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Abstract: Increased frequency of tree mortality and forest decline due to anomalous drought
events calls for the adoption of effective monitoring of tree water status over large spatial and
temporal scales. We correlated field-measured and remotely sensed plant water status parameters,
to test the possibility of monitoring the risk of drought-induced dehydration and hydraulic failure
using satellite images calibrated on reliable physiological indicators of tree hydraulics. The study
was conducted during summer 2019 in the Karst plateau (NE Italy) in a woodland dominated by
Fraxinus ornus L.; Sentinel-2 images were acquired on a seasonal scale on the same dates when
absolute water content (AbWC), relative water content (RWC), and minimum water potential (¥ in)
were measured in the field. Plant water status parameters were correlated with normalized difference
vegetation index (NDVI and NDVI 8A), normalized difference water index (NDWI), and soil-adjusted
vegetation index (SAVI). Significant Pearson and Spearman linear correlations (x < 0.05) emerged
between all tree-level measured variables and NDWI, while for NDVI, NDVI 8A, and SAVI no
correlation was found. Our results suggest the possibility of using the NDWI as a proxy of tree water
content and water potential.

Keywords: Fraxinus ornus; remote sensing; NDVI; NDWI; water stress; karst; water potential; RWC;
water content

1. Introduction

Forests cover roughly 30% of the world’s land surface [1], and account for a large share of
global net primary production. Forests also provide essential services for ecosystems and humankind,
including carbon sequestration, biodiversity conservation, timber production, and hydrological cycle
regulation [2—4]. In the last decades, anomalous tree mortality events have been recorded in many
forests worldwide, frequently coupled to anomalous drought and heat waves [5-10]. Despite the
variability of future climate change projections, most scenarios foresee an increase in global mean
temperature with more frequent, severe, and prolonged heat waves and dry periods [11]. These
changes may exacerbate tree mortality and forest die-off events [12,13].

In this light, the development of an effective monitoring system of forest health status would be
fundamental to assess the drought-induced mortality risk at a landscape scale [14,15]. Despite the
complexity of the mechanisms involved, the cause leading to drought-induced mortality is ultimately
thought to be hydraulic failure [16]. Therefore, the most adequate predictor of mortality risk should
be a proxy of plant water status calibrated against critical thresholds related to hydraulic failure, as
previously suggested by Martinez Vilalta et al. [17]. The gold standard parameter to assess plant water
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status is the water potential, a measure of the free energy of water in plant tissues. As soil water
availability decreases and atmospheric evaporative demand increases, the plant water potential drops
and the likelihood of embolism formation in xylem conduits increases [18,19]. Another commonly used
parameter is the leaf water content, expressed as the amount of water in the leaf tissues as an absolute
value, or relative to the fully hydrated status [20,21]. Usually expressed as relative water content
(RWC), this is a common estimate of plant water status [17,22,23]. Recently, Martinez Vilalta et al. [17]
have proposed to use the RWC as an indicator of mortality risks of trees and forests at a landscape
level, as it is closely related to plant water status, it is scalable from plant organ to the ecosystem, it has
consistent thresholds relative to the loss of hydraulic functions (e.g., RWC at turgor loss point) and it is
easy to measure.

Widespread and frequent measurements of RWC or plant water potential at field level are
challenging. However, remotely sensed satellite data may be a useful tool to provide information
on broad and remote areas from most regions of the world, provided that such measurements can
be correlated to functionally meaningful parameters at the plant level. This workflow strategy has
been indeed implemented, and an increasing number of studies have focused on the assessment of a
set of remotely sensed metrics related to water content and to the loss of hydraulic function, in order
to predict drought-induced tree mortality at landscape scale (e.g., [24-26]). Specifically, it has been
suggested that remote sensing vegetation indices may be used as proxies of parameters such as the
water potential and the RWC.

The normalized difference vegetation index (NDVI) is one of the most commonly used vegetation
indices in ecosystem monitoring [27,28]. NDVI is a proxy of vegetation productivity based on
the estimation of absorbed photosynthetically active radiation [29], but it is also used to estimate
other features such as leaf area index, vegetation biomass, and water availability [30-32]. NDVI is

calculated as:
PNIR — Pred

PNIR + Pred

where pnir is the near-infrared reflectance (~0.83 um), sensible to cell structures of leaves, and py is
the red reflectance (~0.65 um) [27]

Despite the common use of NDV], its utility is limited because of oversaturation of red light
in areas having leaf area index > 3, and NIR radiation reflectance by soil [33,34]. For these reasons,
Huete [35] proposed a soil-adjusted vegetation index (SAVI), calculated as:

NDVI = (1)

(14 L)(pNIR = Pred)
(ONIR + Prea + L)

SAVI = 2)
where L is the canopy background adjustment factor which reduces soil brightness variations [35].
Gao [36] introduced the normalized difference water index (NDWI), where the red channel is

replaced by an infrared channel, located in the water absorption region between 0.9 and 2.5 um [36].

NDWTI is calculated as:
PNIR — PSWIR

PNIR + PSWIR

NDWI = (©)]
where pgswir is the short-wave-infrared reflectance (~1.24 um), sensible to water content and weakly
affected by other features [33].

Remote sensing data have been regularly used for ecophysiological studies, sometimes coupled
with forest structure data measured in the field (e.g., diameter at breast height, tree density,
dead tree density), to model biophysical features of vegetation (e.g., [25,37-39]). Majasalmi and
Rautiainen [38] used satellite data, coupled with field measures of tree basal area, density, diameter,
height, and crown length, to model the canopy biophysical properties in boreal forests in Finland.
Nevertheless, studies correlating satellite remote sensed data with physiological parameters connected
to plant water status are scarce and mainly focused on crops (e.g., [40-43]). Sun et al. [44] have
used a field spectrometer in wheat farmlands, coupled to field measurements of leaf and plant water
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content, in order to assess possible relations between remote sensing indices and spectral bands and
field-measured parameters. Their results showed good correlations between water status parameters
and vegetation indices, highlighting the possibility to predict water stress in wheat by using canopy
reflectance data.

In this study, we report measurements of tree water status (minimum leaf water potential, relative
and absolute water content) during seasonal progression of drought in two sites dominated by Fraxinus
ornus, but characterized by contrasting substrate properties and hydrology. Measurements were taken
on the same dates of satellite data acquisitions. The objective of the study was to test correlations
between the most used vegetation indices and field measured parameters, in order to provide a first
insight on the possibility to monitor tree water content and forest health status by remote devices
operating at large spatial scales, with high temporal and spatial resolution.

2. Materials and Methods

2.1. Study Area

The study area was located near the village of Sgonico (North-Eastern Italy, 45° 44’ 12.1"" N-13°
44’" 56.4"" E), in a woodland in the Karst Plateau, a limestone-dominated region on the border between
Slovenia and Italy. The climate in the area is sub-Mediterranean with warm summers (average
temperature in July of 22.7 °C), while winters are cold (average temperature in January of 3.9 °C). Mean
annual rainfall exceeds 1200 mm, mostly occurring in spring and autumn (data from ARPA-OSMER
https://www.meteo.fvg.it/clima/clima_fvg, reference period 1992-2019). The vegetation is composed by
coniferous forests dominated by Pinus nigra that have suffered extensive dieback following anomalous
summer droughts [45], inter-mixed with deciduous woodlands dominated by Quercus pubescens,
Fraxinus ornus, and Ostrya carpinifolia.

A 30 m resolution digital elevation model of the study area was processed using the function
“r.slope.aspect” of the Geographic Resources Analysis Support System (GRASS [46], v7.8) software, in
order to generate a slope and an exposure map. Two sites of 20,000 m? each, south exposed, with
similar slope (between 10% and 20%) hosting vegetation dominated by F. ornus with different health
status (one site with healthy individuals, H site, and one site with some individuals showing die-back
symptoms, D site) were then selected within the study area (Figure 1) [47].
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Figure 1. Healthy (H site) and observed die-back (D site) areas on the Karst Plateau near Sgonico in NE
Italy (Rectangles). The thematic layer corresponds to south exposure with slope between 10% and 20%,

and occupied by deciduous forests. Points correspond to sampled F. ornus individuals.

In each site, six healthy individuals of Fraxinus ornus with comparable age and height (trunk
diameter at breast height ~5 cm) were selected and the parameters listed below were measured in the
field during the progression of summer drought. This species was selected because of its water use
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strategy characterized by a substantial degree of anisohydry [48,49], which can induce large variations
in plant water status on a seasonal time scale. Hence, this species was considered as an optimal
bio-monitor of vegetation water status.

Two sampling areas (one per site) for remote sensing analyses were designed using the QGIS
software, version 3.4.5 [50]. A grid was overlapped to the field sampling sites using the “Create
Grid Layer” tool and vectorial polygon shapefiles for sampling areas were designed as rectangles
(80 x 250 m), in order to include the sampled individuals.

2.2. Physiological Parameters

Field sampling was performed between 12:30 and 1:00 p.m., on 16 May, 27 June, 25 July, and 12
August in 2019 (Figure 2). Two sun-exposed pairs of leaves were sampled from each tree, on the upper
and outer part of the canopy. Leaves were wrapped in plastic film and stored in a plastic bag with
humid paper inside, maintained in a refrigerated bag until measurements (~1 h after sampling).

40 80
—— Minimum temperature
—— Maximum temperature
mmms Precipitation

A 7
/\ /

140 160 180 200

30 ® Sampling dates
r 60
o o2
o A . A 8
O 20 - VoA AN A A 24
— \ Ia f A JEAVA \ N/ / ©
2 AN VR WAV N O VAN MUV =
9 . ;" t“ { VAR 1.\ f ™~ \ / ,,»“ //, 40 g;':
[ N\ i o ™ o
3 10 A N v =
0E> fo ' E 3
l_ I \ 3
F 20
0
I I | . ; | | In 1 | 1 I . 0
2

|
120

Figure 2. Maximum (black line) and minimum (grey line) temperature with precipitation (bars) values,
measured in the meteorological station of Sgonico during summer 2019. Black circles denote field
sampling dates.
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In the laboratory, the minimum water potential (¥,;n, MPa) was measured on one leaf for
each pair using a pressure chamber (mod. 1505D, PMS Instrument Company, Albany, OR, USA).
Preliminary experiments had shown that this procedure produces results consistent with those obtained
by measuring ¥ i, directly in the field. The second leaf of each pair was used to measure the fresh
weight (FW, g) using an analytical balance (model SPU123, Ohaus Scout ProBalance, Parsippany,
NJ, USA) and were rehydrated overnight in order to measure the leaf turgid weight (TW, g). After that,
they were dried for 24 h at 70 °C in an oven to obtain their dry weight (DW, g).

Relative water content (RWC, g/g) and absolute water content (AbWC, g/g) were calculated as:

FW-DW

RWC = TW-DW 4)

FW — DW
ADWC = ——r— ()
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2.3. Remote Sensing Data

The Sentinel-2 mission was developed by the European Space Agency as part of the Copernicus
European initiative, which aims to provide operational monitoring information for environment and
security applications relying on multispectral high spatial resolution optical observations over global
terrestrial surface, also providing a narrow-NIR band (0.865 pm) scarcely contaminated by atmospheric
water vapor and representing the NIR plateau for vegetation [51,52]. It comprises a constellation of
two near-polar-orbiting satellites placed in the same sun-synchronous orbit, phased at 180° to each
other, granting a revisit time from five days at the equator to 2-3 days at mid-latitudes [52].

Sentinel-2A/-2B level 2A images (bottom of atmosphere product) with tile 33TUL were retrieved on
the Copernicus Open Access Hub (https://scihub.copernicus.eu/). We downloaded four multispectral
images from 16 May to 12 August, matching field sampling dates. We selected only cloud-free dates
every 2/3 weeks during the growing season. Vegetation indices were calculated using optical spectral
bands of red (B04, 665 nm), near-infrared (B08, 833 nm), narrow near-infrared (B8A, 864 nm), and
short-wave-infrared (B11, 1610 nm), with the “r.mapcalc” function in GRASS, setting the geographic
regions boundaries for the sampling areas with the “g.region” and “r.mask” functions.

Indices were calculated as:
B08 — B04

NDVI = 508 T B0L (6)
NDVISA = %; @)
NDWI = %; 8
V1= o Bt 1) ©

where L is the canopy background adjustment factor, conventionally set at 0.5.

2.4. Statistical Analyses

Mean values and associated standard deviation of the physiological parameters and the remote
sensing indices were calculated for each sampling and acquisition date for each sampling site using the
R software [53]. Generalized linear mixed models (GLMMs) were used to test whether physiological
parameters and remote sensing indices were different between the two sampling sites per each date,
using “glmer” function in “Ime4” package [54]. Specifically, a Gaussian model with a log link function
(see equations below) was calculated for each physiological parameter and remote sensing indices
(dependent variables), while site (healthy or H, die-back or D), sampling/acquisition date and their
interaction were the fixed covariates. To incorporate the temporal dependency among observations,
we used the sampling/acquisition date as a random intercept. Pseudo R? of each model was calculated
using “r2beta” function in “MuMIn” package [55]. The structure of each model was as follows:

Physiological parameter/remote sensing indexs;; = Gaussian (j;;).
E(Physiological parameter/remote sensing index) = p;.
log(Physiological parameter/remote sensing index) = site;; X sampling/acquisition date.

L .

Sampling/acquisition date ~ N (0, 0?).

where physiological parameter/remote sensing index;; is the jth observation in sampling/acquisition
datei,andi=1,...,4, and sampling/acquisition date is the random intercept, which is assumed to be
normally distributed with mean 0 and variance ¢2. Correlations between mean values of physiological
parameters and vegetation indices were calculated using the Pearson r correlation coefficient or the
Spearman’s p correlation coefficient when normality assumption was violated, with the “cor.test”
function in the “stats” package. Data normality was checked with the Shapiro-Wilcoxon test using
“shapiro.test” function in “stats” package.
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3. Results

Mean values and associated standard deviation of physiological parameters and remote sensing
indices are listed in Table 1. The most favorable plant water status was measured at the beginning of
the summer season at day 136 (16 May), while minimum values of water potential and water content
were measured at day 206 (25 July) (Table 1, Figure 3). The individuals growing in the H site generally
had higher AbWC and ¥ i, than those growing in the D site, while RWC was not statistically different
between the two sites (Figure 2). Specifically, values of AbWC were higher in the H site at days 206
and 224, while values of ¥ i, were higher only on day 206 (Figure 3).

Maximum values of NDVI, NDVI 8A, and SAVI were measured on day 178 (27 June), while
minimum values were recorded at the end of the summer season (day 224, 12 August) (Table 1, Figure 4).
Maximum values of NDWI were reached at the beginning of the summer season at day 136, while
minimum values were reached at day 206.
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Figure 3. Mean values and associated standard deviation (error bars) of: (a) Absolute water content
(AbWC, Pseudo R? = 0.80); (b) relative water content (RWC, Pseudo R? = 0.59); (c) minimum water
potential (¥ p,in, Pseudo R? = 0.85), measured on F. ornus growing in H site (open circles) and in D site
(black circles). * indicates statistically significant differences between the two sites (p < 0.05).
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Table 1. Means and standard deviations of physiological parameters measured on F. ornus in H and

D sites and corresponding remote sensing indices. Abbreviations are as follows: Absolute water

content (AbWC), relative water content (RWC), minimum water potential (‘¥ i), normalized difference
vegetation index (NDVI), NDVI calculated using the narrow-near-infrared band (NDVI 8A), normalized
difference water index (NDWI), soil-adjusted vegetation index (SAVI).

DOY Date Site AbWc g/g RWC g/g Y min MPa NDVI NDVI 8A NDWI SAVI
136 May 16th H 070+0.03 0.93 +£0.03 -0.94 £ 0.38 0.886 +0.012  0.889 £ 0.011  0.428 £ 0.016  1.333 + 0.016
y D 0.67+0.03 0.94 £ 0.03 —0.80 + 0.34 0.870 +£0.021  0.873 £0.020  0.380 £ 0.026  1.309 + 0.029
179 June 28th H 0.62+0.02 0.89 £ 0.05 -1.95+0.25 0.902 +0.013  0.905+0.011  0.410+0.013  1.358 + 0.017
une D 0.60 +0.02 0.89 + 0.04 -220+0.17 0.880 +0.016  0.884 £ 0.014  0.359 +£0.022  1.326 + 0.022
206 July 25th H 056 +0.02 0.76 + 0.08 —2.86 £ 0.37 0.859 +0.013  0.870 £0.011  0.362+0.018  1.305 + 0.016
y D 051+0.03 0.65 £ 0.12 -3.65+0.29 0.826 +0.027  0.839 £ 0.024  0.308 + 0.031 1.259 + 0.036
24 August 12th H 059 +0.03 0.89 + 0.04 -1.90 + 0.34 0.837 +£0.013  0.848 £0.011  0.392+0.019  1.272 +0.016
& D 055+0.01 0.87 +0.05 -1.97 £ 043 0.816 + 0.017  0.827 +0.015 0.353 + 0.022 1.241 +0.022
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Figure 4. Mean values with standard deviation of: (a) Normalized difference vegetation index (NDVI,
Pseudo R? = 0.68); (b) normalized difference vegetation index calculated using the narrow near-infrared
band (NDVI 8A, Pseudo R? = 0.68); (c) normalized difference water index (NDWI, Pseudo R? = 0.71);
(d) soil-adjusted vegetation index (SAVI, Pseudo R? = 0.50), calculated in H site (open circles) and in D
site (black circles). * indicates statistically significant differences between the two sites (p < 0.05).

Values of NDVI, NDVI_8A, and SAVI were significantly higher in the H site only on 26 July,
whereas NDWI values were significantly higher in H than in D on each sampling date (Figure 4).

Pearson and Spearman correlation coefficients (r/p) and associated p-values (p) between the
physiological parameters and remote sensing vegetation indices are listed in Table 2. Statistically



Forests 2020, 11, 77 8of 13
significant correlations were only found between the NDWI and all the physiological parameters
(Figure 5).

Table 2. Pearson and Spearman correlation coefficients (r/p) for tested correlations between physiological
parameters and calculated vegetation indices. * = p < 0.05; ** = p < 0.01.

NDVI NDVI 8A NDWI SAVI
AbWC r 0.676 0.630 0.883 ** 0.628
RWC P 0.476 0.476 0.833 * 0.476
Y in r 0.446 0.382 0.821 * 0.381
0.44 0.44
p = 0.004 a p=0.015 b
0.42 - 0.42 { p=0.833 o
0.40 0.40
S 0.38 S 038
=) @)
Z 0.36 Z 0.36 -
0.34 0.34 -
0.32 - 0.32 -
)
0.30 ; ; ; ; ; 0.30 ; ; ;
0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.6 0.7 0.8 0.9 1.0
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p=0.012 c
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0.40 - o
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Figure 5. Correlations between absolute water content (AbWC, (a)), relative water content (RWC, (b))
and minimum water potential (¥ in, (c)) vs. the normalized difference water index (NDWI) in H site
(open circles) and in D site (black circles). Pearson’s r, Spearman’s rho (p) coefficients, and associated
p-values (p) are also reported.

4. Discussion

Physiological parameters measured in the field and NDWI followed the same seasonal trend,
reaching maximum values on 16 May and the minimum on 26 July. On the contrary, NDVI, NDVI
8A, and SAVI values followed a different pattern, with a maximum at the end of June followed by a
progressive decrease (Figures 3 and 4).

The absence of statistical differences between sites in terms of NDVI, NDVI 8A, and SAVI, suggests
that the use of the narrow-NIR band does not improve the quality of NDVI output for the purpose of
monitoring vegetation water status. Moreover, despite generally high NDVI values, this index did not
saturate and the use of SAVI did not provide any additional information. On the contrary, significant
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differences emerged between H and D sites in terms of the NDWI trend, consistent with field-measured
changes in plant water status.

Differences in terms of AbWC and ¥ i, in H and D trees did not emerge until the end of July,
while RWC was always statistically similar between the two sites. The leaf turgor loss point (Yyp) of F.
ornus has been reported to range between —2.0 and —3.5 MPa on a seasonal scale, with most negative
values recorded at the peak of summer drought [48]. The most negative ¥, values recorded in this
study were —2.86 and —3.65 MPa in H and D trees, respectively. Hence, our study plants experienced a
severe water stress during summer 2019, but H trees remained in the positive turgor range, while D
trees actually reached or even surpassed ¥yj.

Significant and strong correlations were recorded between all these physiological parameters and
the NDWI (Figure 5). A similar result was reported by Dennison et al. [56], which correlated NDVI
and NDWI measured with moderate resolution imaging spectroradiometer (MODIS) data, with the
live fuel moisture on six shrub species in 12 sites in California (USA). Their results also suggested
that NDWI represents the best index for monitoring vegetation water content, as it is not affected by
pigments” absorption as in the case of NDVI.

Despite the common use of NDVI to assess water stress, based on the relation between water
availability and primary production [57], the variation in water content and energetic status due to
water stress cannot be highlighted using only the p,,; and the pyjr. Due to higher sensitivity to leaf
water content, the use of the psyr to calculate NDWI seems to be more relevant to assess water
stress and predict drought-related impacts on vegetation physiological water status, highlighting the
reliability of this index for forest monitoring in the context of increased risks of drought-induced tree
die-back and mortality. According to Carter [57], since water in leaves is mainly held in the palisade
and epidermal tissues, the water-absorption effect is more relevant in outlying the leaf spectral profile
than the leaf structure, increasing the absorption in the 400-2500 nm wavelength range. Since variations
in the visible region reflectance spectrum are driven both by leaf water content and photosynthetic
pigments abundance [58], drought-stress monitoring should focus on the 1300-2500 nm region, where
the absorption is mainly driven by leaf water content [57]. This supports our results, suggesting the
suitability of NDWI in wide-scale drought-stress monitoring, when calibrated against field-measured
physiological traits.

The better correlation of NDWI with AbWC (r = 0.883) than with RWC (p = 0.833) could arise
by the use of TW to calculate the latter parameter. In fact, this measurement might be biased for
at least two reasons: (i) The forced leaf rehydration could induce over-hydration with flooding of
intercellular leaf air spaces, leading to incorrect estimation of TW; (ii) the physical interactions involved
in absorbance and reflection of electromagnetic radiation are influenced by the amount of existing
water, and the potential maximum water content might have no relevance at all in this specific context.
Similar results have been reported by Maki et al. [59], which successfully correlated the NDWI with
two drought-related variables: fuel moisture content (calculated as AbWC) and equivalent water
thickness, using three deciduous woody species selected for their different drought-resistance.

Interestingly, NDWI was also strongly correlated to Ymin (r = 0.821). Considering that recent
vegetation dynamics models have incorporated plant hydraulics as a predictor of gas exchange,
primary productivity and mortality risk under drought [24,25], the possibility to detect by remote
the time when plants reach critical species—specific ¥ieof Values leading to stomatal closure or xylem
embolism represents a very promising opportunity to setup forest monitoring protocols with increased
physiological meaning and with great spatial and temporal resolution.

Our results provide useful insights into the possibility of monitoring forest health status on a
wide scale with high temporal and spatial resolution, via calibration and conversion of poorly-defined
scales of remotely sensed vegetation indices to reliable and mechanistic drought-related physiological
parameters. However, caution is needed, as our correlations are based on a relatively limited
number of field measurements and needs to be further validated, ideally focusing on a larger set
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of drought-related parameters measured on multiple species” assemblages, also including a higher
diversity of environments and forest types.

5. Conclusions

This paper provides one of the few examples of correlation between drought-stress related
physiological parameters measured in the field, and satellite remotely sensed data in a forest ecosystem.

Due to the strong correlation with field-measured parameters, the normalized difference water
index emerged as the best remote sensing vegetation index for monitoring vegetation water status,
while the normalized difference vegetation index and the soil-adjusted vegetation index did not
correlate with any physiological parameter. These results are encouraging in the view of developing a
wide-scale monitoring system, especially relying on the Sentinel-2 mission, allowing free access to data
with high spatial and temporal resolution from most regions of the world.
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