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Abstract: Shaded perennial agroforestry systems (AFS) are regarded as desirable land-use practices
that improve soil carbon sequestration. However, most studies assume a positive correlation between
above ground and below ground carbon without considering the effect of past and current land
management, textural variations (silt and clay percentage), and such other site-specific factors that
have a major influence on the extent of soil C sequestration. We assessed SOC stock at various
depths (0–10, 10–30, 30–60, and 60–100 cm) in shaded perennial coffee (Coffea arabica L.) AFS in a
17-year-old experimental field at the Centro Agronómico Tropical de Investigación y Enseñanza, (9◦53′44′′N,
83◦40′7′′ W; soil type: Ultisols and Inceptisols, Turrialba, Costa Rica. The treatments included coffee
(Coffea arabica L.) grown conventionally (with chemical fertilizers) and organically (without chemical
fertilizers) under two shade trees, Erythrina poeppigiana (Walp.) O.F. Cook., and Terminalia Amazonia
J.F.Gmel., Sun Coffee (Coffea arabica L.) (Sole stand of coffee without shade), and Native Forest. Three
replicated composite soil samples were collected from each system for each depth class, and SOC
stocks in three soil aggregate fractions (2000–250 µm, 250–53 µm, and <53 µm) and in the whole soil
determined. The total SOC stocks were highest under forest (146.6 Mg C ha−1) and lowest under
sun coffee (92.5 Mg C ha−1). No significant differences were noted in SOC stock within coffee AFS
and sun coffee across fraction sizes and depth classes. Organic management of coffee under heavily
pruned E. poeppigiana, with pruned litter returned to soil, increased SOC stocks for 0–10 cm depth soil
only. High input of organic materials including pruned litter did not improve SOC stocks in deeper
soil, whereas variations in silt and clay percentages had a significant effect on SOC stocks. The study
suggests that high amounts of aboveground biomass alone are not a good indicator of increased SOC
storage in AFS, particularly for soils of sites with historical characteristics and management similar to
this study.

Keywords: carbon sequestration; coffee agroforestry; soil organic carbon stocks; land-use practices

1. Introduction

Soils form the greatest terrestrial carbon (C) sinks, with the total C stored in soils accounting for
three times the C stored aboveground in vegetation [1]. The carbon stored in the topsoil (0–30 cm)
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accounts for half of the soil organic carbon (SOC) and is considered highly susceptible to losses due to
decomposition promoted by land-management practices. On the other hand, SOC stored in the deep
soil is not degraded easily. The adoption of land management practices that promote secure storage of
carbon in soil is highly recommended as a strategy for climate-change mitigation [2–4]. The role of
agroforestry systems (AFS) in this context has been particularly recognized [5–10].

There exists a common belief that agroforestry systems enhance SOC stocks compared to tree-less
annual crop systems [11,12]. However, very few publications mention the site-specificity of agroforestry
systems in improving SOC stocks. Additionally, the carbon sequestration potential of land-use systems
requires measurements of SOC stocks over time. However, the majority of the available literature on
SOC stocks are reports of one-time study, making it hard to estimate soil C sequestration [13].

Globally, more than 11 million hectares of tropical land is under coffee production (FAO, 2014).
Typically, coffee agroforests are categorized under shaded perennial AFS, in which coffee (Coffea arabica
L., Coffea canephora Pierre ex A.Froehner.) are cultivated under the shade of tall-growing plants. Several
studies have pointed out that shaded perennial systems often “mimic” a forest-like environment
and have very high soil carbon storage potential (≈150 Mg C ha−1) [14–17]. A global meta-analysis
reported 48% higher SOC stocks under shaded perennial agroforests when compared to monoculture
systems [18]. The same study also quantified a mere 3.4% lower SOC stock up to 1-m soil depth in
shaded perennial systems when compared to forests [18]. The underlying mechanisms that lead to
high SOC stocks within these systems include the accumulation and turn-over of leaf litter and roots,
a continuous supply of organic matter to the soil [18–20]. Thus, the proper design and management of
shaded perennial AFS are critical in order to improve SOC storage and subsequent sequestration [11].

Soil aggregates constitute the basic units of the soil structure and play a pivotal role in SOC storage,
SOC dynamics, and C retention [21,22]. Higher C inputs in soil can enhance soil aggregation [23].
Soil aggregate formation is described using the hierarchical model (HM) proposed by [24,25]. These
aggregates are classified based on their size as macroaggregates (2000–250 µm), microaggregates
(250–53 µm) and silt-and-clay (<53 µm). The macroaggregates are more sensitive to changes in soil
management practices and organic inputs compared to microaggregates and silt-and-clay particles.
Given the importance of size fractions in SOC storage, several studies on the potential of C sequestration
in soils under AFS have emphasized the importance of determining the extent of C storage in different
aggregate classes at deeper soil depths, up to 1-m [17,26–29].

While undertaking studies on SOC storage within soil aggregates in shaded perennial AFS, soil
depth becomes an important parameter as a substantial amount organic matter gets deposited in
subsoil horizon from penetrating tree root exudates and bioturbation [30,31].

Costa Rica is a small Central American country where coffee (Coffea arabica) is the single most
important crop in terms of land use with 109,000 hectares of land under coffee cultivation according to
a report published by the Food and Agriculture in the year 2015 [32], and most of the crop is grown
under shade trees (shaded perennial AFS). In most coffee producing Central American countries,
the management variables introduced by farmers are: (i) the use of shade trees versus shade devoid,
“sun” coffee, (ii) the types of shaded trees: unpruned, timber species versus heavily pruned nitrogen
fixing species, and (iii) application of chemical fertilizer (conventional) versus organic fertilizer. In this
scenario, the study reported here was undertaken to evaluate the effect of the above management
variables in coffee AFS in Costa Rica such as the nature of shade trees and their pruning regimes and the
use of organic versus chemical fertilizers on SOC stocks in soil aggregates. Specifically, the objectives
of this study were:

(1) To compare the differences in whole soil and aggregate-associated carbon stocks among coffee
AFS with the above-mentioned management variables, a coffee monoculture (sun coffee), and an
adjacent forest across varying depth classes up to 1 m.

(2) To assess whether differences in management practices within coffee AFS helped in improving
soil aggregation and SOC storage relative to monoculture sun coffee.
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(3) To evaluate if AFS promote aggregate associated C within the smallest aggregate fraction (<53 µm)
across varying depth classes.

2. Materials and Methods

2.1. Study Location

The study was conducted in an experimental field station managed by the ‘Centro Agronómico
Tropical de Investigación y Enseñanza’ (CATIE), Turrialba, Costa Rica (CATIE, CR) that represents low
altitude (685 m above sea level) coffee growing regions of the world. The site, located at 9◦53′44′′ N,
83◦40′7′′ W, and 685 m above sea level (Figure 1), was formerly under sugar cane (Saccharum officinarum
L.) cultivation. Coffee cultivar Coffea arabica L. ‘Caturra’ was planted in 2000. The Koppen climate
classification for Turrialba is Cfb (Marine West Coast Climate) with no marked dry season. The annual
precipitation is 2600 mm year−1 and mean annual temperature is 22 ◦C [11,33]. The soil type has been
classified as Inceptisols (Typic Endoaquepts) and Ultisols (Typic Endoaquults) under the USDA Soil
Taxonomy classification system.
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2.2. Management Practices under Coffee AFS

The six different land-use systems (Figure 2) selected for this study:

1. Conventional intensively managed coffee + N2 fixing species (Erythrina poeppigiana (Walp.) O.F.
Cook.) as shade tree (CE)

2. Conventional intensively managed coffee + timber species (Terminalia amazonia J.F.Gmel.) as
shade tree (CT)

3. Organic intensively managed coffee + N2 species (Erythrina poeppigiana (Walp.) O.F. Cook.) as
shade tree (OE)

4. Organic intensively managed coffee + timber species (Terminalia amazonia J.F.Gmel.) as shade tree
(OT)

5. Full sun grown coffee (Coffea arabica L.) (SC) (monoculture)
6. Forest: Native, Talamancan montane forest (Bosque Florencia) from a nearby site (FO)
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Location: Turrialba, Costa Rica.

Coffee, Coffea arabica L. var. Catuura, in the experimental plot was planted at 8000 plants ha−1

with two plants per planting hole—a common practice in Costa Rica. Coffee planting holes were
spaced 1 × 2 m apart with trees planted at 4 × 6 m. Shade trees were planted at 417 trees ha−1. The
tree management regime varied according to the shade species, and the timber tree shade (Terminalia
Amazonia) were managed through periodic thinning. The leguminous, N2 fixing shade tree species
(Erythrina poeppigiana) were pruned regularly to provide the organic N input to the soil. Timber
tree species had their lower branches pruned each year to improve their form. Only the trunks of
the thinned trees of the timber species were removed, branches and leaves were left on site. In the
conventional treatment with Erythrina shade tree, Erythrina was pruned completely (pollarded) twice
a year. In organic treatment with Erythrina, a minimum of three branches were left for partial shade
cover after each of the two annual prunings. In all cases, the pruned material was left on site. Under a
conventional intensive management regime, the trees were pruned to a height of 1.8–2.0 m with the
removal of all branches above this height (pollarding), another common practice in Costa Rica [34].
The details of the conventional and organic management regimes are furnished in Tables 1–3.

Table 1. Mean organic matter inputs (Mg ha−1 year−1) and management practices in coffee AFS sites in
Costa Rica (Conventional intensive vs. Organic intensive).

Name of Treatment Conventional Intensive (CI) Organic Intensive (OI)

Soil Amendments
300 kg N ha−1

20 kg P ha−1

150 kg K ha−1

287 kg N ha−1

205 kg P ha−1

326 kg K ha−1

Chicken manure 9 Mg ha−1

Coffee Pulp 5 Mg ha−1

Shade Regulation Drastic pruning Regulated pruning

Weed Control Herbicide Selective mechanical removal

Disease Control Fungicide As required

Quantities of soil amendments are shown as mean values of known amounts applied annually over twelve years
(2004–2016). Nutrient inputs from decomposition of shade tree biomass were not considered. Quantities of organic
matter inputs are shown as mean values of leaf litter collected in 2009 from previous studies [33]; who reported
these values from the same experimental site [8,11]. Note: These values are reported from other studies conducted
in the same research site [33], and not a part of our study.
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Table 2. Biomass (kg ha−1) produced naturally and through management in each treatment.

Treatment Herb Litterfall Coffee
Pruning Tree Pruning Total

CE 225 4104 4104 9997 17,357
CT 123 3832 1659 4513 10,126
OE 164 3077 7837 6352 17,428
OT 1338 2199 955 4203 8696

Quantities of biomass are shown as mean values of various collected in 2006, 2009 and 2011, adapted from previous
studies conducted in the same site [8,11,33].

Table 3. Percentage shade cover, height, and diameter at breast height (DBH), basal area of shade trees
in the experimental site in Turrialba, Costa Rica; adapted from previous studies conducted in the same
site [33].

Shade Tree Shade before
Pruning (%)

Shade after
Pruning (%) Height (m) DBH (cm) Basal Area per

Tree (cm2)

Erythrina 77.4 51.3 6.08 22.9 43.9
Terminalia 45.8 36.1 9.14 11 10.9

2.3. Soil Sampling

Soil samples were collected following a randomized complete block design (RCBD) from selected
plots of Conventional + Erythrina (CE), Conventional Terminalia (CT), Forest (FO), Organic + Erythrina
(OE), Organic + Terminalia (OT), Sun Coffee (SC). Each sampling plot measuring 1 × 1 m was dug up to
collect representative soil samples from four depth classes: 0–10, 10–30, 30–60, and 60–100 cm. Samples
from four randomly selected sampling sites per plot were composited to form one replicate. Three
such replicates were collected from four different, randomly selected plots of each treatment (land-use
system), giving a total of 72 samples (6 treatments × 4 depth classes × 3 replicates per plot). At each
sampling location, the selected 1 m × 1 m site was dug down to one-meter depth to collect samples
from the four depth classes. For the determination of soil bulk density at each depth class, a steel
cylinder of known volume was inserted horizontally on the wall of the pits at the center of each depth
class; the soil inside the cylinder was collected, dried, and weighed. The soil samples were air-dried
and sieved (2 mm sieve) at the soils laboratory in Centro Agronómico Tropical de Investigación y
Enseñanza. The portion of soil that did not pass through 2 mm sieve (#10 U.S. Standard Testing Sieve)
was discarded; the 2 mm-sieved soil samples, hereafter referred to as the whole soil, were bagged,
and shipped to the University of Florida, Gainesville, FL, USA, for further analyses.

2.4. Soil Preparation and Analysis

Samples from the whole soil were fractionated into three aggregate size classes >250µm, 250–53µm
and <53 µm at the Soil and Water Sciences Department laboratory, University of Florida, following the
classical soil fractionation protocol [35], further modified by [21] and followed by previous researchers
of this laboratory [16,27,29,30,36,37]. Soil samples were separated into aggregates by wet-sieving
through a series of two sieve sizes (250 and 53 µm) to obtain the three fraction size classes: macro
(>250 µm), micro (250–53 µm), and silt- and clay- sized fraction (<53 µm). Prior to wet sieving, the soil
samples were air dried and 100 g of the air-dried sample was subjected to slaking by rapid immersion
in 250 mL of distilled water. The process of slaking disintegrates the water unstable aggregates in
soil, leaving only water stable aggregates to proceed with further analysis. The soil solution was
poured over 250 µm sieve and fractionated manually by moving the sieve up and down about 5 cm
each, 120 times in two minutes. The soil fraction that remained on the top of the 250 µm sieve was
backwashed with a distilled water into a glass beaker. The soil solution that passed through the 250 µm
sieve was poured over the 53-µm sieve (#270 U.S. Standard Testing Sieve), and the procedure was
repeated. The three soil fractions >250 µm, 250–53 µm, and <53 µm (hereafter referred to as soil
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fractions), were dried at 65 ◦C, weighed, ground for homogenization using a QM-3A High Speed
Vibration Ball Mill for 10 min, and stored in individually sealed and labeled plastic bags for C analysis.
The average recovery of initial soil mass was 96%. The soil characteristics are elaborated in Table 4.
Soil pH was determined in a 1:10 soil:water suspension. The total C stored to a meter depth is the sum
of the C stored at each of the depths within the soil profile.

Table 4. Soil characteristics (bulk density, pH, and particle-size distribution) at different depths in five
land-use systems in Turrialba, Cartago, Costa Rica ‡.

Land-Use
Types/Treatments

Depth (cm)
Bulk

Density
(Mg m−3)

pH Particle Size Distribution (g 100 g−1 Soil)

Sand ‡ Clay Silt

CE

0–10 0.73 (0.02) 6.1 37.6 (1.21) 40.8 (1.2) 21.6 (0.58)
10–30 0.62 (0.08) 5.5 45.6 (0.51) 36.8 (0.41) 17.6 (0.24)
30–60 0.99 (0.05) 5.5 43.6 (0.96) 36.4 (1.11) 20 (0.88)

60–100 1.03 (0.06) 5.3 43.6 (1.03) 32.4 (1.11) 24 (0.99)

CT

0–10 1.13 (0.03) 6.0 36.8 (0.87) 42 (0.81) 21.2 (1.01)
10–30 0.90 (0.03) 5.1 32.4 (0.84) 44.4 (1.16) 23.2 (1.08)
30–60 0.83 (0.07) 5.4 40.4 (0.21) 36.4 (0.77) 23.2 (0.36)

60–100 0.83 (0.02) 5.4 38 (1.81) 34.4 (1.22) 27.6 (0.76)

FO

0–10 0.64 (0.05) 4.5 29.2 (0.98) 58.4 (1.25) 12.4 (0.42)
10–30 0.69 (0.02) 5.1 24.8 (1.01) 66.4 (1.08) 8.8 (0.96)
30–60 0.73 (0.04) 5.3 35.2 (0.87) 58.4 (0.55) 6.4 (0.34)

60–100 0.76 (0.01) 5.1 33.2 (1.11) 56.4 (1.08) 10.4 (1.23)

OE

0–10 0.86 (0.04) 6.3 37.6 (0.95) 40.4 (1.21) 22 (1.23)
10–30 0.92 (0.04) 6.3 39.6 (1.47) 40.4 (1.16) 20 (1.02)
30–60 1.12 (0.01) 5.8 41.6 (1.15) 36.4 (1.01) 22 (0.55)

60–100 0.98 (0.03) 5.9 37.2 (0.76) 34.4 (1.51) 28.4 (0.98)

OT

0–10 0.89 (0.03) 6.5 47.6 (1.31) 30.4 (1.13) 22 (0.56)
10–30 0.77 (0.02) 6.1 37.6 (0.94) 38.4 (1.82) 24 (1.02)
30–60 1.15 (0.06) 5.7 41.6 (1.54) 38.8 (0.87) 19.6 (1.11)

60–100 0.91 (0.08) 5.9 41.6 (0.34) 32.8 (1.21) 25.6 (0.45)

SC

0–10 0.81 (0.02) 6.4 33.2 (1.67) 42.4 (1.43) 24.4 (1.12)
10–30 0.95 (0.02) 6.6 45.2 (0.77) 36.8 (0.76) 18 (0.88)
30–60 0.99 (0.05) 5.8 45.2 (1.21) 32.4 (1.8) 22.4 (1.2)

60–100 1.04 (0.19) 5.3 43.2 (1.01) 34.4 (0.96) 22.4 (0.74)
‡ CE: Conventional Erythrina, CT: Conventional Terminalia, FO: Forest, OE: Organic Erythrina, OT: Organic
Terminalia, SC: Sun Coffee. Note: ‡ Values reported are the means and standard error (in parenthesis) obtained from
sampling sites. Each land-use system had three replicates i.e., n = 3.

The weight of oven-dried samples (dry weight) under each aggregate size was noted (Table 4).
The whole soil not treated with the slaking or fractionation procedure, was dried and ground for

homogenization. Soil samples were analyzed in a Carlo Erba NA1500 CNHS elemental analyzer for
carbon and nitrogen percentages.

The C storage was calculated as:

Cstock = Cconcentration × BD × Depth × Weight Fraction (1)

where Cstock = C storage is expressed in Mg ha−1 (per cm soil thickness unless specified otherwise)
in each fraction for a given depth, Cconcentration = C concentration in size fraction (g 100 g−1) of that
fraction size, BD = Bulk density (Mg m−3), Depth = Depth of soil profile (cm, and Weight Fraction =

weight of the fraction in the whole soil as a ratio (dimensionless).
The depth-wise distribution of different soil-fraction-size classes within replicates is furnished in

Table 5.
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Table 5. Depth-wise distribution of different soil-fraction-size classes under six land-use systems in
Turrialba, Cartago, Costa Rica ‡¥.

Average Percentage Weight (%) Distribution of Size Fraction at
Various Depth

Soil Depth
(cm)

Size Fraction
(µm) CE CT FO OE OT SC

0–10
>250 81 (5.1) 75.8 (1.11) 90.5 (2.8) 81.7(3.6) 75.9 (2.1) 81.5 (2.8)

250 < x < 53 13.9 (4.3) 15.7 (2.3) 10.3 (5.1) 15.6 (2.2) 18.0 (2.4) 15.5 (1.8)
<53 11.5 (2.3) 19.6 (1.5) 8.9 (3.6) 6.8 (2.2) 13.6 (1.3) 8.8 (0.6)

10–30
>250 75.9 (6.7) 71.5 (3.2) 74.1 (6.2) 74.5 (3.1) 84.1 (2.2) 73.9 (3.8)

250 < x < 53 20.5 (4.8) 22.2 (3.8) 15.6 (4.2) 16.1 (4.2) 15.1 (4.5) 17.1 (4.1)
<53 12.9 (3.1) 16.5 (1.1) 15.3 (1.7) 11.8 (2.8) 11.9 (0.9) 15.3 (0.7)

30–60
>250 66.1 (5.2) 65.0 (4.5) 83.7 (5.2) 62.2 (4.6) 58.4 (5.4) 51.9 (6.6)

250 < x < 53 25.8 (6.6) 28.5 (2.7) 20.0 (3.8) 25.0 (2.2) 29.7 (1.7) 38.3 (3.2)
<53 19.9 (1.4) 20.4 (2.1) 17.8 (2.1) 22.1 (1.9) 20.7 (1.4) 19.8 (1.4)

60–100
>250 68.7 (4.1) 53.5 (6.2) 70.6 (5.4) 55.2 (6.3) 53.0 (5.9) 38.5 (2.5)

250 < x < 53 23.1 (3.2) 35.0 (3.7) 29.6 (3.7) 33.8 (4.5) 37.2 (4.1) 38.5 (4.1)
<53 22.9 (3.6) 22.1 (1.1) 28.2 (1.8) 18.6 (3.1) 18.8 (1.2) 25.5 (0.6)

Note: ‡ Values reported are the means and standard error (in parenthesis) obtained from sampling sites. Each
land-use system had three replicates i.e., n = 3. ¥ CE: Conventional Erythrina, CT: Conventional Terminalia, FO:
Forest, OE: Organic Erythrina, OT: Organic Terminalia, SC: Sun Coffee.

Additionally, the C concentrations at the start of the experiment in 2001 up to a depth of 40 cm
were obtained by personal communication with Martin Noponen and from his published study [11].
The C stocks were calculated using Equation (1). The carbon sequestration potential was measured as
the rate of change in soil carbon over a time-period of 15 years from the inception.

2.5. Statistical Analyses

In order to probe whether treatment, fraction size and depth of soil had any effect on SOC stocks,
a full fixed effect ANOVA model was fitted using R studio version 3.6 (Tables 6 and 7). The best fitting
parsimonious model (Table 4) was used over the full model. Multiple pair wise comparisons were
conducted with Forest (FO) and Sun coffee (SC) as references for treatments, the topsoil profile 0–10 cm
for depth and aggregate size > 250 µm as fraction size. When Forest (FO) was considered as a reference
category for treatment, Sun coffee (SC) was excluded for the comparison and vice-versa. The response
variable for all the comparison was SOC stocks expressed in Mg C ha−1.

Table 6. Analysis of variance (ANOVA), (factor analysis; Model 1) with interaction effects of Treatments,
Depth and Fraction size on SOC stocks (Mg C ha−1) without the individual effect of each site level.

Category Df Sum Sq. Mean Sq. F Value Pr (>F)

Treatment 5 492 98 5.03 <0.0001
Depth 3 1109 370 18.8 <0.0001

Fraction Size 2 11,115 5557 283.9 <0.0001
Treatment × Depth 15 324 22 1.1 0.054

Treatment × Fraction Size 10 628 63 3.2 <0.0001
Depth × Fraction Size 6 2158 360 18.3 <0.0001

Treatment × Depth × Fraction Size 30 555 19 0.94 0.0299
Residuals 144 2818 20

This model is referred as Full Interaction Model. Response: SOC (Mg C ha−1). The numbers in bold represent
significant interaction effects.
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Table 7. Analysis of variance (ANOVA), (Parsimonious model; Model 2) without the treatment and
depth interaction on SOC stocks (Mg C ha−1) showing individual effect of each site level.

Category Df Sum Sq. Mean Sq. F Value Pr (>F)

Treatment 5 492 98 5.34 <0.0001
Depth 3 1109 370 18.8 <0.0001

Fraction Size 2 11,115 5557 284.1 <0.0001
Treatment × Fraction Size 10 628 63 3.2 <0.0001

Depth × Fraction Size 6 2158 360 18.4 <0.0001
Residuals 189 3697 20

For the sake of parsimony and better interpretability, the Treatment × Depth interaction was dropped. F test
comparison showed that Model 2 was a better fit (p = 0.011 **). The numbers in bold represent significant
interaction effects.

The following equation illustrates the model:

Yi jkl = µ + αi + β j + γk + (αβ)i j + (βγ) jk + (αγ)ik + εi jkl (2)

where, Yi jkl = SOC stock (in log scale), for the observation corresponding to the ith treatments and the
jth depth level and kth fraction size in the lth replicate,

i = 1, · · · , 5, j = 1, 2, 3, k = 1, · · · , 4, l = 1, · · · , 4.
µ = overall effect,
αi = effect due to the ith treatments
β j = effect due to the jth depth level,
γk = effect of the kth fraction size.
(αβ)ik = interaction effect of the ith treatments and the jth depth level
(βγ) jk = interaction effect of the jth depth level and the kth fraction size

(αγ)ik = interaction effect of the ith treatments and the kth fraction size
εi jkl = normal random error

We also compared the mean effect of treatments under each depth class and fraction size
(Supplementary Material, Figures S1 and S2) as strong interactions existed between Treatment ×
Fraction size and Depth × Fraction size. For all analyses, the normality assumptions were validated by
performing the Shapiro-Wilk test.

All statistical tests were performed using R studio [31]. In order to understand the effect of textural
variability (silt and clay content) within treatments on SOC stocks, we ran linear regressions in similar
way, as stated in a similar study conducted in India [17], independently across all depth classes as per
the following equation:

log(SOC) = ß0 + ßsilt × silt + ßclay × clay + € (3)

where € denotes the normal random error, ß0 denotes the intercept, interpreted as the average log (SOC)
level when the two predictors are set to be equal to zero, ßsilt and ßclay denote the regression coefficient
of the predictor silt (clay), which is interpreted as the average change in log (SOC) level caused by one
unit change in silt (clay).

3. Results

3.1. Various Interaction Effects and the Analysis of Variance (ANOVA)

The factors treatment (p < 0.0001), depth (p < 0.0001), and fraction size (p < 0.0001) were found
to have significant effect on total SOC stocks (Tables 6 and 7). Interactions of Treatment × Fraction
size, Depth × Fraction size (p < 0.001), and Treatment × Fraction size (p < 0.001) were also significant
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(Table 6). However, the interaction of treatment with depth (Treatment × Depth) was insignificant
(p = 0.55). Dropping the insignificant interaction, we fitted a parsimonious model. The parsimonious
model fitting showed significant interaction effect of Treatment × Fraction Size (p < 0.001) and Depth
× Fraction Size (p < 0.001). Results of multiple comparisons with Forest as control, showed that
for the lowest depth class 60–100 cm, the effect of all AFS on SOC stocks were significant within
macroaggregates (p < 0.05) (Supplementary Material; Figures S1 and S2). No significant differences
were noted when AFS treatments were compared to Sun coffee (Supplementary Material). For all
analyses, high p-values for the Shapiro-Wilk test supported the normality assumption to compare
different treatments at each depth and fraction size.

3.2. Soil Organic Carbon Stock in Whole Soil up to 1 m

The soil carbon stocks in whole soil varied across AFS, FO, and SC (Figure 3), with the highest
under FO (146.6 Mg C ha−1) and lowest under SC (92.4 Mg C ha−1). The variation in SOC stock trended
in the following order: FO > OT > OE > CT > CE > SC (Figure 3). The soil characteristics at different
depth classes are given in Table 2 and the depth-wise distribution of soil fractions are elaborated in
Table 3. The SC, CT, OE, and OT treatments had 37%, 25%, 23%, and 14.5% fewer SOC stocks than the
Forest. Compared to the OT and OE AFS treatments, the monoculture SC had 35%, 18.4%, and 15%
fewer SOC stocks in whole soil up to a depth of 1 m. The soil carbon stocks in FO and OT were not
significantly different from each other (Figure 3).
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Figure 3. Total soil organic carbon (SOC) content in the whole soil up to 1 m depth in six different
land-use systems in Turrialba, Cartago, Costa Rica. Treatments: CE: Conventional Erythrina, CT:
Conventional Terminalia, FO: Forest, OE: Organic Erythrina, OT: Organic Terminalia, SC: Sun Coffee.

3.3. Soil Organic Carbon Stocks in Macroaggregates (>250 µm)

In a 1-m soil profile, the total SOC contained in the macroaggregates were 116.1, 84.4, 71.6, 70.1,
68.3, and 63 (Mg C ha−1) in FO, OT, CE, CT, OE, and SC treatments, respectively (Figure 4), with the
highest amount under FO. The macroaggregates retained the highest proportion of total C. When
compared to FO, the SOC stocks under all AFS and SC were significantly lower in the 60–100 cm
depth. For all other depth classes, no significant differences were noted within macroaggregates in
AFS treatments and SC when compared to FO (Supplementary Figure S1).
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3.4. Soil Organic Carbon Stock in Microaggregates (250–53 μm) 

Within a soil depth of 1 m, the total SOC contained in the microaggregates was highest under 
OT, closely followed by FO (Figure 5). Within the 0–10 cm, OE and OT had higher SOC stocks (6.4 
Mg C ha−1and 6.38 Mg C ha−1) while Forest had 3.75 Mg C ha−1. Results of multiple comparisons 
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Figure 4. Depth-wise mean soil organic carbon (SOC) in Mg C ha−1 stock in macroaggregates (>250 µm)
soil up to 1-m depth in six different land-use systems in Turrialba, Costa Rica. Note: Tukey’s test was
used to determine the significant differences among mean SOC within land-use systems. Lower case
letters indicate differences (at the 0.05 probability level) in SOC among land-use systems compared
within 1 m. Error bars indicate the standard error of the mean. Treatments: CE: Conventional
Erythrina, CT: Conventional Terminalia, FO: Forest, OE: Organic Erythrina, OT: Organic Terminalia,
SC: Sun Coffee.

3.4. Soil Organic Carbon Stock in Microaggregates (250–53 µm)

Within a soil depth of 1 m, the total SOC contained in the microaggregates was highest under OT,
closely followed by FO (Figure 5). Within the 0–10 cm, OE and OT had higher SOC stocks (6.4 Mg C
ha−1 and 6.38 Mg C ha−1) while Forest had 3.75 Mg C ha−1. Results of multiple comparisons showed
that the SOC stocks in CCE were significantly lower than FO at the lowest depth class 60–100 cm. No
other statistical significance was noted across AFS treatments, SC, and FO within microaggregates
(250–53 µm) (Supplementary Material, Figures S1 and S2).
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3.5. Soil Organic Carbon Stock in Silt and Clay Fraction (<53 μm) 

The SOC contents in this fraction was higher under the two AFS systems with Terminalia as the 
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Figure 5. Depth-wise mean soil organic carbon stock (SOC) in Mg C ha−1 in microaggregates (250–53µm)
soil up to 1 m depth in six different land-use systems in Turrialba, Costa Rica. Note: Tukey’s test was
used to determine the significant differences among mean SOC within land-use systems. Lower case
letters indicate differences (at the 0.05 probability level) in SOC among land-use systems compared
within 1 m. Error bars indicate the standard error of the mean. Treatments: CE: Conventional
Erythrina, CT: Conventional Terminalia, FO: Forest, OE: Organic Erythrina, OT: Organic Terminalia,
SC: Sun Coffee.

3.5. Soil Organic Carbon Stock in Silt and Clay Fraction (<53 µm)

The SOC contents in this fraction was higher under the two AFS systems with Terminalia as the
shade tree (CT and OT), especially in the uppermost soil layer, 0–10. cm (Figure 6). The treatment
CT had higher SOC stocks in the top two soil layers (0–10 cm and 10–30 cm). The results of multiple
comparison tests showed no significant differences within treatments, with exception to CE compared
to FO (Supplementary Figure S1).
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(2001–2017) 
0–10 CE 26.4 25.3 −0.1 
10–40 CE 30.5 28.5 −0.1 
0–40 CE 58 53.9 −0.2 
0–10 CT 28.4 32.9 0.3 
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0–10 OT 26.4 35.5 0.6 

Figure 6. Depth-wise mean soil organic carbon (SOC) in Mg C ha−1 stock in silt + clay fraction
(<53 µm) soil up to 1 m depth in six different land-use systems in Turrialba, Costa Rica. Note: Tukey’s
test was used to determine the significant differences among mean SOC within land-use systems.
Lower case letters indicate differences (at the 0.05 probability level) in SOC among land-use systems
compared within 1 m. Error bars indicate the standard error of the mean. Treatments: CE: Conventional
Erythrina, CT: Conventional Terminalia, FO: Forest, OE: Organic Erythrina, OT: Organic Terminalia,
SC: Sun Coffee.

3.6. Carbon Sequestration Potential (CSP)

The SOC stocks calculated from the C concentrations at the start of the experiment in 2001 were
compared to SOC stocks in measured in 2017 under CE, CT, OE, OT, and SC treatments (Table 8,
Figure 7). Additionally, the carbon sequestration potential (Mg C ha−1 yr−1) reported the following
trend: OT > OE ~ CT > CE ~ SC. The CSP was the highest under OT (1.3 Mg C ha−1 yr−1). Both SC
and CE showed a decrease in SOC stocks from the time of establishment of AFS in 2001 (Figure 7).



Forests 2020, 11, 49 13 of 23

Table 8. Change in SOC stocks (2001–2017) and carbon sequestration potential (CSP) under various
AFS up to a depth of 40 cm.

Depth (cm) Treatment SOC Stocks in
2001 (Mg C ha−1)

SOC Stocks in
2017

(Mg C ha−1)

Soil CSP
(Mg C ha−1 yr−1)

(2001–2017)

0–10 CE 26.4 25.3 −0.1
10–40 CE 30.5 28.5 −0.1
0–40 CE 58 53.9 −0.2
0–10 CT 28.4 32.9 0.3
10–40 CT 39.4 41.0 0.1
0–40 CT 67.8 73.9 0.4
0–10 OE 24.3 29.5 0.3
10–40 OE 31.8 33.1 0.1
0–40 OE 56 62.6 0.4
0–10 OT 26.4 35.5 0.6
10–40 OT 27.8 39 0.7
0–40 OT 54.2 74.5 1.3
0–10 SC 24.2 27.7 0.2
10–40 SC 32.3 25.1 −0.5
0–40 SC 56.5 52.8 −0.2

Note: The SOC for the year 2017 are up to 30 cm while the other two years are up to 40 cm. The C concentration for
the year 2001 was obtained by personal communication with Martin Noponen. SOC stocks were calculated from
C concentration provided; SOC stock = Cconcentration × BD × Depth. Treatments: CE: Conventional Erythrina, CT:
Conventional Terminalia, FO: Forest, OE: Organic Erythrina, OT: Organic Terminalia, SC: Sun Coffee.

Forests 2019, 10, x FOR PEER REVIEW 13 of 22 

10–40 OT 27.8 39 0.7 
0–40 OT 54.2 74.5 1.3 
0–10 SC 24.2 27.7 0.2 
10–40 SC 32.3 25.1 −0.5 
0–40 SC 56.5 52.8 −0.2 

Note: The SOC for the year 2017 are up to 30 cm while the other two years are up to 40 cm. The C 
concentration for the year 2001 was obtained by personal communication with Martin Noponen. SOC 
stocks were calculated from C concentration provided; SOC stock = Cconcentration × BD × Depth. 
Treatments: CE: Conventional Erythrina, CT: Conventional Terminalia, FO: Forest, OE: Organic 
Erythrina, OT: Organic Terminalia, SC: Sun Coffee. 

 
Figure 7. Soil organic carbon stocks (Mg C ha−1) in whole soil under various AFS treatments up to a 
depth of 40 cm for the years 2001 and 2017. The SOC for the year 2017 are up to 30 cm while that of 
2001 are up to 40 cm, n = 3 for both years. Note: The C concentrations for the year 2001 were obtained 
from Martin Noponen by personal communication. SOC stocks were calculated from C concentration 
provided; SOC stock = Cconcentration × BD × Depth. Treatments: CE: Conventional Erythrina, CT: 
Conventional Terminalia, FO: Forest, OE: Organic Erythrina, OT: Organic Terminalia, SC: Sun Coffee. 

3.7. Effect of Management and Type of Shade on SOC Stocks 

The results from the mixed effects model for each soil depth class including coffee management 
(subplot) treatments and the initial C concentration (measured in the year 2001) as fixed effects 
showed for 0–10 cm soil depth SOC stock changes were significantly in the organic than the 
conventional management treatments (p = 0.0003). For the lower depth classes (up to 30 cm), SOC 
stocks declined and no significant differences were noted between organic and conventional 
management practices (p = 0.54). As an additional test, we used a non-parametric Wilcoxon rank sum 
test and no significant differences were noted in SOC stocks in the entire soil depth 0–30 cm was 
evaluated (p = 0.54) between conventional and organic management. The soil organic carbon stocks 
within AFS treatments with pruned shade trees (Erythrina shade) were significantly higher (p = 0.107) 
in the 0–10 cm soil depth but no significant differences were noted for 10–30 cm (p = 0.61). 

3.8. Modeling the Effect of Textural Variability on SOC Stocks in Whole Soil 

We looked at the textural variabilities in soil (Table 2) and the regression models with clay and 
silt as co-variates for whole soil. The regression models with percentage clay content and percentage 
silt content as a covariate for whole soil, indicated that both silt and clay content in soil across 
treatments affected the SOC stocks in whole soil (p = 0.024; p = 0.033). 

  

Figure 7. Soil organic carbon stocks (Mg C ha−1) in whole soil under various AFS treatments up to a
depth of 40 cm for the years 2001 and 2017. The SOC for the year 2017 are up to 30 cm while that of
2001 are up to 40 cm, n = 3 for both years. Note: The C concentrations for the year 2001 were obtained
from Martin Noponen by personal communication. SOC stocks were calculated from C concentration
provided; SOC stock = Cconcentration × BD × Depth. Treatments: CE: Conventional Erythrina, CT:
Conventional Terminalia, FO: Forest, OE: Organic Erythrina, OT: Organic Terminalia, SC: Sun Coffee.

3.7. Effect of Management and Type of Shade on SOC Stocks

The results from the mixed effects model for each soil depth class including coffee management
(subplot) treatments and the initial C concentration (measured in the year 2001) as fixed effects showed
for 0–10 cm soil depth SOC stock changes were significantly in the organic than the conventional
management treatments (p = 0.0003). For the lower depth classes (up to 30 cm), SOC stocks declined
and no significant differences were noted between organic and conventional management practices
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(p = 0.54). As an additional test, we used a non-parametric Wilcoxon rank sum test and no significant
differences were noted in SOC stocks in the entire soil depth 0–30 cm was evaluated (p = 0.54) between
conventional and organic management. The soil organic carbon stocks within AFS treatments with
pruned shade trees (Erythrina shade) were significantly higher (p = 0.107) in the 0–10 cm soil depth but
no significant differences were noted for 10–30 cm (p = 0.61).

3.8. Modeling the Effect of Textural Variability on SOC Stocks in Whole Soil

We looked at the textural variabilities in soil (Table 2) and the regression models with clay and silt
as co-variates for whole soil. The regression models with percentage clay content and percentage silt
content as a covariate for whole soil, indicated that both silt and clay content in soil across treatments
affected the SOC stocks in whole soil (p = 0.024; p = 0.033).

4. Discussion

4.1. Land-Use System—Soil Depth Class—Aggregate Size Interactions in SOC Storage under Shaded AFS

While reporting results involving multiple factors and their effects on SOC stocks, it is essential to
analyze and interpret all possible interactions influencing SOC stocks [38]. The significant Fraction size
× Treatment interaction (Tables 6 and 7) indicate that fraction sizes within soil aggregates influence
the effect of treatments on SOC stocks. Considering the macroaggregate (>250 µm) fraction size as
the reference, the other two fraction sizes showed significant different main effect on SOC stock. This
indicated that there were differences between fraction sizes in the amount of SOC stocks stored within
them (Tables 6 and 7), or, the amount of SOC stock is influenced by land-use system and fraction size.
The interaction effect was also significant, in Depth × Fraction size (Table 7), that means the fractions
sizes also had a significant effect on the amount of SOC stocks at different depth classes. Therefore,
SOC stock variations at different depth classes can also be attributed to the relative levels of various
fraction sizes. For example, predominance of a fraction size such as macroaggregates or silt + clay
could also be an indication of higher or lower levels of total SOC stock at any depth class. The amount
of SOC stock at any depth class was not influenced by land use system (treatments) but was influenced
by soil fraction size class. The influence of soil fraction size class on SOC stocks have been reported
previously in coherence to our findings in other agroforestry systems such as Silvopastoral systems
in Brazil and USA, shaded cocoa AFS in Brazil, Dehesa systems in Spain, shaded coffee AFS and,
Homegardens in India [17,27,28,36,37,39]. The effect of fraction size class was significantly different
at different depth classes. The interactions of Depth × Treatment were not significant in general and
under a specific level of treatment interaction. Thus, SOC stocks under shaded and unshaded systems
(CE, CT, OE, OT vs. SC) did not vary significantly at any depth class. The interaction effects of Fraction
size × Treatment with respect to specific treatments was significant for SC indicating that even though
the effect of shade vs. unshaded treatments is not significant under whole soil, statistical differences
are noted within fraction size (Table 6).

4.2. SOC Stocks in Whole Soil

It is important to understand the temporal trends in SOC stocks in a changing land-use system or
agricultural practices when assessing their potential environmental impacts. Factors like vegetation
type, climate, ecosystem productivity, soil aggregates, soil texture, and management practices strongly
influence the input and output of organic carbon within agroecosystems [21]. Although, increased
aboveground biomass and subsequent increased organic matter input is presumed to improve SOC
stocks in tree based, shaded perennial AFS, which often mimic forest-like ecosystem [40], this study
site did not demonstrate the presumed trend. Such a trend could be attributed to the previous
land-use history of the sites (sugar cane fields) and also direct us towards the fact that these systems,
predominated by woody plants and limited soil disturbance post land-use change from sugar cane to
coffee AFS maybe transitioning to new equilibrium between organic matter input and SOC stocks [11].
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The biomass input was higher under CE and OE treatments (Table 1) but the SOC stocks did not show a
significant difference within CE, OE and other AFS as well as SC (Figure 3). On the other hand, organic
management practices increased SOC stocks temporally in the top soil (Figure 7). The difference
between management treatments could be attributed to application of organic fertilizers (at up to
11.25 Mg ha−1 year−1). Moreover, the amount of organic fertilizer applied was positively correlated to
changes in 0–10 cm depth SOC (r2 = 0.18, p < 0.01) [11] while amount of leaf litter and pruned material
also did not have any significant effect on SOC stocks beyond 10 cm [11]. Thus, organic management
could aide in increasing SOC stocks, in the soil layer in this particular study location in coherence with
other studies reported from the region [11,41,42].

The SOC stocks under OT (125 Mg C ha−1), OE (114 Mg C ha−1), up to a depth of 100 cm were
comparable to the values of 111 Mg C ha−1 for shade grown coffee systems up to a depth of 40 cm in
Costa Rica [5] and global estimates of ~150 Mg C ha−1 under shaded perennial AFS [43]. The SOC
stocks in our study site at the onset of the experiment in the year 2001 as reported in the following order
of CE, CT, OE, OT and SC (Mg C ha−1) as: 54, 67.8, 56, 54.2 and 56.5 up to a depth of 40 cm [11]. Over
the period of 16 years, the SOC stocks from this study as quantified in the year 2017 are being reported
in the following order of CE, CT, OE, OT and SC (Mg C ha−1) as: 53.9, 71.6, 60.3, 61.5 and 52.8 (Figure 7).
This leads us to infer that even though SOC stocks increased under most AFS no significant differences
were noted. Additionally, the carbon sequestration potential (CSP) in the order of the treatments CE,
CT, OE, OT and SC (Mg C ha−1 yr−1) were 0.3, −0.2, 0.4, 1.3 and −0.2 respectively (Table 8) which are
not very high amount of C sequestration rates considering the fact that the agroforestry experiment
was initiated 15 years back.

Total SOC stock decreased with soil depth in all land-use systems (Figure 3), in coherence to
other reported results from different coffee growing regions in Uganda, Togo, Peru, Mexico and
India [17,40,42,44–47]. All these studies have reported varied ranges of SOC stocks within coffee AFS.
This shows that SOC stocks under shaded AFS varies globally due to variations within ancillary factors
like soil condition, age of system, soil type, previous land-use history, types of shade tree, and so on.

4.3. Soil Organic Carbon in Various Aggregate-Size Fractions

4.3.1. Macroaggregates (>250 µm)

Macroaggregates are formed when light fraction (LF) SOM, which is composed of fresh
plant residue, is decomposed by fungi and bacteria. Fungal hyphae and bacterial extracellular
polysaccharides serve as nucleation cores to accrete larger masses of slightly decomposed SOM
that become macroaggregates. The macroaggregates comprised of the highest soil weight recovery
and distribution post wet sieving and oven drying (Table 5), ranging from 70.6% and 68.5% under
FO and CE to 38.5% under SC up to a depth of 100 cm. Similar skewness of weight distribution
towards macroaggregates within AFS were also reported by other researches from different sites
globally [16,17,48]. The formation of macroaggregates begin when light fraction soil organic matter
(SOM) is decomposed by soil microbes. This light fraction SOM is primarily composed of fresh plant
residues and along with fungal hyphae and bacterial polysaccharides accrete more SOM to promote
higher macroaggregate formation [21,49]. In land-use systems such as AFS, there is a continuous of
fresh plant residue from tree litterfall, promoting macroaggregate formation. This could have impacted
the aggregate weight distribution towards macroaggregate within AFS in our study. The variations in
SOC content within macroaggregates is mostly limited to the topsoil [50]. In this study, within the
depth of 30 cm, higher contents of SOC stocks were found within the macroaggregates of CT, OE and
OT than in SC; where SOC stocks decreased by 30% (Figure 5). Beyond 60 cm, the SOC stocks within
macroaggregates of FO were significantly higher that all other AFS but no significant differences were
noted between SC and coffee AFS treatments. Similar trends were reported from a study conducted in
a rubber AFS site where differences in SOC stocks in macroaggregates were noted only beyond a depth
of 30 cm [48].
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These AFS systems considered for the study was established in the year 2001 (~17 years old),
while the FO has been in place for >100 years. The SOC stock values are considered as characteristic of
each systems thus the significant difference noted between FO and other AFS especially in the lower
depth classes (60–100 cm) could also reflect the “tree effect” in time. The lack of difference between
unshaded SC and shaded AFS treatments highlights the poor correlation of above ground biomass
stocks to SOC stocks and system specificity. Similar trends have been reported from the same study
site [11].

4.3.2. Microaggregates (250–53 µm)

Within microaggregates, no significant differences were noted across all depth classes with the
exception of CE being significantly lower than FO. The mean residence time (MRT), of microaggregates
ranges between 10 and 100 years [50–52]. Given the intimate association of MRT of SOC within
microaggregates and its subsequent stability, one may concur that the C stored in microaggregates
are more robust than macroaggregates and improved SOC storage within this size class under AFS
with organic management OE and OT are relatively more secure and stable. However, the results of
this study show that SOC allocation within fraction sizes are highly site-specific and depends on a
myriad of other components than just increased biomass from AFS over conventional practices such
as SC and management practices. Additionally, the physicochemical properties inherent to the soils
often limits SOC stocks and further sequestration even when input to the system in the form of organic
matter is increased [21]. The soils under coffee AFS have been left undisturbed which could have led
to stabilized SOC equivalent to SOC stored within microaggregates in FO. Other supporting evidence
highlighting the role of microaggregates in improving SOC stocks and C sequestration in wheat fields
showed that carbon from wheat straw was stabilized and stored in microaggregates [53,54].

4.3.3. Silt and Clay Fraction (<53 µm)

The SOC stocks in the silt-and-clay fraction were significantly higher under the organically
managed, Terminalia shade AFS (OT) up to a depth of 60 cm. The percentage weight distribution
within this aggregate size increased with depth under all land-use types similar to studies [16,37,48].
Post wet sieving, the distribution of silt-and-clay fraction under FO within 60–100 cm accounted to
only 28.2 g while OE and OT treatments reported 18.6 g and 22.1 g respectively (Table 3). No significant
difference was noted in SOC stocks among treatments under this depth class which indicates that
treatments under Terminalia amazonia could have promoted aggregate distribution [55], especially in
improving the allocation within the smallest aggregate size classes.

4.4. Rhizodeposition and Management under Shaded Perennial Systems

4.4.1. Timber Species versus N2 Fixing Species

In Costa Rica, coffee (Coffea arabica) are often grown under the shade of tall shade trees [56];
as these systems are known to have higher potential for soil carbon sequestration apart from improving
soil health, nutrient cycling and providing other ecosystem services [57]. The roots of the coffee shrubs
can extend up to 2 m in total length [58], although the fine roots are concentrated up to a depth of
40 cm, which corroborates the higher distribution of SOC stocks up to 30 cm in our study. This rooting
depth is a function of soil type [59].

In AFS, the choice of shade tree becomes a critical moderator for SOC stock improvement, as seen
in this study and other studies in Costa Rica [60,61]. Globally, farmers have many practical reasons for
planting leguminous shade trees like Erythrina spp., Gliricidia spp. along with coffee and cacao AFS; e.g.,
ease of establishment and ability to re-sprout after pollarding [19]. However, the benefits of including
Erythrina spp. in intensively managed coffee plantations are only limited to the top soil [19,33]. In this
study, we found similar trends where coffee AFS under the shade of highly pruned Erythrina spp.
contributed to an increase in SOC stocks only up to a depth of 10 cm after 17 years of establishment.
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The lack of significant differences beyond a depth of 10 cm could be due to limited rate of incorporation
of organic matter from topsoil into deeper soil layers. In deeper soil layers, the incorporation of SOC
stocks is facilitated by root mediated mechanisms such as organic matter input via root turn over,
exudation, effect of the root sink on soil water relations, and so on [11]. In the study site, the lack of
significant increase in SOC stocks after 17 years could be due to stimulated SOC decomposition by
accelerated aeration which in turn fast paced the effect of labile C from roots, priming soil microbes to
deplete the existing SOC stocks quickly [62,63].

It is imperative to comprehend the rooting pattern, root growth and decomposition in coffee
plantations under the varying shade trees (Timber versus N2 fixing). Understanding such variations
are pivotal to improvement in SOC stocks and the very existence of ecosystem services like production
of timber and non-timber produce, to regulation or support of various ecosystem functions such as
pest control or nitrogen cycling [64]. There is still limited understanding of how the rhizodeposition
from shade trees affect soil carbon sequestration [65]. Understanding the dynamics and patterns of
rhizodeposition by introducing trees within agricultural crops to improve SOC stocks are crucial in
order to device management practices that will foster C accumulation in soils [66]. Farmers have many
practical reasons for choosing N2 fixing shade tree species, such as Erythrina spp. as they are easy to
establish and grows faster upon pollarding, large amount of litterfall and subsequent nutrient recycling
from litterfall pruning residues [19]. However, in our study we did not note a direct correlation
between increased litterfall and SOC stocks (Tables 1–3). Overall, the treatments under Erythrina, CE
and OE received an average biomass (including litterfall and prunings) of 17.4 Mg C ha−1 while the
ones under Terminalia, CT and OT received 8–10 Mg C ha−1, but the SOC stocks (Mg C ha−1) were in
the order of: OT > OE; CT > CE. This bolsters the fact that effect of rhizodeposition is more pivotal in
these systems. Similar ideas highlighting differences in root biomass and architecture (rooting depth,
distance, area and volume) were also reported [66,67] that could contribute to altered SOC stocks.

4.4.2. Organic Versus Conventional Management

In the past decade, much attention has been devoted to organic management practices for SOC
stock improvements and its potential C sequestration in soil. Some researchers have been proponents
of organic treatments [68,69], while other studies have been the opponents of organic management
practices [4,13,70]. These studies have warned of the short comings of organic management practices
and C accounting methodologies that can over-estimate the net sequestration of C into soil [11]. The
term C sequestration is often used define an increase in SOC stocks over time following a change in
land-use system. The coffee agroforestry in our study site was established in the year 2001. Over
the past 17 years, the soil carbon stocks have not increased significantly under all treatments up to a
depth of 40 cm (Figure 7). The soil carbon sequestration potential was highest under OT at 1.3 Mg C
ha−1 yr−1 which was well within the ranges (0.65–1.54 Mg C ha−1 yr−1) reported by studies from the
same site [8]. However, scientists argue that these improvements in SOC stocks could aide in climate
change mitigation if they result in net addition transfer of C from atmospheric CO2 to soil which is
not necessarily the case [8,11]. At this point, one may question the use of added organic C by the
application of amendments such as chicken manure, coffee pulp as these applications may lead to only
a transfer of C from one terrestrial pool to another and might not actually lead to “sequestration” [70].
Had alternative practices stored the C in soil for longer (e.g., through conversion of the organic input
to biochar, biosolid) then it may have more net positive impact in C sequestration. In our study,
we assessed the effects of management practices on SOC stocks. Analyzing such effects using a mixed
effects model could bring about some clarity on this. Taking this discussion any further is beyond the
scope of our study.

4.4.3. Do Trees in AFS Always Improve and Sequester Carbon Stocks Deeper in the Soil?

In order to comprehend, the effects of land-use systems such as AFS on SOC stocks, one needs
to the environmental impact that systems contribute to. Several studies have reported a decline in
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SOC stocks when shifted from forest to managed ecosystems [11,71,72]. In this study site in Costa
Rica, the shift in land-use from arable sugar cane to coffee agroforestry showed only slight increase
in SOC stocks even after 17 years of establishment. Study from the same site in Costa Rica reported
a nine-year decrease in SOC stocks over 0–40 cm depth by an average, across all AFS, of 9.99 Mg C
ha−1 (12.4%) [11]. Our studies showed an average increase of 16% in 17 years for all AFS except CE
(Figure 7). This indicates that changes in management practices and land-use need the transition time
to reach a new equilibrium as there is a sudden increase in inputs of organic matter before actual SOC
accrual starts. Additionally, we noted that SOC stocks increased in 0–10 cm depth, coherent to previous
studies conducted in the same experimental site [11]. Addition of organic fertilizer, leaf prunings
and litter could be attributed to the increase in SOC stocks in the 0–10 cm depth. This directs us to
comment that, in addition to soil type, climate, management practices and the SOC storage capacity
of soil [73], the SOC stock in surface soil depends on the quantity and quality of organic matter and
litter input [74,75]. This bolsters our findings where coffee AFS under heavily pruned Erythrina shade
trees showed increased SOC stock with soil depth 0–10 cm, but not in unpruned coffee AFS under
the shade of Terminalia trees. This increased SOC stocks, restricted to the topsoil are not resistant to
decomposition. An interesting observation that we noted from this study was the lack of significant
differences in SOC stock between the shaded AFS and SC across all depth classes and fraction sizes
(Supplementary Figures S1 and S2) despite great variation in the above-ground biomass within these
systems (between an average of 9.1 Mg C ha−1 for SC, 22.6 Mg C ha−1 for OE, CE and 115.8 Mg C ha−1

for OT, CT shaded AFS [11]. Thus, increasing above ground biomass need not necessarily be positively
linear correlated to above ground biomass. Assuming such a linear correlation may lead to erroneous
estimates of total C in large ecosystems [8,11] but can still be practiced in farm-scale afforestation
and reforestation total C accounting as proposed by the United Nations Framework Convention for
Climate Change in the year 2011.

In summary, carbon stocks deeper in the soil (below 50 cm) are more resistant to decomposition
than those in the surface soil and are therefore considered sequestered. Repeated addition of easily
decomposable leaf litter such as leaf biomass (prunings) of nitrogen-rich shade trees (E. poeppigiana) to
the soil surface may not lead to long-term soil C build-up in deeper layers, because such materials will
easily decompose and release most (up to 90%) of the C as CO2 into the atmosphere. In the long run
(maybe 50+ years; this study site had this treatment for only 17 years) some of that C may get stored in
deeper layers in microaggregates and silt + clay fractions and become sequestered. That is why there
is more C in FO plots. This is only hypothetical; we don’t have long-term data.

4.5. Are Textural Variations Influencers of SOC Stocks in Soil?

The inclusion of textural variation as a covariate to extract its effect of SOC stocks showed that
both silt and clay content influenced SOC stocks in whole soil and textural variations did influence
SOC stocks. However, there is lack of universality in this relationship. Studies conducted in grasslands
of New Zealand, coffee AFS in India reported no correlation between textural variation and SOC
stocks [8,76]. It was suggested that the relationship between SOC stocks and clay content depends on
the scale size of the study with different climatic gradients and vegetation can also be a moderator [77].
The same study also showed that SOC stock and clay percentage decreased linearly from humid
climatic conditions to the semi-arid sites, suggesting that these changes were partly controlled by
rainfall regimes at a regional scale. At local scale, the soil nutrients like total N and total P could also
be key driving factors along with textural variations in influencing SOC stocks.

4.6. Limitations of the Study

One of the limitations of this study is the lack of uniformity in soil characteristics between FO and
other AFS. We noticed that FO had the highest clay content and lowest bulk density in particular, at a
depth of 60–100 cm. At this depth class, the supply of organic matter is certainly not so high to reduce
bulk density to 0.75 g cm−3. At a given depth, for the silt + clay fraction (<53 µm), the second lowest
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organic carbon stock was observed (Figure 6) and this fraction had the highest average percentage
weight of all other plots in this depth, indicating that the aggregation is lower and could not lead to
higher porosity and this explained the lower bulk density. In addition, the proportion of clay in the FO
area was more than 20% higher than all other treatments at all depths. The soil conditions may not
have been similar especially in terms of textural properties at lower depths. This does not mean that
the AFS treatments are not comparable to FO but need to be regarded as different in characteristics.
Such variabilities are characteristics of long-term stands of different AFS management practices. One
must acknowledge that these practical challenges within AFS studies and the AFS treatments here
have been represented in actual field conditions. The lack of availability of uniform sites of long-term
plant associations are realities in agroforestry and therefore explorative studies, such as this one, are of
value. These results are only indicative and site-specific.

5. Conclusions

The presence of trees that provide optimum shade density and increase above-ground biomass in
shaded perennial AFS is generally perceived as contributing to increase in SOC stocks. Our study from
a seventeen-year-old experimental site did not agree with this general perception. Although overall
SOC stocks improved over 17 years under most AFS, the increase was not proportional to aboveground
biomass. We attribute the lack of such a correlation between aboveground biomass and increased SOC
stocks within treatments to a multitude of factors that influence changes in SOC stocks, such as the
nature of shade tree, soil type, quality of litter and pruning added to the soil, previous land-use, and so
on. The treatments coffee under Erythrina poeppigiana managed both conventionally, i.e., with chemical
fertilizer application (CE), and organically (OE) had almost double the quantity of biomass and higher
shade density as compared to the corresponding treatments under Terminalia amazonia (CT and OT),
the SOC stocks did not correlate with increased biomass and shade density. Forest continued to have
the highest SOC stocks especially beyond a depth of 60 cm. Our results suggest that the shaded coffee
AFS could play an important role in environmental protection by mitigating GHG emission through
the storage of relatively high amounts of well-protected organic carbon in the smallest soil fractions
compared with treeless systems. However, soil- and plant management practices have considerable
influence on the extent of benefit that can be realized from such systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/1/49/s1,
Figure S1: Multiple paired comparison of various AFS with Forest (FO) for all fraction size at various depth
classes, Figure S2: Multiple paired comparison of various AFS with Sun Coffee (SC) for all fraction size at various
depth classes.
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