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Abstract: Warming effects on agricultural and forest ecosystems have been well documented at
broad spatiotemporal scales but less so at stand and landscape scales. To detect the changes in
soil organic carbon (SOC) and carbon:nitogen:phosphorus (C:N:P) stoichiometry in response to a
short-range warming gradient, we defined an inverse elevation-dependent warming gradient and
developed a novel index of warming based on a common environmental lapse rate. We associated
the warming gradient and warming index with the changes in SOC and C:N:P stoichiometry and
tested the independence of warming effects using partial correlation analysis. SOC content and
C:N:P stoichiometric ratios significantly decreased with warming, and the effect of warming on C:N:P
stoichiometric ratios were stronger than on SOC content. The relationships of SOC content and C:N:P
stoichiometric ratios with warming did not change after controlling for two other energy-related
variables, i.e., transmitted total radiation and potential direct incident radiation. However, the strength
in the relationships of C:N:P stoichiometric ratios with vegetation-related variables significantly
decreased after the warming index was controlled for. As indicated by the random forest regression
model, the warming index was the most important variable for predicting SOC variability and the
second most important for predicting total N variability, while vegetation-related variables were
the most important for predicting C:N:P stoichiometric ratios. Our results showed that warming
was responsible for the decrease in SOC content and C:N:P stoichiometric ratios and the warming
index was the most important variable for predicting SOC variability. Although the most important
variables for C:N:P stoichiometric ratios were related to vegetation, the relationships between
C:N:P stoichiometric ratios and vegetation-related variables were significantly affected by warming.
These findings demonstrate that warming is the major driver of SOC variability and the decrease in
SOC content, as well as of C:N:P stoichiometry, even along a short-range warming gradient.

Keywords: climate change; forest ecosystem; stoichiometric ratio; warming index; inverse elevational
gradient; warming gradient

1. Introduction

Climate warming has had profound impacts on terrestrial ecosystems and all aspects of human
society. According to the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report
(AR5), the current global warming has reached 1.0 ◦C and is projected to increase by 1 ◦C to 3.5 ◦C by the
end of the 21st century relative to the pre-industrial level [1], resulting in rising sea levels, diminishing
Arctic sea ice, changes in plant phenology, and more extreme weather events [2,3]. Given the profound
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and extensive impacts of warming, the latest IPCC special report on global warming of 1.5 ◦C has set a
new goal to limit global warming to 1.5 ◦C rather than a previous goal of 2 ◦C above the pre-industrial
levels [4]. As stated in the report, limiting warming to 1.5 ◦C rather than 2 ◦C, a mere half of a degree
difference, would have significant global and regional climate impacts on ecosystems and human
society [5–7], and will make it easier to achieve the United Nations sustainable development goals.

Major effects of warming on forest ecosystems involve various limitations as well as enhancements
of forest growth, production, and carbon (C) and nitrogen (N) dynamics of both biomass and soil C
pool components [3,8–10], thus adding to the uncertainty about the effects of global warming and the
occurrence of extreme climate events. This uncertainty is especially concerning for soil C pools, because
soils contain the largest C pools in the terrestrial ecosystem and have the potential to counterbalance
the greenhouse effects [11]. In tropical forests, warming leads to the loss of biodiversity and even the
death of some non-pioneer tree species [12,13]. Warming increases soil CO2 emissions by increasing
soil microbial respiration and will therefore lower soil organic carbon (SOC) stocks and change soil
carbon:nitogen:phosphorus (C:N:P) stoichiometric patterns [14,15]. Predicting the effects of warming
on SOC dynamics in the forest ecosystems will facilitate forest management and conservation and
will help the forest sector adapt to climate change. At a small scale, however, warming effects on SOC
will be altered by various biotic and abiotic factors, such as forest types, canopy structure, species
composition, gap light regimes, and topography.

Studies on the effects of elevational gradient on SOC pools have provided insights into how changes
in micro-climate affect SOC [16–18]. However, most studies used an ascending elevational gradient
and failed to relate the elevational effects to warming immediately. According to an environmental
temperature lapse rate, temperature decreases with elevation and thus a lower elevation in a mountain
landscape has a higher temperature. If an inverse elevational gradient is conceptualized as a temporal
scale of warming based on a space-for-time substitution, then the effects of climate warming on SOC
and C:N:P stoichiometric ratios can be predicted in a sloping, forested landscape.

A growing number of studies have revealed the patterns and underlying mechanisms of changes
in SOC and C:N:P stoichiometry across major elevational gradients [16,19–21]. However, for a
minor elevational change, warming effects on SOC and C:N:P stoichiometry have been understudied.
Conventional studies related to elevational gradient commonly focused on a wide range of elevations
so as to fully reveal the responses of the ecological series. The effects resulted from a small change in
temperature due to short-range elevational change may also be compensated or substituted by the
interactions of biotic and abiotic site factors, such as soil physicochemical properties and changes in
land cover [16,19]. According to the common environmental lapse rate of 0.65 ◦C/100 m [22], a 1000-m
change in elevation corresponds to a 6.5 ◦C difference in temperature. If the elevational difference is
≥2000 m, the difference in temperature can be 13 ◦C or greater, which substantially exceeds the future
warming scenario [1]. Therefore, to predict and test warming effects on SOC and C:N:P stoichiometry
in a forest ecosystem under the global warming scenario, selecting a forested landscape with a short
range of elevational difference as sample plots would be viable and practical.

Here, we used a warming gradient from a higher-to-lower elevation change in a forest census
plot. We defined this inverse elevation-dependent warming gradient and developed a novel index
of warming based on a common environmental lapse rate of 0.65 ◦C/100 m [22]. We associated
the warming gradient and warming index with the changes in SOC and in C:N:P stoichiometry,
and tested the independence of the warming effects against various biotic and abiotic factors using
partial correlation analysis. We aimed to answer the following questions: (1) Is SOC sensitive to small
changes of temperature that are due to short-range elevational difference? (2) Are the relationships
of SOC and C:N:P stoichiometric ratios to the biotic and abiotic habitat factors affected by warming?
(3) Relative to other biotic and abiotic factors, how important is warming for predicting SOC and C:N:P
stoichiometric dynamics?
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2. Materials and Methods

2.1. Study Site

Our study was carried out in a natural forested landscape in the Kanghe Nature Reserve
(23◦44′37”~23◦52′16” N, 115◦04′27”~115◦09′41” E). This area is alongside the Dongjiang River in the
eastern part of South China′s Guangdong province and has a humid subtropical monsoon climate.
The mean annual temperature ranges from 20.3 ◦C to 21.1 ◦C and the mean annual precipitation is
2142 mm [23,24]. Soils are clay loamy latosols developed from granite. The area has vegetation typical
of a subtropical forest, with the canopy layer dominated by the evergreen broadleaved tree species
Castanopsis carlesii (Hemsl.) Hayata, Schima superba Gardner & Champ., Castanopsis fargesii Franch.,
and Itea chinensis Hook. & Arn. [23].

2.2. Sampling Design and Plant Census

We set up an 8-ha permanent plot on a forested slope in the nature reserve by means of surveying
with a total station (Nikon DTM-310, Nikon Geotecs Co. Ltd., Tokyo, Japan). The plot was rectangular
with two horizontal dimensions of 200 m × 400 m in length and width, and was divided into 200 square
subplots (400 m2 per subplot), each of which contained four 10 × 10 m quadrats for the collection of
field data. We used polyvinyl chloride (PVC) tubes as markers for the grid-square system at both 20-m
corners and 10-m corners. Elevation at each 20-m corner was recorded by the total station during
surveying and was used to calculate topography. The elevation of each subplot was calculated by
averaging the elevation values at its four corners [25], while slope and aspect were calculated according
to the methods described by Condit [26].

In each subplot, we tallied all trees ≥5 cm diameter at breast height (DBH) to represent the species
composition of the canopy layer. Understory plant census was carried out in five 2 × 2 m sub-quadrats
within a subplot, one at each center point of the four quadrats and one at the center of the subplot.
Understory vegetation data from sub-quadrats were then pooled to represent the understory species
composition by subplots.

2.3. Soil Sampling and Laboratory Determination

Five subsamples of mineral soils to a depth of 25 cm were collected within a subplot and were
evenly mixed to yield a homogenized composite sample. The localities for collecting soil subsamples
were the sub-quadrats as described for the understory plant census. Soil samples were air-dried,
thoroughly ground, and passed through a 2-mm mesh sieve for the determination of total soil
organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP). SOC and TN contents were
measured by ignition using a vario-Max N/CN elemental analyzer (Elementar Analysensysteme GmbH,
Germany), and TP content was determined colorimetrically by the ammonium molybdate method [27].
C:N:P stoichiometric ratios were calculated as the ratios of SOC to TN (C:N), SOC to TP (C:P), and TN
to TP (N:P).

2.4. Understory Radiation Measurements

We used hemispherical photography to measure understory radiation. Within each subplot and
at the same localities as for understory plant census, we took five hemispherical photographs using
a Nikon CoolPix 4500 digital camera with a Nikkor FC-E8 fisheye converter (Nikon Corporation,
Tokyo, Japan). The camera was mounted on a tripod 1.65 m above the ground under the forest canopy,
pointing upwards to the sky. A total of 1000 hemispherical photographs were analyzed with gap
light analyzer (GLA) software version 2.0 (Simon Fraser University, Burnaby, BC, Canada, and the
Institute of Ecosystem Studies, Millbrook, NY, USA) [28]. The results of image analysis included a
series of canopy structure and understory radiation parameters, from which the transmitted total
radiation (TransTot, MJ m−2 d−1) was used in this study. Values of TransTot from the five hemispherical
photographs within a subplot were averaged to account for the gap light regime of the subplot.
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2.5. Potential Direct Incident Radiation

We calculated potential direct incident radiation (PDIR, MJ m−2 d−1) using the nonparametric
multiplicative regression (NPMR) method as described by McCune [29]. Using the topographic
parameters as predictor variables and the model files provided by McCune (http://people.oregonstate.
edu/~{}mccuneb/radiation.htm), we generated predictions of PDIR for every subplot with the
software HyperNiche: Nonparametric multiplicative habitat modeling, version 2.28 (MjM Software,
Gleneden Beach, OR, USA).

2.6. Warming Gradient and Warming Index

We defined a warming gradient as an inverse elevational gradient. As the elevation difference
in the study plot was approximately 150 m, a three-level warming gradient was established,
each approximately corresponding to a 0.33 ◦C temperature difference based on the common lapse
rate of 0.65 ◦C/100 m [22]. To facilitate further analysis, we developed a novel index of warming as a
quantitative proxy variable for an inverse elevation-dependent warming gradient. The warming index
is expressed as follows:

Warming index = (Elevmax − Elevsubplot) m/100 m (1)

where Elevmax is the elevation of the highest subplot, while Elevsubplot is the elevation of a particular
subplot including the highest one, such that the elevational difference of the highest subplot equals
zero. A higher warming index corresponds to a lower elevation position. For example, a warming
index of 1.0 corresponds to 0.65 ◦C warming above the temperature level at the highest elevation
of a landscape, while an inverse elevational difference of 10 m yields a warming index of 0.1 and
corresponds to 0.065 ◦C warming when a lapse rate of 0.65 ◦C/100 m [22] is applied.

2.7. Statistical Analyses

Descriptive statistics, including means, maxima, minima, standard deviations, and coefficients of
variation, were used to account for the spatial heterogeneity in SOC, TN, TP, and C:N:P stoichiometric
ratios across subplots. We constructed subplot-by-species datasets for the understory vegetation and
the canopy tree layer. These datasets were subjected to statistical analyses to calculate vegetation-related
metrics. We calculated understory plant species richness (Sunder), total abundance (Nunder), and the
Shannon–Wiener diversity index (H’under). We performed principal component analysis (PCA) to
extract the principal components of the first two axes on both the understory plant dataset (Axis1under,
Axis2under) and the canopy layer tree dataset (Axis1tree, Axis2tree). These principal components or
ordination axis scores are surrogates for species composition [30]. All of the vegetation-related metrics
were used as predictor variables in further analyses.

To assess whether warming had significant effects on SOC, TN, and TP contents and C:N:P
stoichiometric ratios, we performed Kruskal-Wallis tests to test for significance of variations in SOC,
TN, and TP contents as well as C:N:P stoichiometric ratios across an inverse elevation-dependent
warming gradient. Kruskal–Wallis test is a nonparametric alternative to one-way analysis of variance
(ANOVA) and is appropriate for comparing three or more independent samples of field survey
data [24,31]. We also evaluated the correlation coefficients in the relationships between the warming
index and SOC, TN, TP, and C:N:P stoichiometric ratios. To determine whether these relationships were
independent of other energy-related factors and to avoid possible spurious correlation, we performed
partial correlation analysis using PDIR and TransTot as control variables. To evaluate the effects of
warming on the relationships of SOC, TN, TP, and C:N:P stoichiometric ratios with PDIR, TransTot,
and vegetation-related variables, we performed a series of Pearson correlation analyses, as well as
partial correlations analyses after controlling for the warming index. The corresponding coefficients
from both correlation and partial correlation analyses were tested for significant difference using a
difference test. Prior to the correlation and partial correlation analyses, all the variables were tested for
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normality using Kolmogorov–Smirnov tests. Variables that did not satisfy the normality assumptions,
including SOC, TN, TP, Nunder, Sunder, and H’under, were log10-transformed to improve normality.

We used the random forest regression model to evaluate the relative importance of a series of
variables for predicting SOC, TN, TP, and C:N:P stoichiometric ratios. Random forest is a type of
data mining method that can handle multiple quantitative and qualitative variables in one analysis,
and it does not require assumptions [32,33]. Thus, we used 10 variables as predictor variables in
the random forest analysis, including PDIR, TransTot, the warming index, Nunder, Sunder, H’under,
Axis1under, Axis2under, Axis1tree, and Axis2tree.

Calculation of vegetation-related metrics and principal component analysis to extract axis scores
were performed using PC-ORD: Multivariate analysis of ecological data, version 7 (MjM Software,
Gleneden Beach, OR, USA). Descriptive statistics, Kruskal–Wallis tests, normality tests, correlation and
partial correlation analyses, difference tests, and the random forest regression model analysis were
carried out using Statistica version 8 (Statsoft, Inc. Tulsa, OK, USA).

3. Results

3.1. Spatial Variability

We found medium spatial variability in the contents of topsoil organic carbon (SOC), total nitrogen
(TN), total phosphorus (TP), and the C:N:P stoichiometric ratios across the sampling plots (Table 1).
The coefficient of variation (CV) was higher for SOC than for TP or TN. As for the C:N:P stoichiometric
ratios, the highest CV was found for the C:P ratio due to the highest standard deviation for SOC
content and the lowest mean value of TP (Table 1).

Table 1. Descriptive statistics for soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP),
and C:N:P stoichiometric ratios.

Attribute Mean Median Minimum Maximum Standard
Deviation

Coefficient of
Variation (%)

SOC (g kg−1) 16.55 15.46 7.04 39.12 4.55 27.50
TN (g kg−1) 1.12 1.07 0.49 1.97 0.28 24.58
TP (g kg−1) 0.12 0.12 0.07 0.22 0.03 26.71
C:N ratio 14.82 14.67 9.29 21.25 2.15 14.48
C:P ratio 141.99 129.12 64.16 311.66 48.10 33.88
N:P ratio 9.44 8.80 4.88 16.69 2.28 24.15

3.2. Inverse Elevation-Dependent Warming Effects

SOC significantly decreased (Figure 1a; p < 0.0001), but TN (Figure 1b; p = 0.0015) and TP
(Figure 1c; p < 0.00001) significantly increased across the warming gradient. A significant decreasing
trend (p < 0.0001) across the warming gradient was found for all of the C:N:P stoichiometric ratios
(Figure 1d–f; p < 0.0001), indicating that the inverse relationships between C:N:P stoichiometric ratios
and warming are consistent and sensitive.
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Figure 1. Boxplots showing the effect of warming gradient on soil organic carbon (SOC; a), total
nitrogen (TN; b), total phosphorus (TP; c), and C:N:P stoichiometric ratios (d–f) across an inverse
elevational warming gradient.

SOC was negatively correlated with the warming index (Figure 2a; r = −0.27, p = 0.0001), while TP
content was positively correlated with the warming index (Figure 2e; r = 0.41, p < 0.00001). We found
only a very weak relationship between TN and the warming index (Figure 2c; r = 0.07, p = 0.359),
but all of the C:N:P stoichiometric ratios were negatively correlated with the warming index. Among
the relationships with the warming index, the correlation coefficient was the highest for the C:P ratio
(Figure 2d; r = −0.50, p < 0.0001), followed by the C:N ratio (Figure 2b; r = −0.46, p < 0.0001), and the
N:P ratio (Figure 2f; r = −0.42, p < 0.0001). Each of these correlations was greater than those between
the warming index and SOC, TN, or TP (Figure 2).
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(TN; c), total phosphorus (TP; e), and C:N:P stoichiometric ratios (b,d,f). Number of samples = 200.

3.3. Partial Correlations

Partial correlation analyses of SOC, TN, TP, and C:N:P stoichiometric ratios with the warming
index (Table 2), after controlling for two other energy variables, i.e., PDIR and/or TransTot, yielded
coefficients that were similar to the corresponding Pearson coefficients (Figure 2). According to a
difference test in Statistica, the corresponding coefficients were not significantly different (p > 0.05).
This result indicated that the relationships of SOC, TN, TP, as well as C:N:P stoichiometric ratios with
warming index (Figure 2) were the actual effects of warming derived from the inverse elevational
warming gradient, and that the effects of warming were independent of two energy-related variables,
PDIR and TransTot.

The coefficients from a series of correlation analyses, as well as from partial correlation analyses
with the warming index as the control variable, are listed in Table 3. We found no significant difference
between the correlation coefficients and partial correlation coefficients in the relationships of SOC, TN,
TP, and C:N:P stoichiometric ratios with PDIR or TransTot, although partial correlations appeared
to strengthen the relationships of SOC, TN, TP, and the C:N:P stoichiometric ratios in response to
PDIR (Table 3). Like those in Table 2, these findings suggested that the effect of warming index was
independent of PDIR or TransTot.
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Table 2. Descriptive statistics for soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP),
and C:N:P stoichiometric ratios. PDIR: potential direct incident radiation.

Response Variable
Variables to Be Controlled for

PDIR Only TransTot Only PDIR and TransTot

SOC −0.27 * −0.26 * −0.26 *
TN 0.07 0.06 0.07
TP 0.44 ** 0.40 ** 0.44 **

C:N ratio −0.49 ** −0.45 ** −0.48 **
C:P ratio −0.54 ** −0.50 ** −0.54 **
N:P ratio −0.45 ** −0.42 ** −0.44 **

* p < 0.001; ** p < 0.0001.

We found significant coefficients of SOC with Axis1tree in the correlation analysis and with Axis2tree

in the partial correlation analysis, and significant coefficients of TN with Nunder, H’under, Axis1under,
Axis2under, or Axis1tree in both correlation and partial correlation analyses (Table 3). The relationship of
TP with PDIR, Sunder, H’under, Axis1under, or Axis2under was significant in both correlation and partial
correlation analyses; the relationships of TP with Nunder in the correlation analysis and with Axis2tree

in the partial correlation analysis were significant (Table 3).
The C:N:P stoichiometric ratios showed similar patterns in their relationships with some predictor

variables (Table 3). According to both correlation and partial correlation analyses, the C:N:P
stoichiometric ratios were positively correlated with PDIR and Axis2under, and negatively correlated
with Sunder and Axis1tree (Table 3).

Table 3. Relationships of soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), and
C:N:P stoichiometric ratios with potential direct incident radiation (PDIR), transmitted total radiation
(TransTot), and vegetation-related variables as indicated by correlation analysis (r) and partial correlation
analysis (partial r) after controlling for the warming index.

Predictor
Variable

Type of
Coefficient

Response Variable

SOC TN TP C:N Ratio C:P Ratio N:P Ratio

PDIR r 0.02a −0.09a −0.26 **a 0.21 *a 0.23 *a 0.20 *a
partial r 0.04a −0.10a −0.32 **a 0.28 **a 0.32 **a 0.26 **a

TransTot r 0.10a −0.05a −0.07a 0.18 *a 0.10a 0.03a
partial r 0.07a −0.04a −0.03a 0.16 *a 0.06a −0.01a

Nunder r −0.07a −0.37 ***a −0.20 *a 0.20 *a −0.07a −0.19 *a
partial r −0.14a −0.36 ***a −0.12a 0.12a −0.22 *a −0.32 **a

Sunder r −0.10a 0.05a 0.33 **a −0.36 ***a −0.41 ***a −0.34 **a
partial r 0.04a 0.02a 0.17 *b −0.17 *b −0.21 *b −0.17 *b

H’under r −0.07a 0.24 **a 0.37 **a −0.41 ***a −0.29 **a −0.17 *a
partial r 0.12a 0.25 **a 0.19 *b −0.19 *b 0.01b 0.10b

Axis1under r −0.04a 0.16 *a 0.32 **a −0.29 **a −0.26 **a −0.19 *a
partial r 0.064a 0.146 *a 0.203 *a −0.159 *a −0.104b −0.053a

Axis2under r 0.13a −0.18 *a −0.44 ***a 0.45 ***a 0.39 ***a 0.30 **a
partial r 0.06a −0.16 *a −0.37 ***a 0.37 ***a 0.29 **a 0.20 *a

Axis1tree r −0.23 *a 0.22 *a 0.54 ***a −0.57 ***a −0.50 ***a −0.38 ***a
partial r −0.10a 0.22 *a 0.41 ***b −0.43 ***b −0.30 **b −0.19 *b

Axis2tree r 0.08a 0.11a 0.03a 0.12a 0.09a 0.07a
partial r 0.14 *a 0.10a −0.07a 0.25 **a 0.24 **a 0.19 *a

(1) Predictor variables: PDIR = potential direct incident radiation (MJ m−2 d−1); TransTot = transmitted total
radiation (MJ m−2 d−1); Nunder = number of stems in the understory; Sunder = number of species in the
understory; H’under = Shannon-Wiener index of the understory community; Axis1under = ordination scores of Axis 1
for understory plants; Axis2under = ordination scores of Axis 2 for understory plants; Axis1tree = ordination scores of
Axis 1 for trees ≥5 cm; Axis2tree = ordination scores of Axis 2 for trees ≥5 cm. (2) *, **, and *** indicate statistical
significance at p < 0.05, < 0.001, and p < 0.0001, respectively. (3) Coefficients from Pearson correlation versus partial
correlation analyses were tested for difference using the difference test facility of Statistica version 8.0 (Statsoft, Inc.
Tulsa, OK, USA); different lowercase letters indicate a significant difference at p < 0.05.
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Significant differences were found between the correlation coefficients and partial correlation
coefficients in the relationships of TP and the C:N:P stoichiometric ratios with Sunder, H’under,
and Axis1tree (Table 3). The correlation coefficients and partial correlation coefficients in the relationships
of C:P ratio with Axis1under were also significantly different (Table 3). These differences indicated
that warming significantly influenced the relationships between the C:N:P stoichiometric ratios and
vegetation-related variables, as well as the relationships between TP and the vegetation-related variables.

3.4. Relative Importance of Predictor Variables

Among the 10 predictor variables, warming index was the most important for predicting SOC
variability (Figure 3a) and was the second most important for predicting TN variability (Figure 3c).
The most important variables were Axis1under and Axis1tree for predicting the C:N ratio (Figure 3b);
Nunder for predicting TN (Figure 3c); and Axis1tree for predicting TP (Figure 3e), the C:P ratio (Figure 3d),
and the N:P ratio (Figure 3f). For the response variable SOC, the warming index had an importance = 1,
the highest relative importance; and Axis1tree had an importance = 0.67, but other predictor variables
had an importance <0.6 (Figure 3a). For the response variable of TN, the importance of most predictor
variables was >0.7, which was comparable to the most important variable Nunder (Figure 3c).
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Figure 3. Random forest analysis showing the importance of variables for predicting SOC (a), total
nitrogen (c), total phosphorus (e), and C:N:P stoichiometric ratios (b,d,f). The response variable is
shown in each graph panel. Code for predictor variables: 1 = potential direct incident radiation (PDIR,
MJ m−2 d−1); 2 = transmitted total radiation (TransTot, MJ m−2 d−1); 3 = warming index; 4 = number of
stems in the understory (Nunder); 5 = number of species in the understory (Sunder); 6 = Shannon-Wiener
index of the understory community (H’under); 7 = ordination scores of axis 1 for understory plants
(Axis1under); 8 = ordination scores of axis 2 for understory plants (Axis2under); 9 = ordination scores of
axis 1 for trees ≥5 cm (Axis1tree); and 10 = ordination scores of axis 2 for trees ≥5 cm (Axis2tree).
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4. Discussion

4.1. Warming Effects on SOC and C:N:P Stoichiometry

SOC contents decreased while TN and TP contents increased with an inverse elevation-dependent
warming gradient. Different responses of SOC, TN, and TP to warming result in consistently
negative relationships between C:N:P stoichiometry and warming. Warming may enhance the
decomposition of SOC as well as TN and TP from the soil organic matter. According to partial
correlation analysis, the warming effects on SOC and C:N:P stoichiometric ratios were independent of
two other energy-related factors, the PDIR and TransTot, indicating that the actual warming effects on
SOC and C:N:P stoichiometric ratios are sensitive even along a short gradient of elevation change in a
mountain landscape.

SOC mainly comes from the organic matter derived from the decomposition of soil animal and
their feces, microorganisms, and plant residues, which are much more abundant in the topsoil than in
deeper soil layers [34]. Therefore, SOC content is much higher in the topsoil than in the deeper soil
layers [35]. Because of the proximity of the topsoil to the atmosphere, much of the SOC is relatively
exposed to climatic change [36,37]. Given that most active and labile components of SOC are also
concentrated in the topsoil [38,39], the SOC content is more heterogeneous and variable in both space
and time in the topsoil than in the deep soil layers. Furthermore, most functional roots are concentrated
near the soil surface [40,41]. Higher root activity and fine root turnover increase microbial biomass
and activity, further enhancing the heterogeneity of the SOC content in the topsoil. For these reasons,
the topsoil is especially suitable for exploring the responses of SOC and C:N:P stoichiometry to a small
difference in temperature change.

Soil C:N:P stoichiometric ratios change with climate, vegetation, and land use [15,42–45],
and spatial variability is a common property of C:N:P stoichiometric ratios [45,46]. We found
that both SOC and all of the C:N:P stoichiometric ratios significantly decreased with warming.
The consistent patterns made C:N:P stoichiometric ratios especially good indicators for assessing
warming effects on the forest ecosystem. However, these patterns may need further studies to test in
broader spatiotemporal scales.

4.2. Warming Effects on the Relationships of SOC and C:N:P Stoichiometry to Habitat Factors

Although the effects of warming on forest vegetation and SOC dynamics have been
well-studied [47–51], the effects of warming on the relationships of SOC and C:N:P stoichiometry
to biotic and abiotic habitat factors remains understudied. In the current research, we conducted
partial correlation analyses with warming index as a control variable and found that the relationships
between vegetation-related predictors and SOC as well as C:N:P stoichiometric ratios were generally
affected by warming. In most cases, warming reduced the coefficients from correlations of SOC and
C:N:P stoichiometric ratios with vegetation-related variables. Although warming may improve stand
productivity [24] and to some extent increase input of plant litter to the ground layer that finally adds
to the topsoil organic matter pool [39,52], the loss of SOC due to increased microbial respiration under
warming can exceed the additional input of organic material into the soil [53].

Warming reduced the strength of the correlations between vegetation-related variables and
SOC as well as C:N:P stoichiometric ratios, but the correlations remained significant and should
not be neglected in future climate warming studies. Studies have shown that the feedback of the
soil microbial community to temperature is adaptive [54,55]. Soil microorganisms might adjust
their own metabolism and structure to adapt to temperature change [55,56]. Both warming and
vegetation-related biotic variables will affect the structure and activity of the soil microbial community,
and a number of direct and indirect factors will interactively affect SOC and C:N:P stoichiometry [51,57].
Therefore, determining whether warming will reduce the correlations of vegetation-related variables
with SOC and C:N:P stoichiometry in the long run will require long-term monitoring studies and new
predictive models.
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A number of biotic and abiotic factors are known to control soil C pools and the spatial variability
of SOC and C:N:P stoichiometry [15,42,58]. Using the random forest regression model [33], we assessed
the relative importance of various biotic and abiotic factors for predicting the variability of SOC and
C:N:P stoichiometric ratios. We found that warming was the most important factor for predicting
the change of SOC, while vegetation-related variables were most important for predicting C:N:P
stoichiometric ratios. These findings indicate that C:N:P stoichiometric ratios are more sensitive than
SOC to vegetation-related variables.

5. Conclusions

Our results showed that warming was responsible for the decrease in topsoil organic carbon
content and C:N:P stoichiometric ratios. The warming index was the most important variable for
predicting SOC variability. Although the most important variables for C:N:P stoichiometric ratios
were vegetation-related variables, the relationships of C:N:P stoichiometric ratios to vegetation-related
variables were significantly affected by warming. Our results also indicated that C:N:P stoichiometric
ratios were more sensitive than SOC to warming. These findings demonstrate that warming is the major
driver of the variability in SOC, the decrease in SOC content, and the decrease in C:N:P stoichiometric
ratios, even along a short gradient of warming.
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