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Abstract: The Chinese elm is an important tree ecologically; however, little is known about its
genetic diversity and adaptation mechanisms. In this study, a total of 107 individuals collected from
seven natural populations in eastern China were investigated by specific locus amplified fragment
sequencing (SLAF-seq). Based on the single nucleotide polymorphisms (SNPs) detected by SLAF-seq,
genetic diversity and markers associated with climate variables were identified. All seven populations
showed medium genetic diversity, with PIC values ranging from 0.2632 to 0.2761. AMOVA and Fst
indicated that a low genetic differentiation existed among populations. Environmental association
analyses with three climate variables (annual rainfall, annual average temperature, and altitude)
resulted in, altogether, 43 and 30 putative adaptive loci by Bayenv2 and LFMM, respectively. Five
adaptive genes were annotated, which were related to the functions of glycosylation, peroxisome
synthesis, nucleic acid metabolism, energy metabolism, and signaling. This study was the first on the
genetic diversity and local adaptation in Chinese elms, and the results will be helpful in future work
on molecular breeding.
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1. Introduction

Chinese elm (Ulmus parvifolia), which is native to China, Japan and Korea, has become a widely
distributed ornamental tree that is frequently planted on lawns, along streets and in parks [1]. In China,
the wild resources of U. parvifolia are mainly located in the northern and eastern areas, exhibiting a
wide range of adaptation. Within this area, Chinese elm is recognized as a drought, heat, and cold
tolerant tree [2–4]. Nevertheless, as global climate alteration will happen in the near future, it remains
questionable to what degree the speed of future adaptation can keep up with the pace of climate
change [5]. Therefore, an in-depth understanding of the genetic diversity and the genetic regulation
of adaptation in Chinese elms is essential. Revealing polymorphisms and genes that determine
adaptation would provide the basis for breeding genetically improved germplasms that could be used
in changing environments.

Genetic diversity is the maximum of genetic variation presented in the genetic makeup of a
specific species [6]. It is an important component of species biodiversity. Monitoring the genetic
diversity of natural populations is of paramount importance, since it could shed light on the population
structure, history, ecology, and adaptation of the species [7]. Local adaptation occurs gradually over
time, with relatively long generation times. During the adaptation process, alleles that are best fitted to
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the specific climate gradually prevail through positive selection [8]. Those alleles, once identified, can
give new insights into plant adaptive evolution, as well as be utilized for future molecular breeding.

Previous research on genetic diversity and local adaptation of plants has been conducted at
the DNA-based molecular level, such as simple sequence repeat (SSR), inter-simple sequence repeat
(ISSR), random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism
(AFLP), and single nucleotide polymorphism (SNP) [7,9,10]. SNPs are genome sequence variations
that occur when there is a single nucleotide change in the DNA sequence [11]. SNPs are the most
abundant and stable type of DNA variation in a genome, therefore, the density of SNP markers is much
higher than any other molecular markers [3]. Nowadays, reduced representation sequencing, such
as genotyping-by-sequencing (GBS) and specific locus amplified fragment sequencing (SLAF-seq),
has been used to quickly and efficiently identify numerous SNPs in plants [12,13]. As reduced
representation sequencing can be performed without a reference genome, it has been tested on many
kinds of trees, such as pecans [14], Japanese conifers [10], and masson pine [15].

To date, reports regarding the genetic diversity and adaptive mechanisms in Chinese elms remain
remarkably scant. In this study, we attempt to explore the genetic diversity of seven natural populations
of Chinese elms in eastern China, and then identify the potential local adaptation genes based on
SLAF-seq identified SNPs. Our results might help in the marker-assisted breeding of Chinese elms in
the future.

2. Materials and Methods

2.1. Plant Materials

Natural populations of Ulmus parvifolia were investigated in the present study. A total of seven
populations with 107 individuals were collected from Jiangsu Province (XZ, JN, CS), Anhui Province
(HUOS, HS), and Zhejiang Province (FY, LH). For each population, 13~17 individuals were sampled,
with individuals at least 300 m apart. Collection details and climate information for the seven
populations are summarized in Table 1 and Figure 1 Young healthy leaves were sampled and stored at
−80 ◦C until further use.
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Table 1. Population details of Chinese elms and their climate information.

Population Location Abbreviation Sample Size Annual Rainfall (cm) Geographical
Coordinates

Annual Average
Temperature (◦C) Altitude (m)

Xuzhou, Jiangsu XZ 15 802.5 34◦12′ N, 117◦09′ E 14.5 (0.7, 27.3) * 56
Jiangning, Jiangsu JN 13 1072.9 31◦51′ N, 118◦46′ E 15.7 (2.9, 28.3) 20
Changsu, Jiangsu CS 17 1615.3 31◦39′ N, 120◦39′ E 16.9 (3.6, 28.2) 90
Huoshan, Anhui HUOS 15 1366 31◦26′ N, 116◦23′ E 15.3 (2.6, 27.7) 110

Huangshan, Anhui HS 14 2395 30◦15′ N, 118◦08′ E 15.5 (4.4, 28.1) 180
Fuyang, Zhejiang FY 16 1441.9 30◦03′ N, 119◦37′ E 16.1 (4.3, 28.8) 90
Linhai, Zhejiang LH 17 1550 28◦47′ N, 121◦34′ E 17.1 (6.5, 28.6) 10

* The values in brackets represent the average temperature over years in January and July.
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2.2. High-Throughput Sequencing

About 20 mg of leaves were used for genomic DNA extraction via the DNeasy Plant Pro
Kit (Qiagen, Hilden, Germany). DNA concentration and quality were assessed with a Nanodrop
1000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, MA, USA) and 2% agarose gel
electrophoresis. Quantified DNA samples were diluted to 100 ng/µL for the subsequent SLAF-seq
analysis. SLAF-seq was performed according to a previous report [12], with some modifications. Since
the genome of Chinese elm has not been published, we used the Trema orientale (the same species in
Ulmaceae) for the prediction of enzyme digestion. Briefly, the reference genome of Trema orientale
was used to perform marker discovery surveys through simulating in silico the number of markers
obtained by various restriction enzymes. To get >100,000 SLAF tags that were evenly distributed in the
genome, two restriction enzymes, HinCII and HaeIII, were finally selected. The efficiency of enzyme
digestion was of importance for the reduced-representation sequencing. For the present study, Oryza
sativum ssp. japonica DNA with a high-quality genomic information was used as a control to evaluate
the quality of enzyme digestion. Following digestion, a single nucleotide (A) was added to the 3′ end
using dATP at 37 ◦C, and then Dual-index adapters were ligated to the A-tailed DNA fragments. PCR
amplification was subsequently performed using diluted restriction-ligation DNA as the template.
The products of PCR were purified and pooled together. DNA fragments that were 414–464 in length
were collected from agarose gel, and were chosen as SLAF tags. High-throughput sequencing was
performed using an Illumina-HiSeqTM 2500 sequencing platform (Illumina, Inc.; San Diago, CA, USA)
at Beijing Biomarker Technologies Corporation (Beijing, China).

2.3. SNP Calling

Raw reads generated from the sequencing platform were first qualified through removing the
adapter sequence included in the raw reads, low-quality reads (quality scores < 20), and empty reads
(reads just contained adapter sequence). High quality paired-end reads were clustered using the
BLAT software based on sequence similarity [16]. Sequences with over 90% similarity among different
individuals were identified as one SLAF locus [12]. Samtools [17] and the Genome Analysis Toolkit
(GATK) [18] were used for SNP calling, and their intersection was considered to indicate reliable SNPs.
For the phylogenetic analysis, SNPs with a minor allele frequency (MAF) < 5% and missing rate > 0.2
were filtered.

2.4. Diversity Analysis

A total of 457,888 SNPs from 107 individuals were developed to calculate the genetic diversity
and population structure. The commonly used indexes of genetic diversity, including the observed
allele number (Na), expected allele number (Ne), observed heterozygous number (Ho), expected
heterozygous number (He), Nei’s diversity index (H), Shannon’s wiener index (I), and polymorphism
information content (PIC), were calculated by POPGENE [19]. These indexes were calculated to
estimate the degree of allele distribution (Na and Ne), genomic heterozygosity (Ho and He), gene
diversity (H and I) and DNA polymorphism (PIC). In order to assess the population differentiation,
Analysis of molecular variance (AMOVA) was calculated to estimate the partitioning of genetic variance
among populations. Meanwhile, pairwise fixation index (Fst) among populations was also computed
to detect how gene diversity was partitioned at each level. Inter-individual fixation index (FIS) was
analyzed to determine the deviation of genotype frequencies from Hardy–Weinberg proportions within
each population. AMOVA, Fst, and FIS were estimated by Arlequin [20].

The phylogenetic tree was constructed by MEGA X software with the following parameters:
neighbor-joining method, Kimura 2-parameter model, and 1000 bootstrap replicates. The population
structure was analyzed by Admixture [21], on the basis of the maximum-likelihood method. The number
of populations (K), ranging from 1 to 10, was tested, and each individual was assigned to its respective
populations according to the maximum membership probability.
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2.5. Climatic Association Analysis

Two programs, Bayenv2 [22,23] and LFMM [24], were used to detect outlier loci that were possibly
associated with climatic variables. First, we used Bayenv2 to detect correlations between SNP allele
frequencies and environmental variables. A covariance matrix of allele frequencies was estimated
across populations using the full set of SNPs to avoid population-specific effects. For each tested SNP,
this program generated a Bayes factor (BF) and nonparametric Spearman’s rank correlation coefficient
(ρ) based on the Markov chain Monte Carlo (MCMC). In this study, the significance threshold for the
putative adaptive makers were those ranked among the top 1% of BF values (log10BF > 2.75) and
top 5% of ρ values. The other software, LFMM, was also used for gene-climate association analysis.
As it estimates the hidden impact of population structure, LFMM permits the presence of background
levels of population structure (latent factors). The detected SNPs that exhibit an association with
the environment were determined according to the z-score. Bonferroni adjustment was used on the
z-score values for multiple tests. Markers with z-scores > 2.8 and a p-value < 0.01 were considered to
be significant. Putative functions for the identified outlier loci were annotated using the NCBI and
UniProt databases.

3. Results

3.1. SNP Detection

High-throughput sequencing based on SLAF generated a total of 439.74 M pair-end reads, with a
mean GC content of 42.90%, and an average Q30 of 96.70%. We obtained a total of 2,059,418 high-quality
SLAF tags for the 107 samples, with an average depth of 18.88x for each SLAF (Table 2). For the SLAF
tags, 529,271 were polymorphic. These polymorphic SLAFs contained 4,138,972 SNPs in total, and
457,888 of them were utilized in further analysis after applying the filtering criteria.

Table 2. Summary of specific locus amplified fragment sequencing (SLAF-seq).

No. of Reads GC Content (%) Q30 (%) No. of SLAF No. of Depth

Sum 439,742,148 2,059,418
Avg. 4,109,739.70 42.9 96.7 19,246.90 18.88

3.2. Genetic Diversity and Genetic Differentiation

The value of the observed allele number (Na) was 2 across populations, and the values of the
expected allele number (Ne) ranged from 1.5321 (XZ) to 1.5759 (FY), with a mean value of 1.5498.
The observed heterozygous (Ho) values were significantly lower than the He values, with values
lying between 0.1483 (CS) and 0.1822 (FY), and an average of 0.1599. The values of the expected
heterozygous (He) number across the seven populations were between 0.3236 (XZ) and 0.3427 (FY),
with an average value of 0.3315. Nei’s diversity index (H) was within the range from 0.3385 (XZ) to
0.3570 (FY), with a mean value of 0.3467. Shannon’s wiener index (I) varied from 0.4948 to 0.5171 for
the XZ and FY populations, respectively. The PIC values of the seven populations ranged from 0.2632
to 0.2761, with an average of 0.2686. The maximum value of PIC was presented in the FY population,
while the minimum value was found in the XZ population. As a measure of intragametophytic selfing,
FIS were low in our study, varying from −0.03849 (FY population) to 0.06769 (HS population) (Table 3).
All the FIS were on Hardy–Weinberg equilibrium (p > 0.05).
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Table 3. Genetic diversity of seven Chinese elm populations.

Population Na Ne Ho He H I PIC FIS

XZ 2 1.5321 0.1582 0.3236 0.3385 0.4948 0.2632 0.04448
JN 2 1.5462 0.1572 0.3298 0.3476 0.5021 0.2675 0.05903
CS 2 1.5362 0.1483 0.3255 0.3390 0.4971 0.2645 0.05467

HUOS 2 1.5414 0.1510 0.3281 0.3435 0.5002 0.2664 0.06443
HS 2 1.5469 0.1523 0.3307 0.3475 0.5034 0.2682 0.06769
FY 2 1.5759 0.1822 0.3427 0.3570 0.5171 0.2761 −0.03849
LH 2 1.5697 0.1699 0.3398 0.3534 0.5137 0.2741 0.01339

Na, observed allele number; Ne, expected allele number; Ho, observed heterozygous; He, expected heterozygous;
H, Nei’s diversity index; I, Shannon’s wiener index; PIC, polymorphism information content; FIS, inter-individual
fixation index.

The pairwise fixation index (Fst) is a measure of genetic differentiation among populations. In our
study, the lowest genetic differentiation existed between the HS and HUOS populations, with an Fst
value of 0.00712. The LH and XZ populations presented the largest genetic differentiation, with an Fst
value of 0.09106 (Table 4). AMOVA indicated that the maximum diversity occurred within individuals
(92.22%), while the minimum diversity presented among individuals within populations (3.54%).
A total of 4.24% of the genetic variation occurred among populations (Table 5).

Table 4. Pairwise fixation index (Fst) values among seven populations of Chinese elm.

XZ JN CS HUOS HS FY

JN 0.03396
CS 0.03939 0.01504

HUOS 0.02869 0.01164 0.01525
HS 0.04646 0.01845 0.017 0.00712
FY 0.08368 0.05256 0.04706 0.04659 0.04891
LH 0.09106 0.0536 0.04831 0.05281 0.05296 0.07493

Table 5. Analysis of molecular variance (AMOVA) of genetic diversity of Chinese elm populations.

Source of Variation df Sum of Squares Variance
Components

Percentage of
Variation (%)

Among populations 6 30,354.88 93.79375 4.24
Among individuals
within populations 100 219,566.2 78.17923 3.54

Within individuals 107 218,205.5 2039.304 92.22

3.3. Phylogenetic Relationship and Population Structure

The genetic relationships of the 107 individuals were exemplified by a phylogenetic tree.
Interestingly, we found that the individuals could not be divided into distinct clades, which indicates a
weak population structure of the individuals (Figure 2). Generally, individuals in the same subclade
were from the same population (Figure 2).

The genetic structure of the U. parvifolia populations was assessed with the Admixture software.
As shown in Figure 3, the lowest K-values were detected when K = 1, indicating that a weak
population structure existed in the individuals. A relatively low K-values was seen when K = 2,
and correspondingly, the 107 individuals could be categorized into two groups. Group I contained
91 individuals, which were mainly from the FY, MH, HS, XZ, JN, and CS populations. Group II
consisted only of 16 individuals from the LH population (Figure 4). Individuals with a low degree of
admixture were seen from all the studied populations.



Forests 2020, 11, 80 7 of 14Forests 2020, 11, x FOR PEER REVIEW 7 of 14 

 

 
Figure 2. Phylogenetic tree of the 197 individuals based on the analysis of 457,888 single nucleotide 
polymorphisms (SNPs). 

 
Figure 3. ADMIXTURE estimation of the number of groups for K values ranging from 1 to 10. 

Figure 2. Phylogenetic tree of the 197 individuals based on the analysis of 457,888 single nucleotide
polymorphisms (SNPs).

Forests 2020, 11, x FOR PEER REVIEW 7 of 14 

 

 
Figure 2. Phylogenetic tree of the 197 individuals based on the analysis of 457,888 single nucleotide 
polymorphisms (SNPs). 

 
Figure 3. ADMIXTURE estimation of the number of groups for K values ranging from 1 to 10. 

Figure 3. ADMIXTURE estimation of the number of groups for K values ranging from 1 to 10.



Forests 2020, 11, 80 8 of 14Forests 2020, 11, x FOR PEER REVIEW 8 of 14 

 

 
Figure 4. Population structure analysis of the 107 individuals based on 457,888 SNPs. The bars in the 
x-axis indicate different individuals. Colors in each row represent structural components. 

3.4. Association Between SNP Markers and Environmental Variables 

The association analysis of SNPs and environmental variables was conducted by the Bayenv2 
and LFMM programs. Bayenv2 analysis identified a total of 43 SNP markers showing significant 
correlation with the environmental variables. Of these, 8, 10, and 25 markers were associated with 
altitude, annual rainfall, and annual average temperature, respectively (Table 6). A set of 30 markers 
associated with climatic variables was obtained by the LFMM program. The highest number of 
associations was for temperature, which was related to 16 markers; the annual rainfall and altitude 
were correlated with 4 and 10 markers, respectively (Table 7). Blast searches indicated that five of the 
correlated SNP markers could be annotated. Two markers (Marker204041 and Marker76627) 
associated with altitude could be annotated to the DEAD-box helicase and V-type proton ATPase genes, 
respectively. The SNP markers, Marker68303 and Marker129188, correlated with annual rainfall, 
were found in the regions of the UDP-glycosyltransferase (UGT) and peroxisome biogenesis protein genes, 
respectively. The SNP marker, Marker87380, associated with annual average temperature, seems to 
underlie the Cysteine-rich receptor-like protein kinase gene (Table 8). 

Table 6. A summary of putative adaptive markers displaying associations with different climate 
variables identified by Bayenv2 analysis. 

SNP ID Pos log10 (BF) ρ Altitude Annual Rainfall Annual Average 
Temperature 

Marker127061 164 4.9954 0.1019 *   

Marker58279 222 4.1913 0.1049 *   

Marker204041 6 4.1152 0.1288 *   

Marker971355 147 3.8946 0.1053 *   

Marker62103 215 3.5162 0.1594 *   

Marker76627 243 3.3182 0.1087 *   

Marker54757 5 2.3134 0.1045 *   

Marker33355 188 2.0794 0.1071 *   

Marker129188 112 25.6440 0.1808  *  

Marker39336 258 11.2230 0.1233  *  

Marker201123 242 7.7245 0.1258  *  

Marker44387 8 6.1236 0.1641  *  

Marker40822 186 3.5858 0.1087  *  

Marker68303 61 2.9905 0.1092  *  

Figure 4. Population structure analysis of the 107 individuals based on 457,888 SNPs. The bars in the
x-axis indicate different individuals. Colors in each row represent structural components.

3.4. Association between SNP Markers and Environmental Variables

The association analysis of SNPs and environmental variables was conducted by the Bayenv2 and
LFMM programs. Bayenv2 analysis identified a total of 43 SNP markers showing significant correlation
with the environmental variables. Of these, 8, 10, and 25 markers were associated with altitude, annual
rainfall, and annual average temperature, respectively (Table 6). A set of 30 markers associated with
climatic variables was obtained by the LFMM program. The highest number of associations was
for temperature, which was related to 16 markers; the annual rainfall and altitude were correlated
with 4 and 10 markers, respectively (Table 7). Blast searches indicated that five of the correlated SNP
markers could be annotated. Two markers (Marker204041 and Marker76627) associated with altitude
could be annotated to the DEAD-box helicase and V-type proton ATPase genes, respectively. The SNP
markers, Marker68303 and Marker129188, correlated with annual rainfall, were found in the regions
of the UDP-glycosyltransferase (UGT) and peroxisome biogenesis protein genes, respectively. The SNP
marker, Marker87380, associated with annual average temperature, seems to underlie the Cysteine-rich
receptor-like protein kinase gene (Table 8).

Table 6. A summary of putative adaptive markers displaying associations with different climate
variables identified by Bayenv2 analysis.

SNP ID Pos log10 (BF) ρ Altitude Annual
Rainfall

Annual Average
Temperature

Marker127061 164 4.9954 0.1019 *
Marker58279 222 4.1913 0.1049 *
Marker204041 6 4.1152 0.1288 *
Marker971355 147 3.8946 0.1053 *
Marker62103 215 3.5162 0.1594 *
Marker76627 243 3.3182 0.1087 *
Marker54757 5 2.3134 0.1045 *
Marker33355 188 2.0794 0.1071 *
Marker129188 112 25.6440 0.1808 *
Marker39336 258 11.2230 0.1233 *
Marker201123 242 7.7245 0.1258 *
Marker44387 8 6.1236 0.1641 *
Marker40822 186 3.5858 0.1087 *
Marker68303 61 2.9905 0.1092 *
Marker85734 99 2.8768 0.1019 *
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Table 6. Cont.

SNP ID Pos log10 (BF) ρ Altitude Annual
Rainfall

Annual Average
Temperature

Marker71488 44 2.8301 0.1134 *
Marker37050 59 2.6988 0.1115 *
Marker58475 77 2.2600 0.1380 *
Marker41305 13 37.3380 0.1019 *
Marker62540 103 23.1980 0.1043 *
Marker107170 225 22.4260 0.1838 *
Marker65958 170 21.5660 0.1102 *
Marker18102 240 20.3570 0.1169 *
Marker18740 56 13.0760 0.1192 *
Marker60000 154 11.8650 0.1013 *
Marker78616 181 11.4110 0.1134 *
Marker29379 156 10.9290 0.1295 *
Marker112072 227 7.3602 0.1023 *
Marker62404 182 7.2272 0.1218 *
Marker116716 258 6.6439 0.1066 *
Marker211065 76 4.9942 0.1024 *
Marker145731 238 4.6537 0.1030 *

Marker2846306 228 4.0441 0.1947 *
Marker32405 256 3.6509 0.1019 *
Marker109530 179 3.5689 0.1013 *
Marker24830 245 3.4366 0.1058 *
Marker60529 214 3.4104 0.1613 *
Marker29189 49 3.0557 0.1021 *
Marker51336 148 2.8289 0.1259 *
Marker31333 33 2.4288 0.1735 *
Marker130465 24 2.3988 0.1026 *
Marker65370 245 2.3645 0.1109 *
Marker41605 187 2.0949 0.1111 *

* suggests that the SNP showed an association with that specific climate variable.

Table 7. A summary of putative adaptive markers displaying associations with different climate
variables identified by LFMM analysis.

SNP ID Position Z-Scores log10(p) p-Value Altitude Annual
Rainfall

Annual Average
Temperature

Marker45074 257 2.94 2.39 0.0041 *
Marker172745 21 2.90 2.34 0.0046 *
Marker45074 62 2.88 2.32 0.0048 *
Marker45074 10 2.87 2.30 0.0050 *
Marker45074 12 2.86 2.29 0.0051 *
Marker45074 69 2.86 2.29 0.0051 *
Marker45074 77 2.85 2.28 0.0052 *
Marker45074 253 2.85 2.28 0.0053 *
Marker45074 197 2.85 2.27 0.0053 *

Marker141529 57 −2.82 2.24 0.0057 *
Marker101622 111 2.93 2.38 0.0042 *
Marker101622 23 2.92 2.37 0.0043 *
Marker101622 75 2.92 2.37 0.0043 *
Marker101622 74 2.80 2.22 0.0061 *
Marker147012 258 −2.95 2.40 0.0040 *
Marker147012 172 2.94 2.40 0.0040 *
Marker147012 147 2.94 2.40 0.0040 *
Marker147012 59 −2.94 2.40 0.0040 *
Marker79339 199 2.94 2.40 0.0040 *
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Table 7. Cont.

SNP ID Position Z-Scores log10(p) p-Value Altitude Annual
Rainfall

Annual Average
Temperature

Marker112495 159 −2.94 2.40 0.0040 *
Marker112495 155 2.94 2.40 0.0040 *
Marker79339 63 2.94 2.40 0.0040 *
Marker87380 208 2.94 2.40 0.0040 *

Marker102725 233 −2.94 2.39 0.0040 *
Marker43598 85 2.94 2.39 0.0040 *
Marker58232 213 2.94 2.39 0.0041 *

Marker106952 19 −2.94 2.39 0.0041 *
Marker112495 237 −2.94 2.39 0.0041 *
Marker106952 94 −2.94 2.39 0.0041 *
Marker112495 238 −2.94 2.39 0.0041 *

* suggests that the SNP showed an association with that specific climate variable.

Table 8. Identification of putative candidate genes of the associated SNP markers.

Climate Variables Marker ID Position Putative Genes

Altitude
Marker204041 6 DEAD-box helicase
Marker76627 243 V-type proton ATPase

Annual rainfall
Marker68303 61 UDP-glycosyltransferase

Marker129188 112 Peroxisome biogenesis protein

Annual average temperature Marker87380 208 Cysteine-rich receptor-like protein kinase

4. Discussion

The present study is the first attempt to use SNPs derived from SLAF to assess the genetic diversity
and explore the adaptation mechanisms of Chinese elms. In recent years, SLAF-seq technology has
become a low-cost technique to effectively develop reliable SNP and InDel markers for genome-wide
association analysis and high-density genetic map construction [25,26]. Our study identified a total
of 4,138,972 SNPs and selected 457,888 SNPs with MAF > 5% and a missing rate < 0.2 for further
analysis. The number of molecular markers was dramatically larger than that in previous reports on
elm species [27,28], which facilitates precise genetic analysis.

Heterozygosity is an important measure of overall genetic diversity [25]. In our study, the Ho
and He values ranged from 0.1483 to 0.1822 (an average of 0.1599) and 0.3236 to 0.3427 (an average of
0.3315), respectively (Table 3). These values were lower than the results observed in other trees [25,29].
A relative lower level of genetic heterozygosity for the Chinese elms might be due to the existence of
spatial isolation in different groups, hindering the gene communication between individuals to some
extent. The index, PIC, measures the degree of informativeness of a genetic marker, with values ranging
from 0 to 1 [29]. A locus with a PIC value of 0 is undesirable [30]. When PIC < 0.25, it indicates a low
polymorphism, and 0.25 < PIC < 0.50 represents a median polymorphism. In contrast, PIC > 0.50 is
indicative of high polymorphism [31]. According to this criteria, as the PIC values were between 0.2632
to 0.2761 (Table 3), the tested seven populations in our study possessed medium genetic diversity in
terms of PIC. The inter-individual fixation index (FIS) measures the deviation of genotype frequencies
from Hardy–Weinberg proportions within each population. A negative FIS indicates heterozygote
excess (outbreeding), while a positive value reflects a deficiency in heterozygosity (inbreeding) [32].
In our study, the FY population presented a negative FIS (−0.03849) (Table 3), suggesting a slight excess
of heterozygotes. The other six populations exhibited a positive FIS (Table 3). All the populations were
not statistically significantly deviated from the Hardy–Weinberg equilibrium (p > 0.05), indicating a
relatively random mating for these populations. Overall, the FY population displayed higher genetic
diversity than the other six populations, which was supported by the larger Ne, Ho, He, H, I, and PIC
values (Table 3).
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Outcrossing woody plants tend to possess low levels of genetic differentiation among
populations [33]. In the current study, differentiation among populations was estimated by Fst
values. Fst > 0.25 signifies a great genetic differentiation, 0.25 > Fst > 0.15 indicates a moderate
genetic differentiation, 0.15 > Fst > 0.05 means a small genetic differentiation, and Fst < 0.05 represents
negligible genetic differentiation [34]. Based on this standard, a low genetic differentiation was found
among the studied populations (Fst values ranging from 0.00712 to 0.09106) (Table 4). Additionally,
AMOVA analysis (Table 5) also indicated a low percentage of variation (4.24%) among populations.
Similar results could be found in other trees [7,35].

Investigating the population structure of tested individuals is the premise for association analysis,
since the presence of the population structure could affect the validity of association results [36–38].
In our study, the optimal K value of the seven populations was 1 (Figure 2), indicating no population
structure existed in the studied groups. The geographic boundaries had a weak effect on the genetic
structure of Chinese elms. The existence of population structure might cause correlations between
unlinked locis, and would usually result in increased false associations, the weak population structure
of Chinese elm in our study would be conducive to subsequent association analysis.

Natural selection has an important impact on shaping the genetic variation of a population,
and therefore promotes local adaptation [39]. In this research, based on the identified SNP markers,
an association study was used to uncover the hidden genetic basis of local adaptation. The associated
SNP markers were blasted against public databases for putative genes. We found that the genes
of DEAD-box helicase and V-type proton ATPase seemed to be candidates for adaptation to altitude.
DEAD-box helicase is involved in nucleic acid metabolism functions, such as transcription, translation,
replication, repair, recombination, ribosome biogenesis and splicing, which control plant grow and
development [40]. V-type ATPase, as a transporter, is essential for energy metabolism and maintenance
of solute homeostasis, which makes it indispensable for plant growth [41,42]. V-type proton ATPase
has been shown to play a significant role in plant adaptation to stressful growth conditions [42].
We deduced that variations in altitude would lead to a difference in plant growth according to the
functions of DEAD-box helicase and V-type proton ATPase.

UDP-glycosyltransferase (UGT) and peroxisome biogenesis protein were associated with annual
rainfall variable. UGT belongs to the glycosyltransferase (GT) multigene family [43]. In plants, GTs
are a ubiquitous group of enzymes involved in the glycosylation process, and glycosylation leads
to the formation of glycosylated secondary chemicals such as flavonols, anthocyanins, and plant
hormones [44,45]. Glycosylated secondary products possess increased water solubility and molecule
stability, which could change their biological activity [44]. Peroxisome biogenesis protein might participate
in the synthesis of peroxisomes, a metabolic organelle that exists in all eukaryotic cells [46]. Peroxisomes
contribute to resistance against oxidative stresses, β- and α-oxidation of fatty acids, and synthesis of
ether lipids [47,48]. The products of UGT and Peroxisome biogenesis protein seemed to confer advantages
for plants survival in rainy climate [43]. It is reasonable that UGT and peroxisome biogenesis protein
appeared as candidates for adaptation to rainfall climate.

Cysteine-rich receptor-like protein kinase (CRK) was the putative gene that we found was associated
with the annual average temperature variable. CRKs are critical signaling components that regulate
plant developmental and defense processes. In Arabidopsis, overexpression of a CRK gene confers
drought tolerance without affecting plant growth [49]. Considering that the temperature variable
would be generally correlated with drought stress, it is possible that there may be a difference in
drought-associated loci among populations. Identification of putative candidate genes correlated with
the environment would reveal a primary insight into functional genes mediating local adaptation.
However, further studies are required in the future to explain the accurate roles of those candidate
genes in the adaptation processes of Chinese elms.
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5. Conclusions

The present study analyzed the genetic diversity and adaptation of seven natural populations
of Chinese elms in eastern China. The trees were genotyped by SLAF-seq technology, and then
identification of SNPs was carried out. The natural population of Chinese elms showed a moderate
level of genetic diversity (PIC = 0.2632~0.2761), low level of genetic differentiation, and a simple
population structure (K = 1). The association analysis of genetic markers and environmental factors
resulted in putative markers involved in local adaptation. A blast search was conducted to detect
underlying putative candidate genes for the correlated markers. A total of five genes could be annotated,
which were related to the functions of glycosylation, peroxisome synthesis, nucleic acid metabolism,
energy metabolism, and signaling. The results will be helpful for future work on molecular breeding
of this species.
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