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Abstract: Research Highlights: The distribution of simple sequence repeat (SSR) motifs in two draft
genomes of pecan was evaluated. Sixty-six SSR loci were validated by PCR amplification in pecan.
Twenty-two new development markers can be used for genetic study in genus Carya. Background and
Objectives: Pecan has good nutritional and health benefits and is an important crop worldwide.
However, the genetic research in this species is insufficient. One of the main reasons for this is the lack
of enough accurate, convenient, and economical molecular markers. Among different marker types,
SSR loci are enormously useful in genetic studies. However, the number of SSRs in C. illinoinensis
(Wangenh.) K. Koch is limited. Materials and Methods: The distribution of SSR motifs in the pecan
genome was analyzed. Then, the primers for each SSR were designed. To evaluate their availability,
74 SSR loci were randomly selected and amplified in pecan. Finally, 22 new SSRs and eight former
ones were picked to evaluate the genetic diversity in 60 pecan genotypes and to determine their
transferability in other Carya species. Results: 145,714 and 143,041 SSR motifs were obtained from
two draft genomes of ‘87MX3-2’ and ‘Pawnee’, respectively. In total, 9145 candidate primers were
obtained. Sixty-six (89.19%) primers amplified the target products. Among the 30 SSRs, 29 loci showed
polymorphism in 60 pecan genotypes. The polymorphic information content (PIC) values ranged
from 0.012 to 0.906. In total, 26, 25, and 22 SSRs can be used in C. cathayensis Sarg., C. dabieshanensis W.
C. Cheng & R. H. Chang, and C. hunanensis W.C. Liu, respectively. Finally, the dendrogram of all
individuals was constructed. The results agree with the geographic origin of the four species and the
pedigree relationships between different pecan cultivars. Conclusions: The characterization of SSRs
in the pecan genome and the new SSRs will promote the progress of genetic study and breeding in
pecan, as well as other species of genus Carya.
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1. Introduction

Pecan (Carya illinoinensis (Wangenh.) K. Koch), native to North America, is an important crop
worldwide [1]. Pecan nuts are rich in unsaturated fatty acids, phenolics, and flavonoids and have
good nutritional and health benefits [2–4]. The nut shell contains high levels of bioactive compounds,
including tocopherols, phytosterols, total phenolics, and condensed tannins, and shows antioxidant,
antimicrobial, and potential anticancer activity [5,6]. Meanwhile, the high oil content (>70% of the fresh
weight) and high mono-unsaturated fatty acids content of the nut make pecan an excellent oil crop [4].
In addition, the biomass waste of the tree makes pecan a potential energy crop [7]. Previous studies
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have reported a significant variation in phytochemical profiles between different pecan cultivars [8,9].
Therefore, the identity verification and genetic study of this multipurpose tree are important.

To date, several molecular marker types have been used in pecan, such as amplified fragment
length polymorphism (AFLP) [10], random amplified polymorphic DNA (RAPD) [11], inter-simple
sequence repeat (ISSR) [12], simple sequence repeat (SSR) [13], and single nucleotide polymorphism
(SNP) [14]. Compared to the dominant markers (AFLP, RAPD and ISSR), SSRs are superior in terms of
their high informative content, high allelic variation, and good reproducibility [15]. They have been
extensively employed in genetic diversity, identity verification, kinship analysis, genetic mapping,
and association analysis in various plant species [16,17]. In total, 28 SSRs (including 25 genome SSRs
and three chloroplast SSRs) have been development in pecan, and a set of 19 SSR loci have been used in
genetic diversity studies [12,13,18,19]. Li et al. (2014) developed a set of SSRs based on transcriptome
sequences of Chinese hickory (C. cathayensis Sarg.) and identified the cross-transferability to other
species of Carya; however, the availability of these markers has not been fully evaluated in pecan [20].
Recently, 87,446 SNPs have been discovered in pecan individuals by genotyping by sequencing (GBS),
and 17 SNPs were significantly associated with the flowering type [14]. This study significantly
promoted the genetic study in genus Carya. However, considering the large information content,
high convenience, and low cost of SSR, SNP is unlikely to replace it in the near future [14,16].

Pecan (2n = 32) belongs to the Juglandaceae, with an estimated genome size of approximately
650 Mb [4]. It is a woody plant, which is highly heterozygous and has a lengthy generation time,
large plant size, and long juvenile phase [21]. These characteristics inhibited the genetic research and
cultivar improvement in this plant. The traditional breeding strategies in this plant are laborious,
costly, and time consuming. Recently, molecular marker-assisted selection (MAS) has become a
research hotspot in the crop breeding area that can utilize trait-linked markers to shorten the breeding
period [22,23]. However, MAS study in pecan is less often carried out. Thereby, MAS in pecan has
lagged behind other fruit trees and forestry species [24–27].

In recent years, transcriptome and genome data of pecan have been published [3,4,28,29],
offering a good opportunity to discover and develop SSRs on a large scale. Compared to genic SSRs,
genomic SSRs (gSSRs) are more abundant [30]. In the present study, the genome sequences of two pecan
cultivars, including ‘87MX3-2’and ‘Pawnee’, were downloaded from public databases. The distribution
of SSR motifs in the two cultivars was evaluated. A large number of candidate primers for gSSRs
were designed using bioinformatic tools. Then, a set of gSSRs was randomly selected, and evaluated
in ‘Pawnee’ and ‘Mahan’. Finally, the gSSRs with a good amplifying effect were picked and then
used to analyze the genetic diversity of different types of pecan germplasms in China, and to verify
the cross-transferability to three species of the genus Carya. We believe that this study will increase
the number of usable SSRs in pecan, and will facilitate genetic diversity study, cultivar identification,
genetic mapping, and MAS research in pecan, as well as other species of Carya.

2. Materials and Methods

2.1. Plant Materials and DNA Extraction

In total, 80 plant samples were used in this study, including 21 pecan cultivars (20 cultivars
introduced from USA), 14 excellent seedlings, 25 pecan seedling trees, 10 Chinese hickory strains,
five C. hunanensis W. C. Cheng & R. H. Chang seedling trees, and five C. dabieshanensis W.C. Liu seedling
trees (Table 1; Figure 1). Genomic DNA was extracted from buds or young leaves of each individual
using a Plant DNA Extraction Kit (Tiangen, Beijing, China). All DNA was stored at −80 ◦C until use.
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Table 1. The information about the plant samples.

No. Name Species 1 Type 2 Origin 3 No. Name Species Type Origin No. Name Species Type Origin

1 Osage C. il C USA 28 J1 C. il ES Jinhua, ZJ 55 JLSX C. il SP Jiande, ZJ
2 Pawnee C. il C USA 29 J2 C. il ES Jinhua, ZJ 56 0071A C. il SP Jiande, ZJ
3 McMillan C. il C USA 30 1101 C. il ES Nanjing, JS 57 0072A C. il SP Jiande, ZJ
4 Lakota C. il C USA 31 1103 C. il ES Nanjing, JS 58 0073A C. il SP Jiande, ZJ
5 Carter C. il C USA 32 1104 C. il ES Nanjing, JS 59 SDHD1 C. il SP Jiande, ZJ
6 Colby C. il C USA 33 1106 C. il ES Nanjing, JS 60 SDHDX1 C. il SP Jiande, ZJ
7 Stuart C. il C USA 34 1201 C. il ES Nanjing, JS 61 JP-18 C. hu SP Jinping, GZ
8 Greenriver C. il C USA 35 1202 C. il ES Nanjing, JS 62 JP-17 C. hu SP Jinping, GZ
9 Waco C. il C USA 36 JL72 C. il SP Jiande, ZJ 63 JP-19 C. hu SP Jinping, GZ
10 Major C. il C USA 37 JL72D C. il SP Jiande, ZJ 64 JP-20 C. hu SP Jinping, GZ
11 Oconee C. il C USA 38 JL1 C. il SP Jiande, ZJ 65 JP-18 C. hu SP Jinping, GZ
12 Syrup Mill C. il C USA 39 JL2 C. il SP Jiande, ZJ 66 TTZ-15 C. da SP Luan, AH
13 Navaho C. il C USA 40 JL3 C. il SP Jiande, ZJ 67 TTZ-21 C. da SP Luan, AH
14 Gloria Grande C. il C USA 41 JL00011 C. il SP Jiande, ZJ 68 TTZ-20 C. da SP Luan, AH
15 Forkert C. il C USA 42 SD1-2 C. il SP Jiande, ZJ 69 TTZ-22 C. da SP Luan, AH
16 Choctaw C. il C USA 43 SJ2 C. il SP Jiande, ZJ 70 TTZ-11 C. da SP Luan, AH
17 Creek C. il C USA 44 SJ1 C. il SP Jiande, ZJ 71 GL2 C. ca S Jinhua, ZJ
18 Mohawk C. il C USA 45 YZXT C. il SP Jiande, ZJ 72 XK24 C. ca S Jinhua, ZJ
19 Elliott C. il C USA 46 YZXD C. il SP Jiande, ZJ 73 DY1 C. ca S Jinhua, ZJ
20 Mahan C. il C USA 47 YZXG1 C. il SP Jiande, ZJ 74 DY6 C. ca S Jinhua, ZJ
21 YLC21 C. il C Jiande, ZJ 48 YZXG2 C. il SP Jiande, ZJ 75 GL8 C. ca S Jinhua, ZJ
22 XH1 C. il ES Hangzhou, ZJ 49 JL4 C. il SP Jiande, ZJ 76 XK88 C. ca S Jinhua, ZJ
23 XH4 C. il ES Hangzhou, ZJ 50 CHK1 C. il SP Hangzhou, ZJ 77 DY5 C. ca S Jinhua, ZJ
24 XH5 C. il ES Hangzhou, ZJ 51 CHK2 C. il SP Hangzhou, ZJ 78 GL7 C. ca S Jinhua, ZJ
25 XH6 C. il ES Hangzhou, ZJ 52 CHK3 C. il SP Hangzhou, ZJ 79 XK89 C. ca S Jinhua, ZJ
26 XH14 C. il ES Hangzhou, ZJ 53 CHK4 C. il SP Hangzhou, ZJ 80 XK40 C. ca S Jinhua, ZJ
27 DFH C. il ES Jinhua, ZJ 54 JLCD C. il SP Jiande, ZJ

Note: 1 C.il = C. illinoinensis, C. ca = C. cathayensis, C. da = C. dabieshanensis, C. hu = C. hunanensis; 2 C = Cultivar, ES = Excellent seedling, S = Strain, SP = Seeding plant; 3 ZJ = Zhejiang
province, GZ = Guizhou province, JS = Jiangsu province.
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public databases, respectively. The Microsatellite identification tool (MISA, http://pgrc.ipk-
gatersleben.de/misa/misa.html) was used to search SSR motifs in the genome of each cultivar (Thiel 
et al., 2003), with repeats with a minimum of 6, 5, 5, 5, and 5 for di-, tri-, tetra-, penta-, and 
hexanucleotides, respectively. For compound SSRs, the maximum interruption between two SSRs 
was set as 100 bases. Primers for the SSR loci were designed using p3_in.pl, primer3_core, and 
p3_out.pl programs under default parameters (Untergasser et al., 2012). Then, the low-quality primer 
pairs were subsequently removed, such as those featuring the following: (1) the primers containing 
unknown bases; (2) a 3′ end of primers with three consecutive identical bases; (3) a Tm value 
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performed in 16 μL reaction volumes, containing 7.5 μL of 2 × Tsingke Master mix (Beijing Tsingke 
Biological Technology Co., Ltd., Beijing, China), 1 μL of each primer (10 pmol), and 1 μL of cDNA 
and 4.5 μL ddH2O. The PCR procedure was 94 °C for 5 min, then 35 cycles of 94 °C for 30 s, 60 °C for 
30 s, 72 °C for 30 s, with a final extension at 72 °C for 5 min. PCR products were electrophoresed using 
1% agarose under 300 V for 12 min. The primers which amplify the expected product size were 
selected and labeled with HEX, ROX, FAM, or TRAMA. The PCR amplifications were performed 
again, and the products were separated using capillary electrophoresis on an ABI 3730 sequencer 
(Applied Biosystems, Forster City, CA, USA). Finally, the primers that gave clearly distinguishable 
peaks were used for the genetic study of the pecan population. 

2.4. Genetic Diversity Analysis of Pecan and Transferability of gSSRs to Other Species 

Twenty-two validated gSSRs and eight SSRs from Grauk et al. (2003) were chosen to amplify 
genomic DNA from 80 genotypes [13]. PCR products from each individual were separated using 
capillary electrophoresis. The genotype of each SSR locus was analyzed by Gene Mapper 4.1 software 
(Applied Biosystems, Foster City, CA, USA). Several genetic parameters, including observed allele 
number (Na), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphic 
information content (PIC), were calculated by using the Popgen 32 program (University of Alberta 
and Center for International Forestry Research, Canada). A phylogenetic dendrogram was 
constructed by using the unweighted pair group method with arithmetic average (UPGMA). 
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2.2. gSSR Mining and Primer Design

The genomic sequences of ‘87MX3-2’ (http://www.hagsc.org/pecan) and ‘Pawnee’ (ftp://parrot.
genomics.cn/gigadb/pub/10.5524/100001_101000/100571/) were downloaded from public databases,
respectively. The Microsatellite identification tool (MISA, http://pgrc.ipk-gatersleben.de/misa/misa.
html) was used to search SSR motifs in the genome of each cultivar (Thiel et al., 2003), with repeats
with a minimum of 6, 5, 5, 5, and 5 for di-, tri-, tetra-, penta-, and hexanucleotides, respectively.
For compound SSRs, the maximum interruption between two SSRs was set as 100 bases. Primers for
the SSR loci were designed using p3_in.pl, primer3_core, and p3_out.pl programs under default
parameters (Untergasser et al., 2012). Then, the low-quality primer pairs were subsequently removed,
such as those featuring the following: (1) the primers containing unknown bases; (2) a 3′ end of primers
with three consecutive identical bases; (3) a Tm value difference between forward and reverse primers
of more than 1 ◦C; (4) a GC content of each primer >55% or <35%; (5) the ratio of GC content between
forward and reverse primers of >1.2 or <0.8.

2.3. Amplification and Validation of gSSRs

A total of 74 gSSR loci were randomly selected. Genomic DNA from ‘Pawnee’ and ‘Mahan’ were
selected to amplify target products and validate the usability of these primers. PCR reactions were
performed in 16 µL reaction volumes, containing 7.5 µL of 2 × Tsingke Master mix (Beijing Tsingke
Biological Technology Co., Ltd., Beijing, China), 1 µL of each primer (10 pmol), and 1 µL of cDNA
and 4.5 µL ddH2O. The PCR procedure was 94 ◦C for 5 min, then 35 cycles of 94 ◦C for 30 s, 60 ◦C
for 30 s, 72 ◦C for 30 s, with a final extension at 72 ◦C for 5 min. PCR products were electrophoresed
using 1% agarose under 300 V for 12 min. The primers which amplify the expected product size were
selected and labeled with HEX, ROX, FAM, or TRAMA. The PCR amplifications were performed
again, and the products were separated using capillary electrophoresis on an ABI 3730 sequencer
(Applied Biosystems, Forster City, CA, USA). Finally, the primers that gave clearly distinguishable
peaks were used for the genetic study of the pecan population.

2.4. Genetic Diversity Analysis of Pecan and Transferability of gSSRs to Other Species

Twenty-two validated gSSRs and eight SSRs from Grauk et al. (2003) were chosen to amplify
genomic DNA from 80 genotypes [13]. PCR products from each individual were separated using
capillary electrophoresis. The genotype of each SSR locus was analyzed by Gene Mapper 4.1 software
(Applied Biosystems, Foster City, CA, USA). Several genetic parameters, including observed allele
number (Na), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphic
information content (PIC), were calculated by using the Popgen 32 program (University of Alberta and
Center for International Forestry Research, Canada). A phylogenetic dendrogram was constructed by
using the unweighted pair group method with arithmetic average (UPGMA).
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3. Results

3.1. Characteristics of gSSRs

The genomic sequences of ‘87MX3-2’ and ‘Pawnee’ were downloaded and analyzed using the
MISA program. The results showed that 48,009 (38.54%) out of 124,560 scaffolds (531.7 Mb) of ‘87MX3-2’
were found to contain SSR motifs (Table 2). In total, 145,714 gSSRs were confirmed (Table S1). So, the
frequency of gSSR in ‘87MX3-2’ was 1 gSSR per 3.65 kb. Among different types of SSR motifs, the
dinucleotide (121,626, 83.47%) was the most predominant, followed by trinucleotide (18,593, 12.76%)
(Figure 2). For the dinucleotide repeat motif, AT/TA (53.60%) was the main type, while CG/GC (0.21%)
was the least frequent. In total, 143,041 gSSRs were identified in 4955 (11.47% out of 43,183 examined
sequences) sequences in the genome of ‘Pawnee’ (651.2 Mb; Table S1). The frequency of gSSR is 1 gSSR
per 4.55 kb. Dinucleotide repeat motifs (118,045, 82.53%) formed the main category, followed by
trinucleotide (19,818, 13.85%). The most and the least present types of dinucleotide repeat motif were
AT/TA (48.22%) and CG/GC (0.22%), respectively.

Table 2. Information of simple sequence repeats (SSRs) identified in the pecan genome.

Features
Values

‘87MX3-2’ ‘Pawnee’

Total number of sequences examined 124,560 43,183
Total size of examined sequences (bp) 531,741,495 651,240,950

Total number of identified SSRs 145,714 143,041
Number of SSR containing sequences 48,009 4955

Number of sequences containing more than 1 SSR 27,045 1961
Number of SSRs present in compound formation 21,060 17,816
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3.2. Primer Design and Validation

A total of 60,018 primer pairs for 20,006 gSSRs in 7143 sequences were designed by using Primer
3 software (Whitehead Institute, Cambridge, MA, USA). Then, 9145 (15.24%) candidate primer pairs to
5002 gSSRs (25.00%) were obtained after the deletion of low-quality ones (Table S2). To validate this, a set
of 74 primer pairs were randomly picked and synthesized. All of them were distributed in 74 contigs
of ‘87MX3-2’ genome sequences. These loci were distributed in 70 scaffolds of ‘Pawnee’ genome
sequences: Ciz034 and Ciz035 in scaffold72459, Ciz037 and Ciz058 in scaffold69125, Ciz039 and Ciz044
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in scaffold101014, and Ciz065 and Ciz074 in scaffold89570. To validate these markers, the 74 primers
were amplified in ‘Pawnee’ and ‘Mahan’. After electrophoresis, 66 primer pairs (89.19%) yielded the
expected bands (Table S3). The size of amplicons ranged from 111 bp (Ciz028) to 280 bp (Ciz006).
Six loci (Ciz018, Ciz032, Ciz042, Ciz063, Ciz064, and Ciz065) had no PCR product observed. Two loci
(Ciz012 and Ciz026) obtained a nontarget product.

3.3. Genetic Diversity Analysis and Cross-Species Transferability of gSSRs

Twenty-two randomly selected gSSRs from 66 validated loci and eight SSRs from a previous
study were employed in this section (Table 3) [13]. In total, 60 pecan genotypes and 20 individuals
from three other species were used to perform genetic diversity analysis and cross-transferability,
respectively. The PCR products were separated using capillary electrophoresis (Figure 3). Among the
22 newly developed gSSR loci, 21 (95.45%, except Ciz036) exhibited polymorphism in the examined
population (Table 3). For all loci, the observed allele number (Na) ranged from 1 (Ciz036) to 18 (Ciz031).
A total of 221 alleles were detected in pecan, and the mean number of alleles per locus was 7.369.
The observed heterozygosity ranged from 0.00 (Ciz036) to 1 (Ciz047) with a mean value of 0.439.
In addition, the minimum and the maximum of PIC values were 0.00 (Ciz036) and 0.893 (Ciz031), with
23 loci showing high PIC values (PIC > 0.5), and the mean value was 0.547. Twenty-six (86.67%) gSSRs
could yield the target product in hickory, while 25 (83.33%) and 22 (73.33%) loci could be used in C.
dabieshanensis and C. hunanensis, respectively (Table 4).

Table 3. The genetic characteristics of 30 SSR loci in 60 pecan genotypes.

NO. 1 Loci Fluorescence Dye Na 2 Ho 3 He 4 PIC 5 Size (bp)

1 Ciz003 ROX 10 0.695 0.741 0.735 137–178
2 Ciz009 ROX 5 0.525 0.517 0.513 157–163
3 Ciz011 ROX 2 0.068 0.097 0.096 202–204
4 Ciz022 FAM 5 0.650 0.630 0.625 223–237
5 Ciz031 FAM 18 0.542 0.901 0.893 237–257
6 Ciz036 TRAMA 1 0.000 0.000 0.000 264
7 Ciz038 HEX 3 0.300 0.551 0.546 213–216
8 Ciz039 ROX 4 0.200 0.390 0.387 198–202
9 Ciz040 FAM 5 0.367 0.475 0.471 219–227

10 Ciz043 TRAMA 14 0.712 0.800 0.793 260–278
11 Ciz045 FAM 6 0.224 0.549 0.544 182–253
12 Ciz046 FAM 12 0.237 0.755 0.748 250–262
13 Ciz047 FAM 5 1.000 0.646 0.641 236–241
14 Ciz050 FAM 3 0.070 0.102 0.101 243–261
15 Ciz052 ROX 9 0.517 0.601 0.596 203–223
16 Ciz055 TRAMA 16 0.690 0.899 0.891 249–268
17 Ciz058 FAM 13 0.550 0.807 0.801 199–247
18 Ciz059 TRAMA 7 0.633 0.708 0.702 232–265
19 Ciz070 TRAMA 12 0.695 0.824 0.817 265–280
20 Ciz071 TRAMA 5 0.817 0.751 0.744 269–273
21 Ciz073 TRAMA 5 0.390 0.512 0.507 273–285
22 Ciz074 ROX 3 0.339 0.333 0.330 180–186
23 PM-CA10 HEX 2 0.051 0.050 0.050 92–113
24 PM-CIN13 HEX 6 0.441 0.510 0.506 102–116
25 PM-CIN20 ROX 2 0.017 0.017 0.016 139–142
26 PM-CIN22 HEX 5 0.117 0.590 0.585 96–103
27 PM-CIN27 HEX 12 0.800 0.775 0.768 62–92
28 PM-CIN4 HEX 16 0.783 0.796 0.789 90–143
29 PM-GA38 HEX 9 0.627 0.602 0.596 81–100
30 PM-GA41 HEX 6 0.105 0.637 0.631 69–90
- Mean - 7.367 0.439 0.552 0.547 -
- St. Dev - 4.752 0.283 0.266 0.264 -

Note: 1 The SSR loci of 23~30 from a previous study [13]; 2 Na = observed allele number; 3 Ho = observed
heterozygosity; 4 He = expected heterozygosity; and 5 PIC = polymorphic information content.
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PM-CA10 1 134 3 116–136 - - 
PM-CIN13 3 104–111 - - - - 
PM-CIN20 1 139 1 139 1 139 
PM-CIN22 1 95 1 95 1 94 
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Figure 3. The capillary electrophoresis patterns of primer Ciz003 in eight pecan germplasms.

Table 4. The cross-transferability of 30 SSR loci in three species.

Locus
C. cathayensis (n = 10) C. dabieshanensis (n = 5) C. hunanensis (n = 5)

Na Size (bp) Na Size (bp) Na Size (bp)

Ciz003 - - - - - -
Ciz009 1 167 1 167 2 167–176
Ciz011 1 203 1 203 1 203
Ciz022 2 228–230 1 228 1 230
Ciz031 2 249–255 3 252–255 1 253
Ciz036 1 264 1 264 1 264
Ciz038 2 216–218 1 218 - -
Ciz039 1 199 3 195–202 2 196–197
Ciz040 1 222 1 222 2 216–222
Ciz043 1 260 1 260 2 260–261
Ciz045 6 205–227 4 205–224 1 224
Ciz046 - - - - - -
Ciz047 1 238 2 238–241 2 238–241
Ciz050 4 239–254 2 230–240 2 222–240
Ciz052 3 251–255 1 254 1 254
Ciz055 1 263 1 263 3 260–264
Ciz058 - - 3 233–241 - -
Ciz059 2 266–267 2 264–267 1 264
Ciz070 - - - - - -
Ciz071 2 255–266 2 255–266 2 255–266
Ciz073 4 266–270 1 270 2 267–270
Ciz074 3 175–180 3 177–183 - -

PM-CA10 1 134 3 116–136 - -
PM-CIN13 3 104–111 - - - -
PM-CIN20 1 139 1 139 1 139
PM-CIN22 1 95 1 95 1 94
PM-CIN27 2 62–66 - - 1 68
PM-CIN4 3 113–118 2 113–114 2 105–118
PM-GA38 2 80–90 2 80–82 2 82–92
PM-GA41 2 95–101 1 101 1 99
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3.4. Population Structure and Cluster Analysis

The 80 individuals were mainly divided into two clusters (Figure 4). Cluster I contained all
samples originating from China, including 10 hickory, five C. dabieshanensis, and five C. hunanensis.
According to three different species, cluster I was divided into three subclasses. The genetic distance
between hickory and C. dabieshanensis was relatively close. The samples of pecan were clustered
together and showed two subclasses. Interestingly, all the cultivars and most excellent strains (10 out
of 14) were classified together, while nearly all the seedling trees (21 out of 25) and four excellent
strains were clustered into another subgroup. Nine cultivars (‘Mohawk’, ‘Forkert’, ‘Oconee’, ‘Choctaw’,
‘Mahan’, ‘Osage’, ‘Waco’, ‘Pawnee’, and ‘Creek’) and three excellent strains (1101, XH5, and XH6)
appeared to have a short genetic distance. In addition, ‘Colby’, ‘Carter’, ‘Syrup Mill’, ‘Gloria Grande’,
and ‘Stuart’; ‘Major’, ‘Lakota’, and ‘Greenriver’; and ‘Elliott’ and ‘Navaho’ were clustered together,
respectively (Figure 4).
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Figure 4. The dendrogram of 80 germplasms constructed by the unweighted pair group method
with arithmetic average (UPGMA). The plant samples included 60 C. illinoinensis, 10 C. cathayensis,
five C. dabieshanensis, and five C. hunanensis. The positions of cultivars, strains, and seeding plants of
pecan are indicated by red circles, blue squares, and black triangles.

4. Discussion

Recently, next and third-generation sequencing technologies have been employed to investigate
molecular mechanisms of key traits and construct a reference genome in pecan [3,4,12,28].
Transcriptomes and draft genomes offered an opportunity to identify SSR sites on a large scale.
In the present study, two draft genomes of ‘87MX3-2’ and ‘Pawnee’ were independently analyzed
to mine genomic SSR loci [14,28]. The frequencies of the occurrence of gSSRs were 1/3.65 kb and
1/4.55 kb in ‘87MX3-2’ and ‘Pawnee’, respectively. The gSSR densities between two cultivars showed
slight differences. The genomic SSR frequency was significantly higher than genic SSR (1/6.10 kb;
6860 SSRs, including di-, tri-, tetra-, penta-, and hexanucleotides, in 41,858,722 bp sequences) in



Forests 2020, 11, 61 9 of 12

pecan [29], which confirmed that the gSSR is more abundant than transcriptomic SSRs in this plant.
The gSSR density is higher than bamboo (1 SSR/16 kb) [31], and lower than walnut (1 SSR/2.3 kb)
and Chinese jujube (1 SSR/1.17 kb) [32,33]. Among dinucleotide repeat motifs, AT/TA was the most
abundant type, followed by AG/TC (Figure 2). This result was similar to gSSRs in Chinese Jujube and
cumin [15,34]. Sixty-six (89.19%) out of 74 primers were successfully validated by using PCR in two
cultivars (Table S3). The success rate was similar to Cyamopsis tetragonoloba (86.4%) [35], higher than
Camellia sinensis (32.00%) and Exbucklandia tonkinensis (76.26%) [30,36].

The genus Carya consists of 17 species [1], of which pecan, hickory, C. hunanensis,
and C. dabieshanensis have significant economic values in China [3]. However, the molecular markers
in these species are far from sufficient. In this study, 66 gSSRs were validated in ‘Pawnee’ and ‘Mahan’,
and 21 newly developed loci and eight previous SSRs showed genetic polymorphisms in different
germplasms (Table 3). Among them, 23 loci showed high PIC values (>0.5). Therefore, these gSSR loci
exhibited high polymorphisms in different germplasms and could be used in genetic diversity study,
genetic map construction, Quantitative trait loci (QTL) mapping, as well as cultivar identification
in pecan. For the cross-transferability of gSSR loci, 86.67% (26/30) of gSSRs can be used in hickory,
which was higher than that in a previous study (63.02%) [20]. Moreover, the transferability rates were
83.33% (25/30) and 73.33% (22/30) between pecan and two other Carya species of C. dabieshanensis and
C. hunanensis, respectively (Table 4). Similarly, high transferability rates also have been reported in
other species, such as Pistacia vera L. [37], Casuarina L. ex Adans [38], and Melilotus [39].

SSR is a useful tool for evolutionary studies and pedigree relationships evaluation [16]. As is
shown in Figure 4, the species of C. hunanensis, C. dabieshanensis, and C. cathayensis were clustered
together, and the last two species showed a closer relationship. These observations are consistent with
the results of Zhang et al. (2013), who reported that the Carya species from eastern Asian and eastern
North American were classified into two different groups, respectively [40]. For pecan, ‘Mohawk’,
‘Forkert’, ‘Oconee’, ‘Choctaw’, ‘Mahan’, ‘Osage’, ‘Waco’, ‘Pawnee’, and ‘Creek’ exhibited a wide range
of similarities. Similar results were also reported by previous studies [12,13]. ‘Mohawk’ and ‘Choctaw’
originated from a controlled cross of ‘Success’ × ‘Mahan’ [14,41] (Table S4), and ‘Mohawk’ was the
parent of ‘Pawnee’ and ‘Creek’. ‘Forkert’ was selected from offspring of ‘Success’ × ‘Schley’ [14,41].
‘Schley’ was an ancestor of ‘Oconee’ and ‘Waco’ [41]. Therefore, these individuals have pedigree
relationships with each other, and the group patterns agreed with this fact. Incidentally, ‘1101’, ‘XH5’,
and ‘XH6’ were also contained in this subgroup, which implies that these excellent seedlings might
be progenies of these cultivars. Presumably, ’Stuart’ might be the parent of ‘Gloria Grande’ [41].
Here, ‘Gloria Grande’ and ’Stuart’ showed a higher similarity, which provided good support for this
speculation. In addition, ‘Lakota’ originated from ‘Mahan’ × ‘Major’, and ‘Greenriver’ was selected
from the same woods as ‘Major’. Therefore, these three cultivars were joined together. Pecan was
introduced into China in the 1900s. Currently, a large number of seedling trees is spread through
several provinces in China. However, the collection and genetic study of these germplasms is still
insufficient. As shown in Figure 4, a relatively long genetic distance exists between cultivars and most
seedling trees in China. Therefore, the hybridization between the two types of germplasms might
create more genetic variation, which might be useful for cross breeding in the future.

5. Conclusions

Pecan is an important multipurpose tree worldwide. However, the progress of genetic study in
pecan is limited by the lack of a sufficient number of accurate, convenient, and economical molecular
markers. In the present study, the distribution of SSR motifs was evaluated in the pecan genome.
The gSSRs densities were 1/4.55 kb (‘Pawnee’) to 1/3.65 kb (‘87MX3-2’). In total, 60,018 primer pairs for
20,006 gSSRs were designed, and a set of 66 gSSRs were successfully validated. Thirty gSSRs were
employed to analyze the genetic diversity and progeny relationship between pecan genotypes and
their cross-transferability to other Carya species. In total, 29 SSR loci showed polymorphism, and 26,
25, and 22 gSSRs can be used in hickory, C. dabieshanensis, and C. hunanensis, respectively. We believe
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that the characterization of SSRs in the pecan genome and the new gSSRs reported here will promote
the progress of genetic study and MAS research in pecan, as well as other species of the genus Carya.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/1/61/s1,
Table S1: The frequency of identified SSR motifs, Table S2: The information of primers, Table S3: The information
of 66 primer pairs used in the present study, Table S4: The pedigree information of 21 cultivars.
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