increase in AGB, whereas a 1% increase in H (under constant D) produced a 1.45% increase in AGB.
Although allometric biomass models for silver fir are rare, a similar anomaly was reported in a recent
paper [40]. Specifically, the parameter of D was 1.06 and the parameter of H was 1.40, which may
support the hypothesis that these parameters may be influenced by an atypical biomass allocation
pattern at the species level (for silver fir). Other authors, e.g., [41], have also reported allometric
biomass models for silver fir. However, the different model formulation does not allow us to compare
the parameter estimates. Silver fir foliage tolerance under a shaded environment may be the starting
point to speculate on the reported divergence. For small trees, the ratio between H and D should be
higher compared to large trees, since the small trees often grow in a stronger competition. However,
it is illustrated in Figure 3a that the smallest silver fir trees have a H-D ratio that is comparable to
that of largest trees and is much smaller compared to that of European beech trees (despite its similar
shade tolerance behavior). This result could be a consequence of ungulate browsing, which for the
studied area was reported to be more frequent on silver fir than on European beech [27]. As a result,
in the case of small trees, for similar D, the silver fir trees are much shorter compared to European
beech (Figure 3b). Therefore, the increase in H seems to be much more accelerated for silver fir trees
compared to European beech, up to about D � 35 cm, when the silver fir trees reach a maximum H-D
ratio of about 0.8 (Figure 3a). For large trees, the H-D ratios become comparable for the two species.
The accelerated increase in H during early development stages resulted in a larger effect of H on AGB.
Therefore, we argue that in the case of silver fir, the different pattern in H-D ratio is the reason for the
anomalous parameter estimates.

Figure 3. The H-D ratio by D (H is the tree height; D is the diameter at breast height) (a) and the
relationship between H and D in log-scale (b), for European beech and silver fir (site-specific biomass
datasets). Note: the plotted trees are from Dataset #1.

The obtained results indicate that a RIM or a Bayesian model can be successfully used to combine
measurements available from other locations with a site-specific reduced sample of small trees, in order
to calibrate the allometric model at site level. These approaches would minimize the effort for biomass
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measurements, however, with a trade-off in prediction accuracy. The presented analysis takes a further
step from some previous ideas in which a small sample of small trees is used to calibrate an allometric
model for the entire covariate range in order to accurately predict the biomass [23].

Although both the Bayesian approach and the RIM can combine the information from other
locations with the site-specific observations, there is a crucial difference between these two approaches.
To apply RIM the user needs access to the raw observations from other locations, however, the Bayesian
approach uses only the model outputs resulted from these observations (i.e., no raw data is required).
Therefore, if availability of raw observations data is limited, then Bayesian approach should be
preferred. Since Bayesian model does not use the raw data from other locations, the model is fitted
based on reduced sample only. Therefore, in the presented analysis, the Bayesian model was based on
7 observations only, whereas the corresponding RIM was based on 151 trees for European beech and
101 trees for silver fir, respectively (Dataset #4; Table 4). Since Bayesian model was fitted on a smaller
number of observations, it was also more difficult to accurately estimate the variance-covariance
matrix, which is needed to propagate the errors from model parameters and residuals to plot level
biomass prediction.

The main assumption of RIM is that the slopes of all sites are similar and only the intercepts differ
between sites. Using just a few small trees to calibrate the model for the entire D range implies that
the slope parameters are informed primarily by the observations from other locations, whereas the
site-specific sample will inform mainly the intercept. In other words, the reduced sample of small
trees is used mainly to calibrate the intercept, whereas the slope parameters are derived from the
species-specific dataset (generic dataset).

A reduced sample of small trees can successfully be used to calibrate an allometric model locally,
however, special attention should be given to:

(a) The H-D ratio, which should be checked in advance. As we observed in our analysis with silver
fir trees, the H-D ratio can affect the parameter estimates, which affect further the performance of
small trees sample approach. Therefore, the user should check whether the H-D ratio decreases
relatively linearly with the increase in tree size.

(b) Either a random intercept model or a Bayesian model can be used with the reduced sample
approach. Preference to one of the methods can be decided based on the raw data availability.
Nevertheless, access to raw observations should not be an issue given the increasing trend in
publication of biomass datasets, e.g., [44,55–58].

(c) The generic biomass sample should contain as many species-specific observations as possible,
including very large trees (D-range should match that of the local population for which the
models are developed).

(d) The reduced sample of small trees should contain a large enough number of trees to calibrate
mainly the intercept; at least 6–7 trees should be used (the greater the number, the better the result).
It is recommended that trees with D < 5 cm should not be used with the reduced sample approach,
since the allometry of very small trees can be affected by the competition with herbaceous plants.

(e) Using the reduced sample approach should always be performed using no less than D and H as
predictors; other additional predictors can be used, because using both variables, the biomass
estimates were more precise.

5. Conclusions

We developed site-specific allometric biomass models for European beech and silver fir,
to be used to estimate aboveground biomass in S, inca virgin forest in Romania. Two approaches
(i.e., random intercept model and Bayesian model) that use a reduced sample of small trees to calibrate
the model locally were further tested. We conclude that (i) the reduced sample approach performed
well, producing accurate AGB estimates; for European beech, the approach worked better than for
silver fir, and we argued that this may be due to the H-D ratio anomaly that we found for silver fir; (ii) at
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plot level, both the Bayesian and RIM performed equally well, although the Bayesian models resulted
in larger standard errors of mean AGB per hectare, therefore, lower precision; and (iii) the models based
on both D and H performed better (produced more accurate and precise AGB estimates) than those
based on D only; therefore, we recommend to use both variables with the reduced sample approach.
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