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Abstract: A novel approach is presented to model the tree detection probability of terrestrial laser
scanning (TLS) in forest inventory applications using a multi-scan mode. The traditional distance
sampling framework is further extended to account for multiple scan positions at a single sample
plot and to allow for an imperfect detection probability at distance r = 0. The novel methodology
is tested with real world data, as well as in simulations. It is shown that the underlying detection
model can be parameterized using only data from single scans. Hereby, it is possible to predict the
detection probability also for different sample plot sizes and scanner position layouts in a multi-scan
setting. Simulations showed that a minor discretization bias can occur if the sample size is small.
The methodology enables a generalized optimization of the scanning layout in a multi-scan setting
with respect to the detection probability and the sample plot area. This will increase the efficiency of
multi-scan TLS-based forest inventories in the future.
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1. Introduction

Forest inventories provide relevant information on the status and changes of forest landscapes.
Traditionally, forest inventories were designed to provide precise information on the timber growing
stock. However, over the last decades, catalogues of key attributes surveyed in forest inventories have
been broadened [1] in the context of redefined goals of a sustainable forest management [2]. A modern
multi-purpose forest inventory also considers aspects of biodiversity and carbon sequestration [3,4].
Until now, tree attributes and positions are manually measured in forest inventories, using simple
mechanical or optical instruments, such as calipers, hypsometers, compasses, and measuring
tapes [1,5,6]. Thus, measurements of tree attributes with the traditional instruments are time-consuming,
cost-intensive, and prone to manifold measurement errors; nevertheless, they are still regarded as the
gold standard to which new measuring techniques are compared [7–9]. Sampling schemes of forest
inventories have been optimized for efficiency and precision [10,11] and can further be adopted in case
new sensor techniques replace the traditional measuring equipment in the future.

Terrestrial laser scanning (TLS) has been successfully evaluated in the context of manifold
forestry applications, and the automatic detection of trees and the measurement of further attributes
in the TLS point clouds have been comprehensively studied using both settings: the single-scan
mode [7,8,12–21] and the multi-scan mode [8,14,22–38]. TLS enables a fast and automatic registration of
the forest structure [39], especially in the single-scan mode, where only one scan is performed, usually
obtained from the sample plot center. However, a relevant proportion of trees cannot be detected
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with single-scan TLS. This is because the laser beams are often obstructed by other trees, understory
vegetation, or rocks. The problem becomes more pronounced with increasing the distance between
the scanner and the tree of interest, simply because, with increasing the distance, the probability
of having an obstacle between the scanner and the target increases. Some approaches have been
developed to solve the nondetection problem of single-scan TLS. Proper correction methods were
either based on geometrical considerations [12,40,41] or on the modeling of the distance-dependent
detection probability [21,42]. Since these correction methods require extra computations and suitable
model assumptions, the single-scan approach is not often used in practice, and the multi-scan approach
is generally preferred, instead.

In the multi-scan mode, the scanner is placed at different locations within the sample plot
boundaries or at extra outer positions in order to derive a complete 3D scan of the vegetation and
to avoid disturbances by obstruction effects. However, the extra work of the multi-scan mode is
associated with higher labor costs and requires data post-processing for the co-registration of the
multiple scans. According to Gollob et al. [43], three different types of scanner location configurations
can be distinguished, by which the scanner was either located (i) at the boundaries of the sample
plot [31,32,34–36,44], (ii) at outer positions beyond the sample plot area [28,29,36,37], or (iii) at the plot
center plus at several extra positions within the surrounding area [7,14,22–27,36,38].

Despite its high labor costs, the multi-scan mode was used in a vast number of studies. However,
only little is known so far on the efficiency of different scanner position layouts and of the sample plot
sizes and shapes when TLS is used in the context of forest inventories. Thus far, the only few existing
studies were either simulations [36,38] or real-world experiments [43,45].

Abegg et al. [36] performed a simulation study on the influence of scanner locations and tree stem
positions on the occultation of tree stems. Van der Zande et al. [38] simulated the shadowing of the forest
canopy structure associated with three different scanner position combinations, each of which were
established in three different stand types. Whereas the latter both studies only examined the occultation
effects that were produced by other trees, the influence of alternative obstacles, like understory
vegetation, rocks, or terrain, was not considered. Moreover, a validation of the simulation results with
a real-world scenario was not conducted.

Trochta et al. [45] studied the effect of a sample size reduction on the stem-detection rate
in a large area stem-mapping trial when the 40 m × 40 m sampling grid was continuously
thinned. Gollob et al. [43] compared eight different multi-scan and single-scan settings in terms
of precision and sampling effort on 23 forest inventory sample plots. Thus far, no existing study
validated the simulations of the influence of scanner locations on the occultation of tree stems with
real-world data.

The major goal of our study was to examine the influence of the sample plot area and the scanner
positioning on the detection probability in a multi-scan setting.

We hypothesized that the distance sampling framework [46–49], which has been successfully used
for the modeling of the detection probability under the single-scan mode [21,42], can be extended to a
broader applicability that also includes the multi-scan case. We further hypothesized that this extended
modeling framework can be used to optimize the sample plot area and the scanner positioning to
maximize the detection probability in a multi-scan setting.

We show that the detection rate with different scanner position layouts could be generally predicted
for different sample plot sizes in order to find an optimal design for a TLS-based forest inventory.
The single-scan data from Gollob et al. [43] was recycled for model parameterization, and its validation
was performed by means of the multi-scan data from the same study. The model bias was additionally
assessed via simulations. The novel approach enables to predict the detection probability for different
sample plot sizes and scanner position layouts under multi-scan TLS using prior information from
single scans and reference data. Hence, our methodology can be used to optimize the design of
TLS-based surveys in forest landscapes.
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2. Materials and Methods

2.1. Data

Our methodology was developed by means of existing data, which was formerly collected for the
study in Gollob et al. [43]. The same applied to the stem-detection algorithm, which was also adopted
from Gollob et al. [43]. Hence, only a brief summary of the dataset and the data-processing routines is
presented, and it is referred to Gollob et al. [43] for further details.

The study site was located in the forest district of Ofenbach, in the Lower-Austrian pre-Alps,
near the village of Forchtenstein. In total, data from 23 circular sample plots each with a 20 m radius
was used. The laser scanning was conducted in February–March 2018 using a FARO Focus3D X330
terrestrial laser scanner (Faro Technologies Inc., Lake Mary, FL, USA). Nine artificial reference targets
(Styrofoam balls on monopods) were systematically arranged on the plots; one target was placed
directly at the plot center, and four targets were placed at a distance of 5 m from the plot center, so that
they formed the corners of a square. The remaining four targets were placed at a distance of 10 m from
the plot center, so that they formed another square that was rotated 45◦ relatively to the first square.

At each of the sample plots, a set of nine scan variants was tested that differed in the positioning
of the scanner, as well as in the number of scans per plot. The most intensive scan variant (full scan)
was comprised of seven scanner positions. Hereof, six positions were arranged in a regular hexagon
with a constant edge length of 15 m and centered at the sample plot center, and an additional scan was
conducted from the sample plot center. As another extreme, a single-scan variant was accomplished
in which the scanner was placed only at the sample plot center. The other scan variants constituted
as subsets of the full scan, comprising a hexagon without a central scan and other geometrical
arrangements (triangle, rectangle, and diagonal) and either including or excluding an additional
central scan.

Co-registration of the raw scan data was separately performed for each scan variant and by means
of the reference targets using the FARO SCENE 6.2 software [50]. A noise-filtering, ground point
classification and point cloud normalization to remove the height offset was performed using the
LAStools software package [51]. For the automated tree detection [9,43], we used a density-based
clustering algorithm [52] that was implemented in the R language and environment [53]. More precisely,
the stem detection algorithm [9,43] was based on a density-based clustering applied in two subsequent
phases. In the first clustering phase, the 3D point cloud of normalized Z values was stratified into
vertical layers, and a density-based clustering was separately applied to a subsample of the points
selected from each layer. Prior to the second phase, the cluster centroids from the first phase were
projected onto a horizontal plane, and a density-based clustering was subsequently applied to this set
of points in 2D. The resulting phase 2 cluster centroids were then used as preliminary tree position
estimates. The final tree position estimates were achieved through a further distance-based filtering
and heuristic decision rules to decide whether a detected cluster actually is a tree based on estimated
diameters in different heights. Reference data was also available from manual measurements of the
positions and diameters at breast height (dbh) of all trees having a dbh ≥ 5 cm [43].

2.2. Modeling the Detection Probability of TLS in Single-Scan Mode

2.2.1. Classic Distance Sampling Approach

The basic idea of distance sampling [47,48] is that the detectability of objects typically decreases
with increasing distance r between the observer (i.e., the laser scanner in our application) and the
object of interest (i.e., a tree). By fitting a distance-dependent detection function g(r) to the normalized
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density of observed objects at different distances (0 ≤ r ≤ ω), the mean detection probability within a
circular sample plot of area a and radius ω can be estimated by

P̂a =
2
ω2

ω∫
0

r× g(r)dr (1)

For normalization, the density of detected objects in every distance interval is divided by the
estimated density of all objects [47].

The fundamental assumptions underlying this approach are (i) that trees located directly at the
plot center (r = 0) are detected with certainty (g(0) = 1) and (ii) that the detection probability decreases
monotonously with increasing distance from the plot center. The detection function g is usually
represented by a parametric function and can be fitted using maximum-likelihood techniques [47,48].
Although it is also possible to use nonparametric representations of g [54], parametric models are
generally preferred, instead. This is because the parametric functions provide sufficient flexibility,
and their inference is straightforward.

Thus far, distance sampling has been used with single-scan TLS data by Ducey and Astrup [21]
and by Astrup et al. [42] using half-normal [21] and hazard-rate [42] detection functions. In our study,
trials were made with three parametric candidate functions: the half-normal, the uniform, and the
hazard-rate function. Hereof, the hazard-rate function

ghr(r) = 1− e−(
r
σ )
−b

(2)

showed the best performance in terms of the AIC (Akaike’s Information Criterion [55]) (Table 1).

Table 1. AIC (Akaike’s Information Criterion)-based comparison of the candidate detection functions.

Type of Detection Function Formula AIC ∆ AIC

hazard-rate ghr(r) = 1− e−(
r
σ )
−b

5634.72 0.00

half-normal ghn(r) = e(
−r2

2σ2 ) 5640.31 5.59
uniform guni f (r) = 1/ω 5637.58 2.86

r is the distance between the scanner and an object of interest; ω is the overall detection truncation distance; a,
b, and σ are function-specific parameters; and ∆ AIC is the AIC difference between the candidate model and the
chosen model.

The hazard function had two parameters: a shape coefficient σ and scale coefficient b [47].
Model fitting was accomplished in R [53] using the Distance package [56]. The hazard-rate detection
function should generally meet the fundamental assumption of distance sampling of a perfect
detectability at r = 0, thus ghr(0) = 1 (for all σ, b > 0) [47].

2.2.2. Correction for Imperfect Detectability at r = 0

Our preliminary results showed that the assumption of a perfect detectability at r = 0 (g(0) = 1)
was not met. Hence, an uncritical adoption of Equation (2) without checking the validity of the
assumptions would have resulted in a biased estimate of Pa. Thus, an additional factor c was
introduced to Equation (2), yielding

gehr(r) = c×
(
1− e−(

r
σ )
−b
)

(3)

where c (1 ≥ c > 0) represents the initial detection probability at r = 0.
However, the representation in Equation (3) cannot be fitted to the normalized density of the

observed objects at different distances, as the normalization procedure depends on the assumption
that g(0) = 1. As a solution, the observed distances of the detected trees were discretized into
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1 m wide classes, and gehr(r) was fitted to the average detection probabilities within these classes.
The average detection probabilities were calculated by means of manual reference data that were
additionally required. Parameter estimation was performed using an adaptive nonlinear least-squares
algorithm [57], which was implemented in the R function “nls()” [53].

The parameter estimates were then used in the modified hazard rate function (Equation (3)) to
predict the probability P j that a tree located at position j is actually detected given the location-scanner
distance r j. More precisely, P j was calculated for all the raster cell centroids of a two-dimensional
raster with cell size 1 cm× 1 cm and assigned to the corresponding cell values.

Finally, the arithmetic mean of all raster cell values within a sample plot of corresponding radius
ω was used as the estimate of Pa. Due to the fact that large trees generally had a higher detection
probability than small trees [42], the 3894 trees on the 20 m radius sample plots were stratified into
2829 smaller trees (5 cm ≤ dbh < 20 cm) and 1065 larger trees (dbh ≥ 20 cm), and the modeling of the
detection function, as well as the prediction of the mean detection probability, was independently
conducted for both strata. A higher number of strata was desirable; however, this would have resulted
in a lower within-strata sample size that would have become problematic when modeling the detection
probability for the smaller sample plot radii. For a sample plot radius of ω = 5 m, as an example,
the sample size was reduced to 261 trees, 73 of which were large trees and 188 of which were small
trees, and for ω = 2 m, the sample size was reduced to 51 trees (15 large trees and 36 small trees).

2.3. Modeling the Detection Probability of TLS in Multi-Scan Mode

In the previous sections, the dependence of the detection probability on the distance to the scanner
was outlined for single-scan TLS and the detection probability at distance r was modeled using the
detection function g(r). In the following paragraphs, a generalization of the methodology from the
single-scan mode to the multi-scan mode is established. In general, and with regard to the multi-scan
mode with I scanner positions, a set of I point-to-scanner distances can be measured for each location
within the sample plot area.

First, let us assume that the probability of detecting an arbitrary tree j located in a distance of
ri j from the scanner position i is independent from the probability to detect the same tree from any
other scanner position: i′ , i for i′, i ∈ {1, . . . , I} and that this probability can be estimated by g

(
ri j

)
.

Thus, the complementary probability of missing an arbitrary tree j located in a distance of ri j from the
scanner position can be estimated as 1− g

(
ri j

)
.

From this follows that the probability to miss this tree from all I scanner positions is∏I

i=1

(
1− g

(
ri j

))
(4)

and the corresponding probability to detect a tree located on point j becomes

P j = 1−
∏I

i=1

(
1− g

(
ri j

))
(5)

Depending on a possible violation of the assumptions underlying the classic distance sampling
approach, g

(
ri j

)
can be estimated either by using the classic distance sampling approach with different

possible detection function types or by using its above-described modification, which accounts for
an imperfect detectability at ri j = 0. In case the extended hazard function is used, a replacement of
Equation (3) into Equation (5) yields.

P j = 1−
∏I

i=1

(
1− gehr

(
ri j

))
= 1−

∏I

i=1

(
1− c×

(
1− e−(

ri j
σ )
−b))

(6)

In the following sections, we examined whether the parameters c, b, and σ in Equation (6) can be
estimated by using only the single-scan TLS data (Section 2.2.2). That is, only the data obtained from
the central scan position was used for the model fitting of the detection function, and the data from the
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other positions were simply neglected. Henceforth, Equation (6) was used to predict the detection
probability for all cells of a two-dimensional raster with a cell size of 1 cm× 1 cm and dependent on
the distances of the raster cell centroids to the I different scanner locations.

Analogous to the procedure in Section 2.2, the mean detection probability Pa per sample plot was
estimated via the average of all raster cell estimates P j within the plot:

P̂a =
1
J

J∑
j=1

(
1−

∏I

i=1

(
1− c×

(
1− e−(

ri j
σ )
−b)))

(7)

where J is the total number of raster cells per sample plot.
The entire methodology was tested for different sample plot radii ω and different scan variants

and separately applied to both strata (smaller trees and larger trees). These model-based estimates of
the detection probability were compared with the global P∗a estimates, which were empirically derived
by means of the reference data of the complete tree list.

2.4. Model Evaluation

2.4.1. Case Study Data

Trees from the complete reference data that were detected by the automatic routines applied to
the TLS data were coded as a binary variable: 1—detection and 0—non-detection. A global estimate P∗a
of the true detection probability Pa was derived via the average of the binary observations over all
sample plots. Both the empirical estimate P∗a and the model-based estimate P̂a were computed.

Confidence limits (CL) of P∗a under error rate α were estimated via a normal approximation
(Equation (8)):

CL = P∗a ± z×

√
P∗a × (1− P∗a)

n
(8)

with z being the 1-α/2 quantile of a standard normal distribution and n as the number of observed
trees within all sample plots.

To assess the model performance under different sample plot sizes and scanner position layouts,
the model-based estimate P̂a was compared with the empirical estimate P∗a independently for the
different settings and for both tree size strata and across a dense sequence of sample plot radii.

2.4.2. Simulation

In order to assess whether the model could possibly produce a bias even in case all model
assumptions are met, a simulation with 200 runs was additionally performed, separately for both tree
size strata, using the language and environment R [53]. Thus, tree positions on twenty-five sample plots
were simulated within a program loop by assuming that their spatial distributions followed a Poisson
point process with variable intensity λ for every sample plot. λwas randomly chosen from a truncated
uniform distribution, having the same range as the observed real-world data of the corresponding
stratum. For each tree on each sample plot, the distance to every scanner position was calculated,
and the corresponding detection probability was independently simulated for every scanner position
using the value of the distance-dependent detection function in Equation (6) with the parameters
that were obtained by fitting the function to the real-world data of the corresponding stratum. A tree
was marked as a detected individual if it was detected from at least one scanner position, i.e., if its
simulated detection probability was larger than or equal to a uniformly distributed random number
from a closed [0,1] interval. Hence, Pa was a priori known for each of the simulation runs.

The simulated scanner-to-tree distances were binned into 1 m wide classes, and models for the
detection functions were separately fitted to the data of both tree size strata and from each of the
200 simulation runs. In summary, this procedure resulted in a set of 200 P̂a estimates per stratum.
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Finally, the expectation of the model-based estimator (Ê
(
P̂a

)
) was estimated by the arithmetic mean of

these 200 estimates.
The model bias was separately estimated for both strata and for different sample plot radii

bias = Ê
(
P̂a

)
− Pa (9)

To examine whether the discretization of the scanner-to-tree distances into 1 m wide classes could
have influenced the model bias, 200 extra simulations were performed using 10 cm wide classes and a
larger number of 250 sample plots.

3. Results

3.1. Modeling the Detection Probability of TLS in Single-Scan Mode

3.1.1. Classic Distance Sampling Approach

The hazard rate-type detection function achieved a good fit to the normalized density of the
observed scanner tree distances (Figure 1a); the parameter estimates were σ = 10.497 and b = 3.119.
However, when compared with the empirical detection rates for the 1 m wide annuli, a severe misfit
became obvious (Figure 1b). The model would predict a complete detection of trees standing within a
range of less than 7 m from the sample plot center. This was because of the a priori assumption of
a complete detection at the plot center g(0) = 1, in conjunction with the typically strong shoulder
of the hazard-rate detection function. Thus, the model predictions did not fit the observed data
(Figure 1b), even though the detection function was able to represent the shape of the normalized
densities (Figure 1a). Hence, the misfit was not caused by the shape constraints, but it resulted from
the improper assumption of g(0) = 1.
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Figure 1. Hazard rate-type detection function ghr(r) (red line) for all trees having a diameter at breast
height (dbh) ≥ 5 cm. (a) ghr(r) fitted to the normalized density of observed distances between the plot
center (i.e., scanner position) and detected trees (gray columns); (b) ghr(r) compared with the observed
detection probabilities at different distances, computed from annuli of 1 m width (gray columns).
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By using the classic distance sampling approach under the latter assumptions, the average
predicted detection probabilities would produce a severe overestimation, for a broad range of sample
plot radii, in comparison with the empirical detection rates (Table 2).

Table 2. Estimated and observed mean detection probabilities for different sample plot radii using
classic distance sampling.

Sample Plot Radius
ω (m)

Estimated Mean Detection
Probability P̂a(%)

Observed
MeanDetection Probability Pa(%)

(Gollob et al. [43])

5 100.00 63.41
10 91.54 58.57
15 65.21 44.31
20 44.84 34.36

3.1.2. Empirical Results with a Correction for Imperfect Detectability at r = 0

To consider the imperfect detectability at r = 0, the extended hazard detection function was
directly fitted to the un-normalized empirical detection rates on the 1 m annuli. More precisely,
the model was separately fitted to both tree size strata; see Figure 2 and parameter estimates in Table 3.
Model coefficient c represented the detection probability at r = 0. For the stratum of the smaller trees
(5 cm ≤ dbh < 20 cm), the estimated detection probability at r = 0 was 45.29%, and for the stratum of
the larger trees (dbh ≥ 20 cm), the estimate was 74.26% (Figure 2b).
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Figure 2. Detection probability g(r) at different distances r from the plot center for both strata. Grey bars
represent the observed detection probabilities, and the fitted hazard rate-type models ghr(r) are shown
as red curves. (a) Small trees (5 cm ≤ dbh < 20 cm) and (b) large trees (dbh ≥ 20 cm).

Table 3. Parameter estimates for the extended hazard rate-type detection function for both strata.

Parameter Small Trees
(5 cm ≤ dbh < 20 cm)

Large Trees
(dbh ≥ 20 cm)

c 0.4528 0.743
σ 10.064 13.446
b 4.263 2.039

These models were subsequently used to predict the detection rates at the grid points of the dense
1 cm × 1 cm raster (Figure 3).
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Figure 3. Distance-dependent detection probabilities P j of single-scan terrestrial laser scanning (TLS)
for both strata. Cell size of the raster is 1 cm × 1 cm. (a) Small trees (5 cm ≤ dbh < 20 cm) and (b) large
trees (dbh ≥ 20 cm).

Finally, the global estimate of the mean detection probability Pa was calculated via the average
of the predicted detection rate within a sample plot of certain radius ω (Figure 3). In fact, global Pa

estimates were computed for a sequence of different ω values ranging from 3 to 20 m and having a step
width of 0.5 m (red curves in Figure 4). As counterpart, the average empirical detection rate and its
confidence envelope (Equation (8)) was evaluated by comparison of the single-scan TLS detections
with the reference data of the complete tree list. For comparison with the model-based estimates,
the average empirical detection rates were likewise calculated using a sequence of sample plot radii
ranging from 3 to 20 m but having a step width of 1 m (black line in Figure 4).
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Figure 4. Mean detection probability Pa for different sample plot radii ω using TLS in single-scan mode
for both strata. The black line represents the observed data; the red line represents the model prediction.
The light and dark grey areas are the 99% and 95% confidence intervals computed from the observed
data, respectively. (a) Small trees (5 cm ≤ dbh < 20 cm) and (b) large trees (dbh ≥ 20 cm).

The results showed for both tree size strata that the two curves had similar shapes: the curve of
the model estimates and the curve of the average empirical detection rates. Hence, the model was
able to describe the general trend of a decreasing detection rate with increasing sample plot radius ω.
For the stratum of the smaller trees (5 cm ≤ dbh < 20 cm), the maximum absolute deviation between
the modeled and the empirical average detection rate was 0.060, with a sample plot radius of ω = 8 m
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(Figure 4a). For the stratum of the larger trees (dbh ≥ 20 cm), the maximum absolute deviation was
0.048, with a ω = 10 m radius (Figure 4b). In addition, the curves of the model estimates lay close to
the center of the 95% envelopes of the empirical average detection rates.

3.1.3. Results of the Simulation Study

For both tree size strata and across the entire sequence of sample plot radii, the expectation of the
model-based estimate was close to the expectation of the empirical detection rate (Figure 5a,b). For the
smaller trees, the model had a slightly negative bias for sample plot radii of less than 5 m, and it had a
positive bias for radii larger than 10 m (Figure 5c). The largest absolute bias of 0.0163 was produced
with a radius of 13 m. For the larger trees, the model behaved nearly unbiased with sample plot radii
smaller than 7 m (Figure 5d). However, with radii larger than 10 m, a positive bias likewise occurred.
For the thicker trees, the largest absolute bias was 0.0162 with a sample plot radius of 14 m.
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Figure 5. Results of the simulation study (200 simulation runs of 25 sample plots) for both strata,
using annuli of 1 m widths for model fitting to the simulated single-scan data. (a,b) Mean detection
probability Pa for different sample plot radii ω using simulated TLS in multi-scan mode. The solid black
line represents the expectation of the simulated data; the solid red line represents the expectation of the
model prediction. The dashed lines represent the corresponding 95% prediction limits, i.e., the 2.5%
and 97.5% quantiles of the 200 simulation runs. (c,d) Model bias dependent on the sample plot radius.
(a,c) Small trees (5 cm ≤ dbh < 20 cm) and (b,d) large trees (dbh ≥ 20 cm).
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3.2. Modeling the Detection Probability of TLS in Multi-Scan Mode

In the following section, the results are presented in detail for the “scan variant 3” of the scanner
position layouts described by Gollob et al. [43], i.e., a triangle-shaped alignment of scanner positions,
including an additional central scan (Figure 6). This layout was the best compromise between
necessary sampling effort and detection rate [43]. Further results of the nine different layouts from
Gollob et al. [43] are outlined in the Appendix A (Figures A1 and A2 for the smaller tree size stratum,
and Figures A3 and A4 for the larger tree size stratum).
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When the joint detection probability under the three scanner positions was evaluated, it became
obvious that the area with the highest detection probabilities was neither located at the sample plot
center nor nearby the scanner positions. Trees were instead most likely detected in the interspace
between the central positions and the outer positions of the scanner (Figure 6). More precisely, the area
with the highest detection probability was located within the annulus having an inner radius of 5 m
and an outer radius of 10 m.

For the model-based estimate of the detection rate, the local estimates of the joint detection
probabilities on the fine grid were averaged within the sample plot area. The estimates of Pa for
different sample plot radii ω, calculated as the arithmetic mean of all raster cells within a sample plot of
the corresponding radius, are presented in Figure 7. For both strata, the model predictions fell within
the 95% envelope of the average empirical detection rates. The maximum absolute deviation between
the empirical detection rates and the model-based estimates was 0.095 with a sample plot radius of 5 m
for the smaller trees, and it was 0.088 with a 20 m plot radius for the larger trees, respectively (Figure 7).

When the model-based estimates were compared with the empirical detection rates from the
simulations, the bias was throughout positive across the entire range of plot radii and for both tree
size strata (Figure 8). The average bias for the smaller trees was 0.0195, its minimum was 0.0120,
and its maximum was 0.0242. The average bias for the larger trees was 0.0052, and its minimum and
maximum were 0.0035 and 0.0064, respectively.
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Figure 7. Mean detection probability Pa for different sample plot radiiω using TLS in multi-scan mode
for both strata (small trees, left and large trees, right). The black line represents the observed data; the red
line represents the model prediction. The light and dark grey areas are the 99% and 95% confidence
intervals computed from the observed data, respectively. (a) Small trees (5 cm ≤ dbh < 20 cm) and (b)
large trees (dbh ≥ 20 cm).

3.3. Discretization Bias

To examine whether the overestimation was simply produced by the binning of the distances
into 1 m wide classes, an extra simulation was conducted using a smaller class width of only 0.1 m.
When the distances were binned into such 0.1 m wide classes, the maximum absolute bias of the
model-based estimator was 0.0026 for the smaller tree size stratum, and it was 0.0006 for the larger
trees (Figure 9). Hence, the bias became negligibly small through this fine binning. As a consequence,
the proposed estimator was considered as approximately unbiased, given such a fine class width was
used for the binning of the measured center-to-tree distances.
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To examine whether the overestimation was simply produced by the binning of the distances 
into 1 m wide classes, an extra simulation was conducted using a smaller class width of only 0.1 m. 
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Figure 8. Results of the simulation study (200 simulation runs of 25 sample plots) for both strata,
using annuli of 1 m widths for model fitting to the simulated multi-scan data. (a,b) Mean detection
probability Pa for different sample plot radii ω using simulated TLS in multi-scan mode. The solid black
line represents the expectation of the simulated data; the solid red line represents the expectation of the
model prediction. The dashed lines represent the corresponding 95% prediction limits, i.e., the 2.5%
and 97.5% quantiles of the 200 simulation runs. (c,d) Model bias dependent on the sample plot radius.
(a,c) Small trees (5 cm ≤ dbh < 20 cm) and (b,d) large trees (dbh ≥ 20 cm).
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2) and thus, in an underestimation of the actual stem density. 

Figure 9. Results of the simulation study (200 simulation runs of 250 sample plots) for both strata,
using annuli of 0.1 m widths for model fitting to the simulated multi-scan data. (a,b) Mean detection
probability Pa for different sample plot radii ω using simulated TLS in multi-scan mode. The solid black
line represents the expectation of the simulated data; the solid red line represents the expectation of the
model prediction. The dashed lines represent the corresponding 95% prediction limits, i.e., the 2.5%
and 97.5% quantiles of the 200 simulation runs. (c,d) Model bias dependent on the sample plot radius.
(a,c) Small trees (5 cm ≤ dbh < 20 cm) and (b,d) large trees (dbh ≥ 20 cm).

4. Discussion

4.1. Vailidity of Model Assumptions

In the classic distance sampling approach [46–49], a strong assumption is made with a complete
detection at r = 0. Such as demonstrated by Ducey and Astrup [21] and Astrup et al. [42],
this assumption may hold as long as the tree locations were identified with semi-automatic approaches.
However, it was demonstrated by our study that this assumption was actually not met if the tree
detection was performed with fully automated routines. Consequently, any uncritical adoption of the
classic distance sampling methods would have resulted in a severe overestimation of Pa (Table 2) and
thus, in an underestimation of the actual stem density.
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Regardless of the assumption outlined above, the novel presented model framework assumes
that the detectability of a tree is isotropic, i.e., it only depends on the scanner-to-tree distance and not
on the direction in which the scanner is relatively located to the tree. Therefore, the detectability of a
tree becomes independent for all scanner positions.

In fact, these assumptions are simplifications of the real world. In reality, situations occur where a
tree can easily be detected from one direction, whereas it is completely shaded from another direction.
Moreover, trees can show particular characteristics, such as, e.g., a forked or a tilted stem, making the
automatic tree detection challenging, regardless of the scanner-to-tree distance. These phenomena
can lead to violations of the model assumptions and may cause an extra noise or may even introduce
a model bias. However, the simulation studies showed that the new estimator is (approximately)
unbiased in the case that the model assumptions hold and if the observation distances are binned into
fine classes. With the available real-world data, the modeled Pa fell within the confidence envelopes
of the estimates, and the observed trend (e.g., the peak of Pa between r = 5 m and r = 10 m for
the multi-scan data) was properly reflected by the model. Thus, the novel model-based approach is
particularly useful for the planning and optimization of multi-scan TLS sampling campaigns.

4.2. Discretization Bias

The observed detection probabilities were calculated for discrete annuli, finally resulting in a
small positive model bias. A possible reason for this bias was that a constant detection probability was
assumed for each annulus, only dependent on the distance between the scanner and the centerline
of the annulus. However, by fitting the model to the unweighted average detection probabilities per
distance class, it is not possible to consider that the slope of the detection function generally changes
within the range of an annulus. Consequently, the model showed almost unbiased when the detection
function was almost linear and significantly biased results in the case that the detection function was
strongly curved.

As an intuitive solution of this problem, the width of the annuli can be reduced, as infinitesimally
small annuli would result in an (approximately) unbiased model. In practical applications, such a
reduction of the annuli width has limitations, as the number of trees within each annulus decreases
with the decreasing annulus width. Especially with small sample sizes, the number of observations per
distance classes becomes very small, and missing data is likely produced. Thus, the useable minimum
width of the annuli depends on the sample size, and for relatively small sample sizes, a discretization
bias is unavoidable with the presented model framework.

Logistic regression models would overcome the necessity of discretization; however, trials showed
no satisfactory results, as the logistic curve lacks the shoulder of the hazard-rate function and, thus,
does not fit the observed data well. The applicability of gamma, log-logistic, or Tweedie models to
overcome these limitations of the classic logistic model will be a worthwhile focus for future research.

4.3. Necessary a Priori Data and Transferability of the Results

Key of the classic distance sampling approach [46–49] is that only distances between the observer
(laser scanner) and the detected objects (trees) are measured to achieve inference on the detection
probability. That is, single-scan TLS data is sufficient for the modeling of g(r) and likewise for
the estimation of P j. In cases when the assumption of classic distance sampling hold, i.e., perfect
detectability at r = 0 is given, the labor effort to obtain the required measurement data is only small.

Contrary to this, in the case of an imperfect detection at r = 0, the modified approach to estimate g(r)
requires extra measurement data in terms of manually collected reference data. In fact, the collection
of complete ground truth data is impractical and seems contradictory to the general demand for fully
automated routines with TLS data. However, the advantages of an optimized layout definitely justify
the conduction of a prior study to collect the required reference data at least on a subsample of plots.

Parameters of the estimated detection function depend on (i) the resolution and range of the
scanning equipment, (ii) the visibility in the area of interest, and (iii) the algorithms used for tree detection
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from the point clouds. Regarding the remarkable differences between the detection probabilities
obtained with different algorithms [8], we cannot recommend to use parameter estimates obtained
from different tree detection algorithms. However, when older single-scan TLS and reference data were
available that were obtained with similar scanning equipment in the same area of interest or in an area
with similar sighting conditions, it was possible to reuse this prior information for the model fitting.

4.4. Model Interpretation and Possibilities for Further Model Applications

Our model framework enables the prediction of detection rates for the different sample plot sizes
and helps to explain trends that were observed in the real-world data. When Pa was estimated under
the multi-scan layout, it became obvious that the area with the highest detection probabilities was
neither located at the sample plot center nor nearby the scanner positions. Trees were instead most
likely detected in the interspace between the central positions and the outer positions of the scanner
(Figure 6). This finding explained why Gollob et al. [43] reported the general trend of decreasing
detection probability with increasing sample plot radius but observed a trend reversal for small sample
plots (<10 m). More precisely, the area with the highest detection probability was located within
the annulus, having an inner radius of 5 m and an outer radius of 10 m. Hence, the mean detection
probability Pa on a 10 m radius plot became higher than on the 5 m radius plot.

The presented model framework can be easily adopted to estimate the detection probabilities
also under other sample plot shapes (e.g., rectangles or polygons) and different scanner position
layouts. In future research projects, we will further examine the effects of different spacing between
the scanner positions. Moreover, the model framework is also useful for post-hoc corrections of the
nondetection bias with multi-scan TLS-based forest inventories. However, as the correction method is
globally applied, an adjustment of the plot-level estimates is simply not feasible. As an additional
drawback, a variance estimator of the correction method is still lacking. Hence, in future studies,
we will test simulation-based estimators, and we will examine their influence on the overall precision
of the TLS-based estimates.

5. Conclusions

Since the labor effort of multi-scan TLS is higher than with traditional measurement instruments,
a further improvement or optimization of the sampling scheme is necessary. The methodology
presented in this study allows a model-based comparison of the detection probabilities with different
scanning position layouts, sample plot sizes, and shapes for multi-scan TLS applications in the forest
inventory context. The extra effort to obtain the a priori reference data required for the model fitting is
justified by the benefits from a well-planned multi-scan layout, especially in larger sampling campaigns.
Thus, our study is a step towards the optimization of multi-scan TLS applications and provides a
helpful tool for the planning of multi-scan TLS-based forest inventories in the future.

Pending the development of a suitable variance estimator in the future, the methodology presented
in this study might further be used to correct global estimates of the tree count for nondetection bias.

Some lessons for the practical applicability of TLS in the forest inventory context can be learned
from this study. The possible shape of the sample plot should not be limited to a circle; arranging
the scanner positions on a line and sampling a strip-shaped plot seems to be an interesting approach
(scan variant 7 in Figures A1 and A2 in the Appendix A). The spacing of the scanner positions should
be oriented at the width of the shoulder of the detection function (Figure 2), a spacing of more than
approx. twice the width of the shoulder yields areas, with low detection probability in between the
scanner positions (compare scan variants 7 and 8 in Figures A1 and A2 in the Appendix A). In case the
target population only consists of larger trees, the spacing of the scanner positions can therefore be
increased without a loss of detectability, enabling the sampling of larger areas with a constant number
of scans. In case a circular sample plot is scanned, one scan position should be located at the plot center
(compare scan variants 1 vs. 2, 3 vs. 4, 5 vs. 6, and 7 vs. 8 in Figures A1 and A2 in the Appendix A).
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Figure A1. Distance-dependent detection probabilities 𝑃(𝑑 ) of small trees (5 cm ≤ dbh < 20 cm) for 
all scan variants described by Gollob et al. [43]. Black triangles indicate the scanner positions; the 
different dashed lines indicate circular sample plots with 5, 10, 15, and 20 m radii, respectively. Axis 
labels are the local x- and y-coordinates (m). Cell size of the raster is 1 cm × 1 cm. 

Figure A1. Distance-dependent detection probabilities P
(
d j

)
of small trees (5 cm ≤ dbh < 20 cm) for all

scan variants described by Gollob et al. [43]. Black triangles indicate the scanner positions; the different
dashed lines indicate circular sample plots with 5, 10, 15, and 20 m radii, respectively. Axis labels are
the local x- and y-coordinates (m). Cell size of the raster is 1 cm × 1 cm.
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radii 𝜔 and all scan variants described by Gollob et al. [43]. The black line represents the observed 
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Figure A2. Mean detection probability Pa of small trees (5 cm ≤ dbh < 20 cm) for different sample plot
radii ω and all scan variants described by Gollob et al. [43]. The black line represents the observed
data; the red line represents the model prediction. The light and dark grey areas are the 99% and 95%
confidence intervals computed from the observed data, respectively.
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Figure A3. Distance-dependent detection probabilities 𝑃(𝑑 ) of large trees (dbh ≥ 20 cm) for all scan 
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Figure A3. Distance-dependent detection probabilities P
(
d j

)
of large trees (dbh ≥ 20 cm) for all scan

variants described by Gollob et al. [43]. Black triangles indicate the scanner positions; the different
dashed lines indicate circular sample plots with 5, 10, 15, and 20 m radii, respectively. Cell size of the
raster is 1 cm × 1 cm.
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