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Abstract: Research linking soil moisture availability to nonstructural carbohydrate (NSC) storage
suggests greater NSC reserves promote survival under acute water stress, but little is known about
how NSC allocation responds to long-term differences in water availabilty. We hypothesized
populations experiencing chronic or frequent water stress shift carbon allocation to build greater NSC
reserves for increased survival probability during drought relative to populations rarely experiencing
water stress. Over a year, we measured soluble sugar and starch concentrations from branches,
stems, and coarse roots of mature Pinus palustris trees at two sites differing in long-term soil moisture
availability. Xeric and mesic populations exhibited a cycle of summer depletion-winter accumulation
in root starch. Xeric populations reached a maximum root starch concentration approximately
1–2 months later than mesic populations, indicating delayed summer depletion. Xeric and mesic
populations reached the same minimum root starch at similar times, suggesting extended winter
accumulation for xeric populations. These results suggest seasonal mobilization from root starch
is compressed into a shorter interval for xeric populations instead of consistently greater reserves
as hypothesized. Seasonal trends differed little between xeric and mesic populations for starch and
sugars, suggesting the importance of roots in seasonal carbon dynamics and the primacy of starch for
storage. If roots are the primary organ for longterm storage, then our results suggest that whole-plant
mobilization and allocation respond to chronic differences in water availability.

Keywords: nonstructural carbohydrates; stored carbon; carbon allocation; drought; Pinus palustris
(longleaf pine)

1. Introduction

The survival of many tree species depends on stored carbohydrates or nonstructural carbohydrates
(NSCs; e.g., sugars, starch) [1,2]. Seasonal asynchrony of photosynthesis (energy supply) and growth,
reproduction, or respiration (energy demands) suggests that many survival strategies involve storing
carbohydrates (and therefore storing free energy) [3]. A number of studies observe evidence suggestive
of carbon allocation to storage preferentially over growth [3,4]. Several studies have observed changes
in NSCs in response to disturbances such as fire [5–7] and frost [8]. While the underlying controls on
storage remain poorly described [9], storage is a critical component of plant stress response.

Greater allocation of NSCs and associated energy to storage could provide resilience to
water stress [10–12]. Plants respond to water stress by ceasing growth [13–15] and reducing stomatal
conductance to prevent hydraulic conductance loss via cavitation [16,17]. Both responses impact
NSC production via photosynthesis and NSC consumption by growth [18,19]; however, growth
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cessation occurs at higher soil water potentials before significant reduction in photosynthesis [14,20,21]
with documented increases in NSCs under mild water stress [22,23]. NSC reserves provide an
energy supply buffering metabolism under reduced photosynthesis [24]. Studies also link NSC
allocation directly to hydraulic function via the embolism repair hypothesis in which concentration
gradients of soluble sugars permit the refilling of embolisms under tension [25,26], alleviating the
loss of hydraulic conductance for xylem [16,17]. Both photosynthetic/growth losses and hydraulic
conductance losses are factors in drought mortality [27], possibly depending on drought strategy
(i.e., anisohydry or isohydry) [28]. Several studies document decreases of NSCs, especially root starch,
under drought [11,29] while others document maintenance of NSCs [30,31] or a combination of the
previous responses [32], suggesting NSC allocation has a complex relationship with drought survival,
and the exact physiology of drought mortality is still unresolved [10,33,34]. Regardless, storing NSCs
before drought may confer greater survival during drought, and some studies directly link drought
survival or recovery and NSC reserves [11]. Therefore, long-term low water availability may encourage
storage in anticipation of water stress.

Many studies observe different NSC dynamics across organs [35–38]. These differences are an
important factor in explaining the different observed NSC responses to drought. Several studies present
evidence suggesting NSC responses differ by organ [28,35,39]. Although more difficult to measure,
root starch exhibits a high degree of temporal variation [24,36], and root starch variation is linked to
drought survival [28,29]. Intense water stress can cause shoot death by inducing root embolisms [40],
pointing to the importance of root NSC reserves for repairing embolism to prevent dieback. Shoot
reserves could serve primarily to maintain xylem (through embolism refilling [41] or via osmotic
adjustment [42]) and phloem transport [43]. Different roles of sugar and starch across organs suggests
that environmental stimuli may perturb NSC dynamics differently in different organs, therefore it is
critical to consider both the root and shoot systems. Contrary to expectations, stem variation is low in
previous observations [36,44,45].

The links between drought and NSC dynamics suggests that greater NSC reserves promote
survival under acute water stress. Thus, we hypothesized that greater NSC reserves would be observed
in populations that often experience water stress. Few studies have considered the impact of long-term
water availability on seasonal NSC dynamics (but see [31]), except in studies of delayed drought
mortality [11,46]. We present here observations of NSC differences between mature, wild Pinus palustris
(longleaf pine; Mill.) experiencing long-term, chronic differences in soil moisture availability due to
soil drainage differences. We selected two geographically close stands in a P. palustris woodland, a xeric
site with well-drained soil and a mesic site with poorly drained soil. The sites were chosen to minimize
all other abiotic and biotic environmental differences between the populations, creating a natural
experiment in which the xeric population experiences greater soil drainage than the mesic population.
Their proximity also suggests these populations are not reproductively isolated and therefore not
genetically separate. Differences in these particular populations have been studied for >20 years and
the soil drainage differences generate consistent differences in productivity [47–58]. We measured
sugar and starch concentrations from lateral root, main stem, mid canopy branch, and upper canopy
branch tissues for a year, and we compared the temporal variation of these concentrations to infer
differences in carbon allocation. If the capacity to deplete NSC reserves during drought confers
greater survival, then we expected to observe higher root starch concentrations over time for the xeric
population than the mesic one as a result of greater storage during non-drought years.

2. Materials and Methods

2.1. Study Site Description

Our study was conducted in a longleaf pine (Pinus palustris Mill.) woodland ecosystem
located at the Joseph W. Jones Ecological Research Center at Ichauway, Baker County, Georgia,
USA (31◦13′14.3′ ′ N, 84◦28′42.9′ ′ W, 48 m above sea level). These P. palustris woodlands have been
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managed for more than eight decades with frequent prescribed fire [51]. The region’s climate is humid
subtropical [24]. Based on the period 1981–2010, annual precipitation at the site is 1400 mm, mean
annual temperature is 18.6 ◦C, with mean annual maximum temperature of 25.2 ◦C and mean annual
minimum of 11.9 ◦C [51].

We selected a mesic site and a xeric site along an edaphic gradient based on soil properties.
The mesic site is poorly drained sandy loam over sandy clay loam or clay textured soils, classified as
Aquic Arenic and Typic Paleudults. A clay-textured lens decreases water infiltration into deeper
soil (argillic horizon within 0–95 cm of surface). Soil mottling within 0–30 cm indicates poor
drainage, and significant rainfall events often leave standing water. Located on upland sand ridges,
the xeric site was well drained with sandy soils exceeding 2.5 m in depth, no argillic horizon,
weak horizon development, and low organic matter content. Its soils are primarily classified as
Typic Quartzipsammants with inclusions of Arenic or Grossarenic Kandiudults [51]. Other than
soil hydrology, both sites experience similar light, temperature, and vapor pressure environments
(Figure 1 in [54]; Figure 2 in [57]). Xeric site annual precipitation was 94% of mesic site annual
precipitation for 2008-2015 (Table 1 in [55]). Soil volumetric water content was 1%–3% higher at the
mesic site during the study period and the preceding five years (Figure 1 in [53]; Figure 2 in [57]).
The hydrological differences resulted in stark differences in net ecosystem exchange (−208.2 and
−73.7 g CO2 m−2 year−1 for the mesic and xeric site respectively; Table 1, Figure 1, and Figure 2
in [55]; Figure 3 in [57]). Furthermore, the xeric population of P. palustris has lower sapwood area index
(SAI), root area index (RAI), leaf area index (LAI), sapwood-leaf area ratio (Huber ratio), and root-leaf
area ratio; but similar overall conductance to the mesic population [50]. For these reason, numerous
other studies have employed this edaphic gradient to study ecosystem carbon dynamics [55–57].

2.2. Tissue Sampling and Chemical Analysis

We repeatedly sampled the sugar and starch concentrations in the coarse roots (diameter > 2 mm)
and stem of five mature, canopy P. palustris individuals at each site. To avoid too much disturbance of
dynamics from destructive sampling, we measured the sugar and starch concentrations of the upper
and mid canopy branches from a second set of five P. palustris individuals. We sampled stems by
coring the main trunk at a height of 1.4 m. We sampled roots by tracing and cutting a root from the
selected tree. We sampled stems monthly from April 2013 to March 2014 while we sampled roots at
two-month intervals from March 2013 to January 2014. We sampled branches at two-month intervals
from June 2013 to April 2014. Populations are likely not reproductively isolated given their geographic
proximity, that P. palustris is wind pollinated, and that both sites are contained within a larger matrix
of longleaf woodland vegetation with many P. palustris individuals.

Immediately after collection, we cleaned tissue samples with deionized water and cooled them
to 0 ◦C for at least 48 h to stop metabolic activity. We then dried the tissue samples at 65 ◦C for 72 h.
After drying, we ground tissue samples with a ball mill (Spex Sampleprep 8000D, Spex Centiprep,
Metuchen, NJ), and collected ground tissue in a 20 mL plastic scintillation vial. Prior to extraction and
quantification, we dried ground samples again at 70 ◦C for another 48 h to ensure all moisture
was removed. Sugars were extracted using ethanol and water mixture; after sugar extraction,
starch was digested using sulfuric acid. We used a modified sulfuric acid-phenol method to quantify
soluble sugars and digested starch given in [59,60]. We report all concentrations as a mass fraction
per mil (mg g−1).

2.3. Data Analysis

We analyzed sugar and starch concentrations separately due to different physiological
interpretations. Furthermore, low correlation between sugar and starch concentrations (r = −0.04)
indicates that estimates for each carbohydrate provide little statistical information for improving the
estimate of the other carbohydrate. Sugar and starch concentrations from each organ are analyzed
separately, because each organ was measured at different time intervals, with different starting and
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end dates, and because branch tissue samples also came from a different set of trees than the stem and
root tissues. To compare sugar and starch variation within each organ across site while controlling
for temporal variation, we constructed a generalized-additive-model (GAM) assuming uncorrelated,
Gaussian error. Briefly, the temporal variation within each site-organ is estimated as a smooth function
(Equation (1)) where j ranges over sites and organs and i over the data.

yi = αj + f j(xi) + εi (1)

The smooth functions were estimated using ten penalized thin-plate regression splines [61] with
restricted maximum likelihood for fitting [62] (an identifiability constraint removes one degree of
freedom giving a rank equal to nine). For parameter estimation, we used restricted maximum
likelihood (REML) employing the software implementation provided by mgcv package (version
1.8–31) [62,63] in R (version 3.6.3 “Holding the Windsock”) [64]. We used approximate Wald statistic
tests for testing the absence of temporal dynamics (with a rank-reduction based on the effective
degrees of freedom) [65] and a Wald statistic test for testing differences in estimated smooths
between sites based on the Bayesian posterior covariance for the estimated parameters (without
the rank-reduction) [62,66]. Confidence intervals and bands were derived from the Bayesian posterior
covariance [62,66]. To compare maxima and minima of estimated smooths, we estimated the
optima using Brent’s method (golden section search with parabolic interpolation) [67] using the
the software implementation provided by R [64]. To quantify uncertainty in estimated optima, we used

Var[x∗] ∼ ∂x
∂β (x∗)Vβ

∂x
∂β

T
(x∗) denoting the optima as x∗, where the derivative ∂x

∂β = −
(

∂2µ

∂x2

)−1
∂µ

∂x∂β

is estimated as an implicit function based on the first order optimal condition ∂µ/∂β = 0. We only
consider optima within the study period and not at or beyond the boundary. For each null hypothesis
significance test, we report the statistic and p-value (degrees of freedom indicated by subscript)
except for significance tests for the estimated smooths where the highest p-value is reported only.
All confidence intervals are at the 95% level.

3. Results

3.1. Starch

We observed significant temporal dynamics for starch concentrations (all p ≤ 0.011) in all organs,
but we only observed a seasonal cycle of winter accumulation and summer depletion—with a clear
maximum and minimum—in roots (Figure 1a). We observed distinct root starch temporal dynamics
between xeric and mesic populations (χ2

9 = 24.4, p = 0.0038). To summarize the differences in
temporal dynamics, the accumulation of the xeric population lasted one or two months longer than
mesic population (Figure 1a). We did not detect a significant difference in maximum or minimum
concentrations (maximum 179± 25.6 mg g−1 and 151± 22.7 mg g−1 for xeric and mesic, respectively;
Z = 1.598, p = 0.11; minimum 31 ± 31.7 mg g−1 and 19.5 ± 25.2 mg g−1 for xeric and mesic,
respectively; Z = 0.5566, p = 0.58). We did detect a significant difference in the time-of-maximum
(argmax) root starch between xeric and mesic populations; the argmax for xeric P. palustris occurred
1.6 ± 0.01 months after the maximum for mesic P. palustris (June-July 2013 and April-May 2013
respectively; Figure 1a; Z = 146). We estimated xeric and mesic minimum (argmin) occurred
approximately at the same time (October 2013 for both; Figure 1a; difference 0.2 ± 0.03 months),
indicating the summer depletion period was shorter for xeric P. palustris than mesic P. palustris (roughly
3.5 months vs. 5.4 months respectively). In other words, we observed differences in timing of when
xeric and mesic populations switch from accumulation to depletion of root starch (Figure 1a). We did
not detect differences in the temporal dynamics in branches or stems (Figure 1b–d).
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Figure 1. Mean starch concentrations (and 95% confidence band) from xeric (red solid) and mesic
(blue dashed) populations of Pinus palustris collected between April 2013 and May 2014 from coarse
lateral roots (a), stem at breast height (b), mid canopy branches (c), and upper canopy branches (d);
estimated by generalized additive model (ten thin-plate regression splines using REML). For visibility,
data points are jittered ±0.2 months along the x-axis (jittering not used in fitting).

3.2. Sugars

Unlike starch, we observed differences in the average sugar concentration over time (F =

116, p < 10−16), in order from lowest to highest: stem, mid canopy branches, upper canopy branches,
roots. We did not detect a difference between upper and mid canopy branches (t233.9 = 1.79, p = 0.075).
We observed significant temporal dynamics for sugar concentrations (Figure 2; all p < 0.048), except in
stems (Figure 2b; p = 0.81, 0.41 for xeric and mesic respectively). We observed distinct temporal
dynamics in root sugars (χ2

9 = 32.7, p = 0.00015) but not in any other organ (all p > 0.26). Except for
stem sugars, we observed higher winter sugar concentrations (Figure 2). We did not observe a clear
seasonal cycle of accumulation-depletion in root sugars. Even with smoothing, we observed two
maxima for mesic root sugar concentrations and only one for xeric roots (Figure 2). The lack of a
seasonal cycle along with the considerable spread in observations suggests that further analysis would
be particularly suspect and unreliable as these differences might not reflect differences in seasonal
dynamics. Therefore, we did not analyze this temporal difference further.
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Figure 2. Mean soluble sugar concentrations (and 95% confidence band) from xeric (red solid) and mesic
(blue dashed) populations of Pinus palustris collected between April 2013 and May 2014 from coarse
lateral roots (a), stem at breast height (b), mid canopy branches (c), and upper canopy branches (d);
estimated by generalized additive model (ten thin-plate regression splines using REML). For visibility,
data points are jittered ±0.2 months along the x-axis (jittering not used in fitting).

4. Discussion

Both xeric populations accumulated root starch for one to two extra months, compared
to mesic populations (Figure 1). This observation provides evidence that carbon allocation
responds to long-term differences in soil water availability. It reinforces the link between NSC
physiology and drought survival in woody plants [3] and suggests plastic allocation is possible.
We highlight three aspects of our finding. (1) We did not expect the distinct temporal dynamics
but consistently higher concentrations over time for xeric populations. Instead, our findings
suggest that accumulation-depletion dynamics differ in seasonal distribution but not overall
magnitude for xeric and mesic populations. (2) Observed dynamics differ for sugar and starch
concentrations. Starch concentrations exhibit greater temporal variation, consistent with seasonal
oscillation; we observed the clearest differences in starch concentrations. (3) Observed dynamics differ
across organs. We observed temporal variation for stem and root starch concentrations, but only
for root starch did temporal dynamics differ between xeric and mesic populations, suggesting root
starch is the primary form and location for longterm storage in these trees similar to herbaceous
plants [36,68,69]. Our results have several limitations. First, inferences about temporal dynamics
are sensitive to temporal resolution. We measured root NSC measurements at two-month intervals,
limiting our ability to detect fine-scale changes. Second, we only observed a single annual period,
limiting inferences about interannual seasonal dynamics. Comparison with other data from the
same species at similar sites [24,44] and of NSC seasonal variation in general [3,36] suggests that
seasonal variation observed here is consistent through time. We collected the data in a particularly
wet year (See site rainfall data in [57]), suggesting these differences do not result from acute drought
responses. However, both sites experienced drought in the two-three years prior to measurement
(−5 to −2.5 Palmer Drought Severity Index; See [57]). NSC measurements also have methodological
limitations [70]. We repeated our chemical quantification method if replicates from the same tissue
sample differed by more than 10% to reduce the noise inherent in these measurements. As noted
earlier, root and stem measurements originate from a different sample of trees than branch samples
limiting comparisons across organs.
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Overall, sugar concentrations exhibited few differences in dynamics between xeric and mesic
populations. We observed small differences in temporal dynamics within branch sugar concentrations
in which xeric populations switched from winter accumulation to spring-summer depletion earlier
than mesic populations (Figure 2). Root sugar concentrations increased during winter possibly as
cold-weather adaptation (perhaps by freezing point depression) [8]. Freezing point depression is a
possible explanation for branch sugar dynamics but does not explain differences in xeric and mesic
dynamics. This difference could also result from the same processes which generated the differences in
root starch, although a meta-analysis of the seasonal dynamics of leaf and stem sugar concentrations
across many conifers did not reveal a pattern of winter-accumulation and summer depletion similar
to the cycle observed in belowground organs [36]. Our observations of stem and branch sugars is
similar with observations in the deciduous Pistacia vera (pistachio) and Juglans regia (walnut), in which
stems exhibited little temporal variation but branches and twigs did; but not Prunus dulcis (almond)
in which stems and branches exhibited similar temporal variation (roots were not measured) [38].
Previous observations of the same site also found seasonal variation in root sugar and starch, but not
in stems [44] similar to observations in other systems [45]. It is also possible that xeric and mesic
populations had different dynamics in specific sugar compounds (e.g., sucrose, glucose, fructose, etc.)
as observed in other studies [69,71,72] that we were unable to detect.

Our results suggest plasticity in NSC allocation. However, we did not measure plasticity directly
and do not know if observed differences result from different environments over the life history of the
two populations (i.e., ontogenetic/development of seedlings in different conditions) or from recent
events (i.e., carbon dynamics responding to changing environmental conditions without changing
allocation priority) [73]. The differences in dynamics should not result solely from genetic differences
because the populations are not reproductively isolated given their geographic proximity. Both sites are
contained within a larger matrix of longleaf woodland vegetation with many P. palustris individuals,
and P. palustris is wind pollinated. However, it is possible that genotype filtering occurs early in the
life cycle and therefore creates distinct genetic populations. Genetic differences have been associated
with differences in NSC concentration [74].

The implications of differences in temporal dynamics depend on which processes are responsible.
Differences in assimilation, growth, osmoregulation, and respiration drive these dynamical differences,
but the relative contribution of each process changes the interpretation of results. The sink limitation
hypothesis suggests downregulation of growth due to differences in water and temperature during
the spring and summer [21,75]. However, differences < 1◦C in monthly average temperature
between the sites (See [57] for detailed temperature data) renders temperature sink limitation unlikely.
Soil volumetric water content differed by 2%–3% for this period but does not mirror the temporal
dynamics here (See data in [57]). Therefore, water sink limitation is possible but seems unlikely
to generate observed results. More precise data on soil and plant water potentials or hydraulic
conductance is not available for the study period. NSC accumulation for osmoregulation is another
possible explanation [76,77]. None of the observed NSC dynamics mirror soil volumetric water content
for that time period (See data in [57]), suggesting that observed dynamics do not solely reflect changes
in osmotic potential. Another possibility is that the observed differences reflect a drought recovery
period given that carbon allocation and NSC depletion are linked to delayed drought mortality
and recovery [46]. Both xeric and mesic populations experienced drought between 2011 and 2012
before the study began (See data in [57]). These differences in temporal dynamics without mirrored
differences in current hydrologic conditions suggest short term hydrologic differences did not result
in the observed patterns. We suspect the presence of active regulation of NSC allocation in response
to the long-term hydrologic conditions [3]; however, further observations are needed to confirm this
conjecture. Our measurements suggest that seasonal differences may be subtle and difficult to detect
in longterm studies with low frequency measurements [31].

We speculate that delay in root starch depletion reflects a conservative “wait-and-see” strategy.
Xeric trees delay growth in case drought conditions occur, growing only if early summer is particularly
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wet. When drought occurs, extra reserves maintain metabolism, hydraulic function, and cell
hydration [24,26]. Where droughts are rarer, competition for other resources like light and nitrogen
dominates provide the advantage to less conservative allocation strategies. Allocating to growth early
maximizes growing season photosynthetic capacity by increasing the total leaf area. If the observed
allocation results from a balancing act between light and nutrient competition which requires fast
growth, favoring quick NSC investment, and drought/disturbance resilience which requires building
starch reserves, favoring storage [69]. A similar balancing act is seen with carbon-nitrogen allocation
strategies [78,79].

5. Conclusions

We observed a delayed summer increase in the root starch concentrations for xeric population of
P. palustris compared to a similar mesic population, suggesting differences in seasonal storage due to
long-term differences in hydrologic conditions. We did not observe clear differences in other organs or
in sugar concentrations, suggesting the primacy of root starch in seasonal carbon storage. Our results
also highlight the complexity of NSC dynamics and the necessity for more precise predictions from
theory and models of theory. Greater precision in prediction permits more informative experiments
and allows for more fully experimental confirmation of models. Achieving these goals strengthens
predictions of ecosystem response under climate change, where predictions cannot be experimentally
verified. Future research should aim to evaluate seasonal NSC dynamics in additional species in
sites with contrasting soil moisture availability over multiple years to confirm or challenge our
finding as well as to explore NSC reserves respond to chronic and internanual variation in soil
moisture availability.
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