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Abstract: To effectively further research the regional carbon sink, it is important to estimate forest
aboveground biomass (AGB). Based on optical images, the AGB can be estimated and mapped on
a regional scale. The Landsat 8 Operational Land Imager (OLI) has, therefore, been widely used
for regional scale AGB estimation; however, most studies have been based solely on peak season
images without performance comparison of other seasons; this may ultimately affect the accuracy of
AGB estimation. To explore the effects of utilizing various seasonal images for AGB estimation, we
analyzed seasonal images collected using Landsat 8 OLI for a subtropical forest in northern Hunan,
China. We then performed stepwise regression to estimate AGB of different forest types (coniferous
forest, broadleaf forest, mixed forest and total vegetation). The model performances using seasonal
images of different forest types were then compared. The results showed that textural information
played an important role in AGB estimation of each forest type. Stratification based on forest types
resulted in better AGB estimation model performances than those of total vegetation. The most
accurate AGB estimations were achieved using the autumn (October) image, and the least accurate
AGB estimations were achieved using the peak season (August) image. In addition, the uncertainties
associated with the peak season image were largest in terms of AGB values <25 Mg/ha and >75 Mg/ha,
and the quality of the AGB map depicting the peak season was poorer than the maps depicting other
seasons. This study suggests that the acquisition time of forest images can affect AGB estimations in
subtropical forest. Therefore, future research should consider and incorporate seasonal time-series
images to improve AGB estimation.

Keywords: aboveground biomass; Landsat 8 OLI; seasonal images; stepwise regression; map quality;
subtropical forest

1. Introduction

As an important characteristic of forest ecosystems, forest aboveground biomass (AGB) provides
a basis for ecosystem and forestry research; AGB estimation further provides data critical to estimating
the forest carbon sink [1,2]. In recent years, accurate and rapid AGB estimation has, therefore, become
crucial for forest ecosystem and global climate change research.

Traditionally, high precision AGB field measurement methodologies have involved extensive field
surveys [3]. However, these methods are time-consuming, laborious and destructive; in addition, they
cannot be used to analyze the spatial distribution and dynamic change of AGB on a large scale [4].
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Today, remote sensing-based methodologies are more commonly used to estimate AGB as they rapidly
provide near real-time, dynamic and regional scale data, and the characteristics of the obtained
images are strongly correlated with AGB [5]. Remote sensing data can be divided into two categories:
Passive remote sensing (optical sensors, thermal and microwave) and active remote sensing (radar
and light detection and ranging (LiDAR)) [5–7]. Optical sensors such as Landsat, Systeme Probatoire
d’Observation de la Terre (SPOT), the moderate-resolution imaging spectroradiometer (MODIS),
QuickBird and the Advanced Very High-Resolution Radiometer (AVHRR) have been widely used
for AGB estimation because of their coverage, repetitive observation and cost-effectiveness [6,8]. Of
these sensors, Landsat images are the most commonly used for remote sensing-based AGB estimations
because the sensors provide a long-term data record and have medium spatial resolution, wide spatial
coverage and high spectral sensitivity [9]. In many countries, the spatial resolution obtained using
Landsat is similar to the size of sample plots in national forest inventories; therefore, using Landsat to
estimate AGB can reduce spatial errors associated with matching pixels to sample plots [10].

The information derived from Landsat images significantly correlates with AGB because these
images provide valuable information regarding the forest canopy [11]. In fact, previous studies
have shown that individual spectral bands, vegetation indices, transformed images (using principal
component analysis (PCA)) and textural images are strongly correlated with AGB and can, therefore,
be used to effectively estimate AGB [12–15]. Furthermore, many statistical models can be used in
developing remote sensing-based AGB models. These models can be divided into two categories:
(i) Parametric models (linear, nonlinear, etc.) [16–18] and (ii) nonparametric models (random forest,
RF; artificial neural networks, ANN; support vector machines, SVM; etc.) [14,19–21]. Multiple linear
regression models, however, are most frequently used in AGB research.

Optical sensors mainly provide information about the forest canopy [11]. The canopy structure of
subtropical forests significantly varies between seasons, and even between months [6,22,23]. These
variations can cause differences in remote sensing data [24]. Therefore, AGB estimation can vary
widely when time-series images are used to model AGB in the same study area [25]. Previous studies
have used a single Landsat image (taken during the peak growing season or at a time close to when
the ground survey of national forest inventory plots took place) to estimate AGB [21,26–28]. These
images, however, do not always accurately reflect forest characteristics. For example, dense canopy
cover during the peak growing season often results in extremely saturated images [25,29,30], which
ultimately affects AGB estimation accuracy. Some studies have, therefore, utilized time-series of
Landsat images to estimate AGB, e.g., Zhu and Liu [25], Safari et al. [31] and Powell et al. [32]. These
studies, however, focused on particular forest type or a regional forest. Therefore, there exists a
knowledge gap regarding whether time-series Landsat images affect the accuracy of AGB estimations
in different forest types and whether the estimations differ among forest types.

Given this gap in knowledge, this study explores the use of seasonal Landsat 8 Operational
Land Imager (OLI) images in estimating AGB in a subtropical forest in northern Hunan, China, using
stepwise regression. The main objectives of this study were to: (1) Explore the potential variables of
seasonal time-series data for different forest types when estimating AGB; (2) investigate the potential
of seasonal time-series data in improving the accuracy of AGB estimations in different forest types;
and (3) investigate the uncertainties associated with using seasonal time-series data to estimate AGB.

2. Materials and Methods

2.1. Study Area

The study area is located in Hunan Province, central China (path/row: 124/40), and comprises an
inclined transition zone from the hills of central Hunan to Dongting Plain. The climate is a typical
subtropical monsoon humid climate [33] with an average annual temperature and annual precipitation
of 16.5 ◦C and 1200–1700 mm, respectively. The study area is further characterized by four distinct
seasons: Spring (March to May), summer (June to August), autumn (September to November) and
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winter (December to February). Chinese fir (Cunninghamia lanceolate (Lamb.) Hook.) and Chinese red
pine (Pinus massoniana) plantations, evergreen broadleaf, deciduous and mixed forests dominate this
area with scattered bamboo and shrub lands [34]. A total of 303 forest plots were inventoried in 2014
by the National Forest Continuous Inventory (NFCI) in China (Figure 1).
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2.2. Calculation of Plot-Level AGB

A total of 303 sample plots were used in this research including, 125 CFF (coniferous forest) plots,
138 BLF (broadleaf forest) plots, and 40 MXF (mixed forest) plots (Table 1). The area of the sample
plots is 0.067 ha, and the plots were systematically allocated based on a 4 × 8 km grid (NFCI). The
AGB values of the study plots were calculated according to tree species or species groups described
in a previous study [35]. Statistical information regarding the sample plot data based on different
forest types is summarized in Table 1. The AGB values of all sample plots ranged from 5.01 Mg/ha to
151.06 Mg/ha with an average AGB of 48.27 Mg/ha. The mixed forest had the highest mean (±standard
deviation) AGB (52.69 ± 29.45 Mg/ha).

Table 1. Summary of the sample plots by forest type (CFF, coniferous forest; BLF, broadleaf forest; MXF,
mixed forest; TV, total vegetation).

Forest Type No. of Sample
Plots

Minimum
(Mg/ha) Mean (Mg/ha) Maximum

(Mg/ha)
Standard
Deviation

CFF 125 5.01 47.63 118.33 22.89
BLF 138 6.08 47.58 135.08 28.12
MXF 40 22.33 52.69 151.06 29.45
TV 303 5.01 48.27 151.06 26.24
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2.3. Remote Sensing Data and Information Extraction

To explore the effectiveness of utilizing seasonal images to estimate AGB, we acquired four
cloud-free Landsat 8 OLI images which covered different forest states within the study area from
spring to winter during 2013 and 2014 (Table 2). These four Landsat 8 OLI images were Landsat
surface reflectance data downloaded from the United States Geological Survey (USGS) website
(https://earthexplorer.usgs.gov/). Landsat 8 OLI surface reflectance data are generated using the land
surface reflectance code (LaSRC), which utilizes the coastal aerosol band to perform aerosol inversion
tests, uses auxiliary climate data from MODIS, and a unique radiative transfer model [36].

Table 2. Landsat 8 Operational Land Imager (OLI) imagery acquired for this study.

Remote Sensing Data Month Acquisition Date Cloud Cover (%) Image Type

Landsat 8 OLI (124/40)

January 14 January 2014 0.04 L1TP
April 4 April 2014 0.01 L1TP

August 7 August 2013 0.61 L1TP
October 10 October 2013 0.17 L1TP

To estimate forest AGB in the study area, we calculated and extracted 165 spectral variables: Six
original bands, 12 vegetation indices, the first three bands from principal component analysis, and 144
texture variables using a gray-level co-occurrence matrix (Table 3).

Table 3. Summary of the predictor variables.

Predictor Variable Formula Reference

Landsat 8 OLI original bands 2–7 [31]

Normalized Difference Vegetation Index (NDVI) (NIR − R)/(NIR + R) [37]
Atmospherically Resistant Vegetation Index

(ARVI) (NIR − 2R + B)/(NIR + 2R − B) [38]

Corrected Normalized Difference Vegetation
Index (CNDVI)

NDVI * (1 − (SWIR1 −
SWIRmin)/(SWIRmax − SWIRmin)) [39]

Difference Vegetation Index (DVI) NIR − R [40]
Enhanced Vegetation Index (EVI) (NIR − R)/(NIR + R + B) [30]

Generalized Difference Vegetation Index (GDVI) (NIR2
− R2)/(NIR2 + R2) [41]

Linearized NDVI (LNDVI) 4/π * arctan (NDVI) [42]
Normalized Difference Water Index (NDWI) (NIR − SWIR2)/(NIR + SWIR2) [43]

Normalized Green Difference Vegetation Index
(NGDI) (NIR − G)/(NIR + G) [44]

Red-green Vegetation Index (RGVI) (R − G)/(R + G) [10]
Soil-adjusted Vegetation Index (SAVI) (1 + L) * (NIR − R)/(NIR + R + L) [45]

Simple Ratio (SR) NIR/R [46]

Principal Component Analysis (PCA)
The first three PCs from principal component analysis [6]

Texture (window sizes: 3 × 3, 5 × 5, 7 × 7 pixels)
Contrast, Correlation, Dissimilarity, Entropy, Homogeneity, Angular second moment, Mean, and

Variance
[47]

2.4. Vegetation Classification Data

The European Space Agency (ESA) Climate Change Initiative (CCI) was developed to address
climate change at a global level [48]. As part of this initiative, the ESA has derived and consolidated
global CCI land cover (CCI-LC) information including annual landcover maps from 1992 to 2015. For
the present study, we obtained the CCI-LC data of the study area from MERIS and SPOT satellite images
at 300 m spatial resolution [49]. Further, the 2014 CCI-LC map of the study area was downloaded
from the ESA website (http://maps.elie.ucl.ac.be/CCI/viewer/index.php) to obtain forest stratifications
(coniferous forest (CFF), broadleaf forest (BLF), and mixed forest (MXF)) for AGB estimation.

https://earthexplorer.usgs.gov/
http://maps.elie.ucl.ac.be/CCI/viewer/index.php
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2.5. AGB Estimation Model

Pearson product-moment correlation coefficient was used to analyze the relationships between
plot AGB and spectral variables, and the spectral variables which had significant correlations with
AGB were used as independent variables. Stepwise regression analysis is a frequently used approach
in AGB research to determine and select the spectral variables which best contribute to forest AGB.
Stepwise regression ultimately results in a regression model containing the variables which best explain
the dependent variable (AGB in this study). During the stepwise regression, multicollinearity, which
creates highly sensitive parameter estimators with inflated variances and leads to improper model
selection, was analyzed between each pair of selected spectral variables using the variance inflation
factor (VIF). In this study, if the VIF of a spectral variable exceeded ten, this spectral variable was
considered seriously collinear with other variables [50,51].

The stepwise regression model developed in this study assumed that a linear relationship exists
between independent (spectral variables) and dependent variables (AGB of different forest types). The
model is defined in Equation (1) and describes the relationship between AGB and spectral variables:

y = a + b1x1 + b2x2 + · · ·+ bnxn + ε, (1)

where y is AGB, a is the constant term, x1, . . . , xn represent the independent variables, b1, . . . , bn

represent the parameters of the independent variables, and ε is the error.
To analyze the accuracy of the AGB models derived from the seasonal images for different forest

types, the following workflow was used (Figure 2).
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Figure 2. The workflow for aboveground biomass (AGB) models derived from different scenarios.

2.6. Model Comparison and Evaluation

Model performance was evaluated using ‘10-fold’ cross validation [52], and predicted AGB values
were compared to observed AGB values using three accuracy indicators: Coefficient of determination
(R2), root mean square error (RMSE and RMSE %) and bias. Accuracy indicator Equations (2)–(5) are
as follows:

R2 = 1−
n∑

i=1

(yi − ŷi)
2/

n∑
i=1

(
yi − yi

)2
, (2)

RMSE =

√√ n∑
i=1

(yi − ŷi)
2/n, (3)

RMSE% =
RMSE

y
× 100, (4)

Bias = (yi − ŷi)/y, (5)

where yi is the observed AGB value, ŷi is the predicted AGB value based on models, y is the arithmetic
mean of all observed AGB values, and n is the sample number. In general, a higher R2 value and lower
RMSE and RMSE% values indicate a greater accuracy of the model.

We generated ten predicted forest AGB maps using the results of 10-fold cross validation, and
the average of these AGB maps was taken as the final spatial distribution of AGB. In addition, the
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standard deviation (Stdev) of spatial AGB predictions was calculated to analyze the uncertainty of
each pixel [53,54]. Larger Stdev values indicate higher estimation uncertainty and smaller Stdev values
indicate lower estimation uncertainty.

3. Results

3.1. Comparison of AGB Estimates Using Seasonal Images of Total Vegetation

The variables of AGB models for total vegetation using seasonal images were selected using
stepwise regression according to the correlation between AGB, the dependent variable and spectral
variables. We found that four variables were included in the AGB models for January, April and
October, whereas six variables were included in the AGB model for August (Table 4). The selected
variables of these models indicated that the textural images of Landsat 8 OLI played an important role
in forest AGB estimation of total vegetation regardless of the season.

Table 4. The selected variables for AGB estimation models for different months based on the
total vegetation.

Month Selected Variables for Total Vegetation

January b6_EN3Jan, b3_EN3Jan, b2_EN3Jan, b5_Jan
April b7_SEM3Apr, b5_Apr, b2_VA7Apr, NDWI_Apr

August b6_COR5Aug, b4_COR7Aug, b5_SEM7Aug,
b5_HO7Aug, b2_CON5Aug, b4_SEM5Aug

October b5_SEM5Oct, b4_CON7Oct, SR Oct, b6_COR3Oct

Note: bi_M, original band i; NDWI_Apr, normalized difference water index of April; SR_Oct, simple ratio of october;
bi_XYjM, textural image developed from spectral band i with a window size of jxj pixels using texture entropy (EN),
angular second moment (SEM), variance (VA), correlation (COR), contrast (CON) or homogeneity (HO).

Based on 10-fold cross validation, the results of model fitting are shown in Table 5. We found that
the use of seasonal Landsat 8 imagery resulted in different AGB estimates. For total vegetation, the
stepwise regression model of the October image showed the highest R2 value (0.39) and the lowest
RMSE (21.67 Mg/ha; 44.1% of the mean) and bias (−0.19 Mg/ha) values. The model based on the
peak season (August) image showed the lowest R2 value (0.27), followed by the January and April
models. Overall, the results demonstrated that the acquisition time of Landsat 8 imagery significantly
influenced AGB estimation, and that the peak season (August) image showed inferior performance
compared to that of the other AGB estimation models.

Table 5. Summary of the accuracy assessment results for the seasonal models based on the
total vegetation.

Month R2 RMSE (Mg/ha) RMSE % Bias (Mg/ha)

January 0.31 21.90 44.8 1.08
April 0.34 21.95 45.0 0.81

August 0.27 22.15 45.7 0.54
October 0.39 21.67 44.1 −0.19

Note: R2, coefficient of determination; RMSE, root mean squared error; RMSE%, relative root mean squared error.

The relationship between the predicted AGB and observed total vegetation AGB for different
seasons using stepwise regression model is shown as scatterplots in Figure 3a1–d1. Each month, we
detected overestimations when the plot AGB value was lower than 30 Mg/ha, and underestimations
when the plot AGB value was higher than approximately 90 Mg/ha. The August model showed the
largest bias (Figure 3c2). The bias calculated for each prediction model showed a skewed distribution
(Figure 3a2–d2), but when the bias was less than −25 Mg/ha or greater than 25 Mg/ha, bias frequencies
of the October model were smaller than those of the other three months.
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Figure 3. Model performances were evaluated using 10-fold cross validation and predicted AGB values
were compared to observed AGB values using accuracy indicators. Scatterplots depict the relationship
between predicted and observed AGB estimation values in each month (a1–d1). Histograms depict
model biases (a2–d2).

The above analysis was based on the overall performance of different stepwise regression models
generated for each month, but it cannot provide detailed information regarding the effect of different
forest types on estimation of total vegetation AGB. Table 6 summarizes the RMSE and RMSE% results
for different forest types. For CFF and BLF, the RMSE and RMSE% were lowest when the October image
was used for AGB estimation. For MXF, the RMSE and RMSE% were lowest when the April image
was used for AGB estimation. While the October model resulted in lower R2 and RMSE values than
the April model, the April model performed better in MXF AGB estimation than the October model.

Table 6. Summary of RMSE (Mg/ha) and RMSE% results from different seasonal images under
non-stratified conditions.

Month
RMSE (Mg/ha) RMSE%

CFF BLF MXF CFF BLF MXF

January 20.72 23.14 26.96 42.70 47.42 53.67
April 19.65 22.60 21.06 41.04 48.07 38.10

August 18.50 24.26 27.68 39.32 50.25 54.12
October 18.02 22.69 23.47 37.58 47.31 41.99

Note: CFF, coniferous forest; BLF, broadleaf forest; MXF, mixed forest; RMSE, root mean squared error; RMSE%,
relative root mean squared error.

3.2. Comparison of AGB Estimates Using Seasonal Images of Different Forest Types

The independent variables selected by the AGB models using seasonal images of the three forest
types are summarized in Table 7. The selected variables varied among each forest type in different
months. However, in general, texture measures were involved in all AGB models, indicating that
when considering different forest types and months, textural information significantly contributed to
improving the AGB predictions in this study.



Forests 2020, 11, 45 8 of 17

Table 7. The selected variables for AGB estimation models in different months based on different
forest types.

Month
Selected Variables for Different Forest Types

CFF BLF MXF

January
b3_VA7Jan, b4_HO5Jan,
b2_COR7Jan, DVI_Jan,

b4_CON3Jan

b5_SEM5Jan, b7_EN3Jan,
b6_SEM3Jan, b3_EN3Jan

b6_SEM5Jan,
b7_SEM7Jan,

b3_COR3Jan, b6_EN3Jan,
b6_SEM7Jan,
b6_CON3Jan,
b5_COR5Jan

April
b2_VA3Apr, b2_VA5Apr,
b2_HO7Apr, b5_EN5Apr,

b6_SEM7Apr

b7_SEM3Apr,
b2_ME7Apr SR_Apr,

b6_ME5Apr,
b2_CON5Apr,
b2_EN7Apr

b6_COR3Apr,
b7_VA3Apr, b2_HO3Apr,

b5_COR3Apr,
b5_COR7Apr

August

b6_COR5Aug,
b5_DI5Aug, b5_DI7Aug,

b4_COR3Aug,
b7_SEM5Aug,
b6_HO5Aug

b6_COR5Aug,
b5_HO5Aug,
b5_SEM5Aug,
b5_HO3Aug,
b5_EN3Aug,

b6_COR3Aug

b4_VA3Aug,
b7_EN3Aug,

b7_COR3Aug,
b3_SEM7Aug,
b6_HO3Aug

October

b6_COR3Oct, SR_Oct
b7_COR3Oct,

b3_ME7Oct b6_SEM3Oct,
b6_EN3Oct

b5_SEM3Oct, PCA3_Oct,
b4_CON7Oct,
b7_ME7Oct,

b2_SEM7Oct, b5_EN3Oct

b6_VA5Oct, b6_VA7Oct,
b5_EN3Oct,

b5_COR3Oct,
b6_SEM3Oct

Note: CFF, coniferous forest; BLF, broadleaf forest; MXF, mixed forest; bi_M, original band I of month M; DVI_Jan,
difference vegetation index of January; SR_M, simple ratio of month M; PCA3_Otc, band 3 of principal component
analysis in October; bi_XYjM, textural image developed from spectral band i with a window size of jxj pixels of
month M using texture entropy (EN), angular second moment (SEM), variance (VA), correlation (COR), contrast
(CON), mean (ME), dissimilarity (DI) or homogeneity (HO).

We further compared the AGB models derived using seasonal images of three forest types (Table 8).
For the different forest types, we found that regardless of month, MXF model performances were better
than those of CFF and BLF. The performances of the CFF and BLF models did not significantly differ.
Regarding all model performances, R2 value differences ranged from 0.13 for the BLF models to 0.2 for
the MXF models, RMSE (RMSE%) value differences ranged from 1.85 Mg/ha (3.03%) for the BLF models
to 3.92 Mg/ha (7.44%) for the MXF models. Overall, the model obtained using data from the October
image had the least bias, whereas the August model performed had the largest bias; the January and
April models were intermediate. The R2 values were all less than 0.55 and the RMSE% were all larger
than 35%; these results indicated that though the performances of the models for different forest types
were better than those of total vegetation, nearly half of the AGB variation cannot be explained. When
compared to the previously constructed total vegetation models (Table 5 vs. Table 8), the models based
on different forest types resulted in larger R2 and lower RMSE (RMSE%) values and performed better
overall, indicating that consideration of forest type can improve AGB estimation.
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Table 8. Summary of the accuracy assessment results for the seasonal models based on different
forest types.

Month Forest Types Accuracy Indicators

R2 RMSE (Mg/ha) RMSE% Bias (Mg/ha)

January
CFF 0.35 18.53 39.07 0.12
BLF 0.38 21.89 45.65 −0.26
MXF 0.48 20.82 39.52 −0.003

April
CFF 0.43 17.40 35.97 0.22
BLF 0.45 21.18 44.35 −0.09
MXF 0.52 20.16 38.26 −0.003

August
CFF 0.31 19.33 40.10 −0.18
BLF 0.33 23.03 47.38 −0.10
MXF 0.35 23.37 44.36 −0.36

October
CFF 0.47 17.23 35.95 0.04
BLF 0.46 21.34 44.38 −0.02
MXF 0.55 19.45 36.92 −0.0001

Note: CFF, coniferous forest; BLF, broadleaf forest; MXF, mixed forest; R2, coefficient of determination; RMSE, root
mean squared error; RMSE%, relative root mean squared error.

We further compared the AGB models derived using seasonal images of three forest types (Table 8).
For the different forest types, we found that regardless of month, MXF model performances were better
than those of CFF and BLF. The performances of the CFF and BLF models did not significantly differ.
Regarding all model performances, R2 value differences ranged from 0.13 for the BLF models to 0.2 for
the MXF models, RMSE (RMSE%) value differences ranged from 1.85 Mg/ha (3.03%) for the BLF models
to 3.92 Mg/ha (7.44%) for the MXF models. Overall, the model obtained using data from the October
image had the least bias, whereas the August model performed had the largest bias; the January and
April models were intermediate. The R2 values were all less than 0.55 and the RMSE% were all larger
than 35%; these results indicated that though the performances of the models for different forest types
were better than those of total vegetation, nearly half of the AGB variation cannot be explained. When
compared to the previously constructed total vegetation models (Table 5 vs. Table 8), the models based
on different forest types resulted in larger R2 and lower RMSE (RMSE%) values and performed better
overall, indicating that consideration of forest type can improve AGB estimation.

The relationship between the predicted and observed AGB values of the three forest types in
different seasons using stepwise regression models is shown as scatterplots in Figure 4. Overestimations
occurred in plots with AGB values lower than approximately 30 Mg/ha for CFF, BLF, and MXF, whereas
underestimations occurred in plots with AGB values higher than approximately 100 Mg/ha for each
forest type. The scatter plot constructed using the October data better fit the line y = x, whereas the
scatter plot constructed using the August data was more discrete with serious over- and underestimation
issues (Figure 4). January and April prediction model biases showed skewed distributions (Figure 4),
the model bias of October represented a normal distribution, and the model bias of August was discrete.
Further, the October bias values mostly ranged from −15 Mg/ha to 15 Mg/ha, and there were lower
proportions of bias values <−25 Mg/ha or >25 Mg/ha.
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Figure 4. Model performances were evaluated using 10-fold cross validation and predicted AGB values
were compared to observed AGB values using accuracy indicators. Scatterplots depict the relationship
between predicted and observed AGB estimation values in each month for each forest type (top).
Histograms depict model biases in each month for each forest type (bottom). CFF, coniferous forest;
BLF, broadleaf forest; MXF, mixed forest.
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3.3. AGB Distribution Maps and Map Quality

In addition to model diagnostics, we predicted AGB distribution maps and AGB standard deviation
(Stdev) maps within the study area. Using seasonal images, we constructed AGB spatial distribution
maps based on total vegetation and different forest types (Figure 5). AGB distribution patterns in
different months varied, supporting our previous results (Sections 3.1 and 3.2) which suggested that
seasonal model performances differed. Further, AGB distribution patterns for total vegetation were
narrow (within the range of 25 Mg/ha to 75 Mg/ha; Figure 5a), whereas AGB distribution patterns for
different forest types were discrete (within the range of 0 Mg/ha to 100 Mg/ha; Figure 5b). These results
indicate that models constructed based on forest types can achieve relatively low (<25 Mg/ha) and
high (>75 Mg/ha) AGB values and thus alleviate over- and underestimation. In addition, October
distribution maps were more heterogeneous than those of the other months, further indicating that
October model performances were superior.Forests 2020, 11, x FOR PEER REVIEW 11 of 17 
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Figure 5. Spatial distribution of forest aboveground biomass (AGB) using seasonal images under
different scenarios: (a) The total vegetation; (b) forest types including coniferous forest, broadleaf forest
and mixed forest.

Stdev maps of each scenario are shown in Figure 6. For both total vegetation and different forest
types, the model uncertainties for October were smaller compared with those for January, April and
August, indicating that the October AGB maps were more accurate. Moreover, model uncertainties for
August were larger compared with those for the other three months, indicating that the August AGB
maps were the least accurate. The Stdev values of different AGB ranges for different forest types were
further calculated and analyzed (Figure 7). When mapping the AGB of both the total vegetation and
the different forest types, the Stdev values were greater when the AGB values were <25 Mg/ha or >75
Mg/ha. In this case, the Stdev of the August models were the largest, followed by the January, April
and October models. This result indicated that AGB maps exhibiting these AGB values (<25 Mg/ha
or >75 Mg/ha) showed the largest uncertainty when utilizing the August image. In addition, when
attained AGB values were >75 Mg/ha, all Stdev values for each scenario were larger than three, further
indicating a large amount of uncertainty associated with these particular AGB values.
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Figure 7. The standard deviation (Stdev) of AGB within different AGB value ranges (TV, total vegetation;
CFF, coniferous forest; BLF, broadleaf forest; MXF, mixed forest).

4. Discussion

Forests are complex ecosystems containing variable species composition and structure;
therefore, the image information (especially textural information) of these ecosystems also varies
considerably [55,56]. Previous studies utilizing Landsat images to estimate AGB were unable
to determine which spectral variables were best able to predict AGB [6,57]. In this study, the
selected spectral variables used for AGB models of different months and different forest types varied.
Nonetheless, we found that for all forest types, textural images played an important role in AGB
estimation, in accordance with previous research [58]. The selected variables belonged to various
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original bands (bands 2 to 7), indicating that all original bands can be used to estimate AGB in this
study. These results differed from earlier research in which the shortwave infrared (SWIR) bands (e.g.,
Landsat TM spectral bands 5 and 7) were more important in AGB estimation than other bands [59–61].
In addition, in previous research utilizing Landsat imagery, spectral information (e.g., vegetation index,
original band) was often selected to estimate the AGB of coniferous forest given that the structure of
coniferous forest was simple and the importance of spectral information over textural information. On
the other hand, textural information has often been used in the study of broadleaf forest and mixed
forest given that those forests often have multiple canopy layers and more complex structures. In our
study area, because of the low level of forest management, the forest structure was complex; therefore,
in this study, for each forest type, textural information was mostly used to estimate AGB, regardless of
which seasonal image was utilized.

In this study, stepwise regression was used to estimate AGB of different forest types based on
Landsat 8 OLI seasonal images. We found that in our study area, the best month for AGB estimation
was October given that the R2 values of different forest types were higher than 0.39. Overall, this result
indicates that the October image can explain more than 39% of the information regarding the estimated
AGB for each forest type. The less accuracy month for AGB estimation was August given that the R2

value for total vegetation was only 0.27. Stepwise regression is a widely used methodology of fitting
regression models based on the correlation between dependent and independent variables. During
this procedure, the significance of an introduced variable is tested, and the variable that is of least
significant is discarded [62]. While selection of variables depends upon the degree of linear correlation,
selection of variables with low correlation is possible; this can ultimately affect the accuracy of the
model. The forest characteristics of different forest types were heterogeneous. Different forest types
were different in spectral characteristics caused by the heterogeneity of the stand structures and species
compositions. The correlations among the spectral variables and AGB of different forest types were
also different. In this case, the performances of models for different forest types were significantly
different. In our study, among all forest types analyzed, we found that the MXF models achieved the
best results for AGB estimation. This indicates that the image information was most strongly correlated
with MXF compared with other forest types, and therefore, the image can better reflect the condition of
the mixed forest. However, when the forest types were considered in AGB estimation, model accuracy
was further affected by the number of plots [59]. In this study, there were 135 CFF plots and 128 BLF
plots, whereas there only 40 MXF plots. Therefore, MXF models may have been more accurate given
the far fewer number of plots analyzed compared with the models for the other forest types.

In this study, Landsat 8 OLI seasonal images were used to estimate AGB. The four seasonal images
utilized were associated with four seasons of the study area (January (winter), April (spring), August
(summer) and October (autumn)). The results showed that utilization of the peak season (August)
image resulted in inadequate AGB estimation compared with the other seasons, in accordance with
results reported by Zhu and Liu (2014) [25]. These researchers further found that the normalized
difference vegetation index (NDVI)-based AGB estimates of the forest senescing period were better
than those of the peak season in a temperate forest of southeastern Ohio, USA [25]. Furthermore, in
accordance with our results, previous researchers detected over- and underestimations when utilizing
Landsat 8 OLI imagery to estimate AGB in a subtropical forest in western Hunan, China [58]. In
our study, these uncertainties were common among all seasonal images analyzed. The observed
underestimations within the higher range of AGB values may have been a consequence of image
saturation issues affecting model performance [56,63]. Regarding AGB values within the lower range,
model performance was likely affected by mixed pixels, thus resulting in AGB overestimation [64].
While uncertainties were detected among all time-series images, underestimation associated with the
peak season (August) within the high AGB range (>75 Mg/ha) was more serious than that associated
with the other seasons. Taken together, these results suggest that image saturation more strongly
influenced AGB estimation results for August than it did for the other seasons, further indicating that
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the uncertainties were less in the other seasons. In addition, the overestimation associated with the
peak season was greater than that associated with the other seasons.

5. Conclusions

In this study, seasonal Landsat 8 OLI imagery was utilized to estimate forest AGB in a subtropical
forest in northern Hunan Province, China. Study plots were classified according to forest types (CFF,
BLF, MXF and total vegetation) and stepwise regression was used to select appropriate variables and
thus effectively model AGB based on the seasonal images. Subsequently, models of the different
scenarios (different forest types in different seasons) were compared. Given the variables selected during
stepwise regression, we concluded that seasonal image textural information was most significantly
correlated with AGB, and that the study area is made up of forests with complex structures. The
method of AGB estimation based on forest type is very useful for improving the accuracy of AGB
estimation because the model performances for the different forest types (CFF, BLF and MXF) are
better than those for the total vegetation, regardless of season. The time-series images, which reflect
various seasons, can affect AGB estimations, with the autumn image (October) potentially yielding
the most accurate AGB estimations and the peak season (August) image being of poorer quality in a
subtropical forest. We also explored the accuracies of seasonal images in remote sensing-based AGB
estimation. We hope to provide new insight into using Landsat images to improve the accuracy of
biomass estimation.

Future research will focus on the mechanism underlying the cause of these differences when
utilizing seasonal Landsat 8 OLI images in AGB estimation of different forest types.
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