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Abstract: Optical methods are frequently used as a routine method to obtain the elementary sampling
unit (ESU) leaf area index (LAI) of forests. However, few studies have attempted to evaluate
whether the ESU LAI obtained from optical methods matches the accuracy required by the LAI map
product validation community. In this study, four commonly used optical methods, including digital
hemispherical photography (DHP), digital cover photography (DCP), tracing radiation of canopy
and architecture (TRAC) and multispectral canopy imager (MCI), were adopted to estimate the ESU
(25 m × 25 m) LAI of five Larix principis-rupprechtii forests with contrasting structural characteristics.
The impacts of three factors, namely, inversion model, canopy element or woody components
clumping index (Ωe or Ωw) algorithm, and the woody components correction method, on the ESU
LAI estimation of the four optical methods were analyzed. Then, the LAI derived from the four
optical methods was evaluated using the LAI obtained from litter collection measurements. Results
show that the performance of the four optical methods in estimating the ESU LAI of the five forests
was largely affected by the three factors. The accuracy of the LAI obtained from the DHP and MCI
strongly relied on the inversion model, the Ωe or Ωw algorithm, and the woody components correction
method adopted in the estimation. Then the best Ωe or Ωw algorithm, inversion model and woody
components correction method to be used to obtain the ESU LAI of L. principis-rupprechtii forests with
the smallest root mean square error (RMSE) and mean absolute error (MAE) were identified. Amongst
the three typical woody components correction methods evaluated in this study, the woody-to-total
area ratio obtained from the destructive measurements is the most effective method for DHP to derive
the ESU LAI with the smallest RMSE and MAE. In contrast, using the woody area index obtained from
the leaf-off DHP or DCP images as the woody components correction method would result in a large
LAI underestimation. TRAC and MCI outperformed DHP and DCP in the ESU LAI estimation of the
five forests, with the smallest RMSE and MAE. All the optical methods, except DCP, are qualified to
obtain the ESU LAI of L. principis-rupprechtii forests with an MAE of <20% that is required by the
global climate observation system. None of the optical methods, except TRAC, show the potential to
obtain the ESU LAI of L. principis-rupprechtii forests with an MAE of <5%.
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1. Introduction

Leaf area index (LAI) quantifies the number of leaves in an ecosystem [1] and is a key variable
for describing the biophysical and physiological processes of vegetation–atmosphere interactions,
including photosynthesis, respiration, energy exchange, and transpiration. Therefore, LAI is widely
used in the fields of climate, forestry, and global change. For example, LAI is listed as one of the 16
essential climate variables required by the global climate observing system (GCOS) [2]. Remote sensing
is an efficient and effective method of obtaining the global scale LAI maps required by GCOS. Several
global scale LAI map products have been published in the past two decades, including CYCLOPES [3],
ECOCLIMAP [4], GLOBCARBON [5], GLASS [6], MODIS [7,8], and GEOV1 [9]. However, large
numerical value differences were found between the published LAI map products [10–13]. Compared
with the remote sensing method, the ground-based LAI measurements which are usually obtained
from optical methods (e.g., digital cover photography (DCP), digital hemispherical photography
(DHP), LAI-2000/LAI-2200 (LI-COR, Lincoln, NE, USA), multispectral canopy imager (MCI) [14], and
tracing radiation of canopy and architecture (TRAC) (3rd Wave Engineering, Winnipeg, Manitoba,
Canada)) or direct methods (e.g., destructive measurements, litter collection, and allometric equations)
at the elementary sampling unit (ESU) or pixel scale are usually regarded as accurate estimates and
applied to validate the accuracy of LAI map products. Therefore, the accurate ground-based ESU LAI
measurements of typical vegetation plots are essential in ensuring that the accuracy of the LAI map
products matches the accuracy requirements of GCOS, i.e., the LAI product values must be within 20%
of the ground-based LAI measurements and improved within 5% in the future [2,15].

Optical methods are usually chosen amongst indirect methods as the routine method to derive
the ESU LAI of forests due to its high efficiency, low cost, and non-destructiveness to canopies [14,16].
Previous studies reported that the ESU LAI estimation of forests for optical methods is mainly affected
by six estimation error sources, including clumping effects, overestimation of woody components,
inversion model, sampling scheme, terrain slope, and observation conditions [16–19]. Progress to
correct the six LAI estimation error sources has been achieved recently [15,19–22]. For example,
Zou et al. [19] attempted to evaluate the performance of seven inversion models in the ESU plant and
woody area index (PAI and WAI) estimations of forests and recommended three inversion models.
Cao et al. [22] suggested three solutions to correct the influence of slope on the ESU LAI estimation of
forests from DHP. Several studies have attempted to correct the overestimation of woody components
on the ESU LAI estimation of forests by determining the woody-to-total area ratio or WAI through
MCI [14,23], DHP [24], and terrestrial laser scanner [25,26]. However, few studies have attempted to
evaluate whether these optical methods or solutions are effective in obtaining the ESU LAI of forests
with estimation errors of <20% or 5% required by GCOS, especially for Larix principis-rupprechtii forests.

A field LAI measurement dataset called “Direct” (http://calvalportal.ceos.org/web/olive/site-
description) is commonly used for validating global LAI map products [11,27]. The “Direct” dataset
was collected from the datasets of several international field campaigns named Validation Land
European Remote Sensing Instruments [28], Bigfoot [29], and the Southern African Regional Science
Initiative 2000 [30]. However, previous studies pointed out that several estimation errors exist for
the ESU LAI measurements of “Direct” [11,27]. Firstly, the majority of ESU LAI measurements were
obtained without considering the overestimation of woody components on the LAI estimation and
terrain slope. Secondly, the clumping effects of forest canopies were not accurately corrected as the
variation of the canopy element clumping index (Ωe) with zenith angles (θ) was not considered.
Moreover, several Ωe algorithms were adopted in the LAI estimation. However, a large difference was
observed between the Ωe derived from different Ωe estimation methods using the same Ωe algorithm
or from different Ωe algorithms with the same Ωe estimation method [19,31–33]. Thirdly, various
inversion models and indirect methods were used in the ESU LAI estimation. However, previous
studies reported that large differences were observed between the LAI derived from different inversion
models and indirect methods [19,34,35]. Therefore, an accurate and reliable solution to measure the
ESU LAI of forests that matches the accuracy requirements of GCOS is essential to the LAI map product
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validation community. The land product validation group of the Committee on Earth Observation
Satellites published a guideline to validate global LAI map products [2]. However, the solution to
obtain an accurate ESU LAI of forests was not given enough detail in the guideline, especially the
solution to reduce or remove the six LAI estimation error sources of optical methods. Additional
works must still be conducted to achieve accurate ESU LAI measurements that match the accuracy
requirements of GCOS.

The goal of this study is to determine whether the four commonly used optical methods (e.g., DCP,
DHP, TRAC, and MCI) are qualified to obtain the ESU LAI of L. principis-rupprechtii forests with
estimation errors of <20% or 5% required by GCOS. To achieve this goal, four commonly used inversion
models and three Ωe or woody components clumping index (Ωw) algorithms were adopted in the
LAI estimation. Moreover, the impact of the three schemes for removing the overestimation of
woody components on the LAI estimation was analyzed. The LAIs obtained from the four optical
methods were compared with the LAI obtained using the litter collection measurements. Finally, we
attempted to determine whether the four optical methods can provide ESU LAI measurements with
an accuracy that matches the requirements of GCOS and the best solution to derive the ESU LAI of
L. principis-rupprechtii forests.

2. Theory

2.1. Corrected Needle-to-Shoot Area Ratio and Canopy Element Clumping Index

The clumping effect of coniferous forest canopies is usually described at the two scales of
within-shoots (needle-to-shoot area ratio) and beyond-shoots (Ωe) [14,36]. The needle-to-shoot area
ratio obtained from the shoot samples clipped from the canopy cannot be used directly in LAI estimation
because the needle-to-shoot area ratio for woody components is equal to 1. Thus, the overestimation of
the needle-to-shoot area ratio for woody components should be corrected in the PAI estimation using the
method described in Zou et al. [14]. For the beyond-shoots clumping (Ωe), several methods (e.g., DHP,
DCP, MCI, and TRAC) and algorithms (e.g., gap size distribution (CC), logarithmic averaging (LX) [37],
combination of gap size and logarithmic averaging (CLX) [32], modified logarithmic averaging [31],
modified gap size distribution [33], and Pielou’s coefficient of spatial segregation [38]) have been
developed to estimate the Ωe or Ωw of leaf-on or leaf-off forests. The latter three Ωe or Ωw algorithms
were not included in this study because Pielou’s coefficient of spatial segregation algorithm tends
to produce errors in the Ωe or Ωw estimates [19,31,35,38] and of the high similarities between CC
and modified gap size distribution algorithms as well as LX and modified logarithmic averaging
algorithms [19]. Zou et al. [19] reported that no universal Ωe or Ωw algorithm amongst CC, LX, and
CLX outperforms others in deriving the Ωe or Ωw of leaf-on or leaf-off forests. Therefore, all three Ωe or
Ωw algorithms of CC, LX, and CLX were used in this study. Table 1 lists the corrected needle-to-shoot
area ratio and Ωe estimation formulae used in this study [23]. In this study, the equations of the three
Ωw algorithms of CC, LX, and CLX to estimate the Ωw of leaf-off forest canopies from DHP or MCI
are the same as those for estimating the Ωe_CC(θ), Ωe_LX(θ), and Ωe_CLX(θ) of leaf-on forest canopies,
respectively (Equations (1)–(3). Similarly, the Equation for DCP to estimate the Ωw of leaf-off forest
canopies is the same as Equation (4) for estimating the Ωe of leaf-on forest canopies.
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Table 1. Ωe and corrected needle-to-shoot area ratio (γc) estimation formulae used in this study. γ is the
needle-to-shoot area ratio. Fm(0,θ) is the measured total canopy element gap fraction at θ, Fmr(0,θ) is
the total canopy element gap fraction after removing the large gaps resulting from the non-random
distribution of the canopy element [39,40], pe(θ) is the canopy element gap fraction at θ, pe(θ) is the
mean canopy element gap fraction of all segments at θ, ln[pe(θ)] is the mean logarithmic canopy
element gap fraction for all segments at θ [37], n is the segment number, pe_k(θ) is the canopy element
gap fraction of segment k and Ωe_CC_k(θ) is the Ωe of segment k [32]. ∅ and f f are the crown porosity
and foliage cover, respectively [41]. An is half the total needle area in a shoot. Ap(0◦, 0◦), Ap(45◦, 0◦),
and Ap(90◦, 0◦) are the shoot projection areas at azimuth angle 0◦ and zenith angles 0◦, 45◦, and 90◦,
respectively [42].

Equations References

Ωe_CC(θ) =
ln(Fm(0,θ))
ln(Fmr(0,θ)) ∗

[
1 + Fm(0,θ)−Fmr(0,θ)

1−Fm(0,θ)

]
(1) [43]

Ωe_LX(θ) =
ln

[
pe(θ)

]
ln[pe(θ)]

(2) [37]

Ωe_CLX(θ) =
nln

[
pe(θ)

]∑n
k=1 ln[pe_k(θ)]/Ωe_CC_k(θ)

(3) [32]

Ωe_DCP(0) =
(1−∅) ln(1− f f )

ln(∅)/ f f
(4) [41]

γ = An
Ap(0◦ ,0◦)∗cos(15◦)+Ap(45◦ ,0◦)∗cos(45◦)+Ap(90◦ ,0◦)∗cos(75◦)

cos(15◦)+cos(45◦)+cos(75◦)
(5) [42]

γc = 1 ∗ WAI
PAI + γ ∗ [PAI −WAI]/PAI (6) [14]

2.2. PAI, WAI, and LAI

The inversion model is a key factor that affects the PAI or LAI estimation from optical methods
due to the large differences observed between the PAIs or LAIs obtained using different inversion
models [19,23,24,35]. Two fundamental inversion models were proposed previously and are widely
used in the ESU LAI estimation of forests, i.e., Beer’s Law (Beer) (Equations (8) and (12)) [44] and Miller
theorem (Miller) (Equations (9) and (13)) [45]. However, these two fundamental inversion models
are unsuitable for all optical methods because the zenith angle ranges covered by these methods
differ from those of the Miller theorem (0◦–90◦), such as LAI-2000/LAI-2200 (0◦–74◦) and DCP (0◦–15◦)
methods. Therefore, several inversion models were proposed with the development of these optical
methods [14,19,41,46]. For example, Equation (10) or (14) is the modified Miller integration adopted
by the LAI-2200 method (LAI-2200) in estimating the PAI or LAI of forest canopies [23,46]. Similarly,
Equation (11) is also the modified Miller integration adopted by the MCI method (MCI_0-85) for
estimating the PAI of forest canopies [14,23]. Table 2 lists the inversion models used in the present study.
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Table 2. The inversion model formulae used for the plant area index (PAI), wood area index (WAI),
and leaf area index (LAI) estimations in this study. γc is the corrected needle-to-shoot area ratio. Ge(θ)

is the canopy element projection coefficient (Ge) at θ. Ge_i is the Ge of the ith annulus. Ωe(θ) is the
Ωe at θ derived from the gap size distribution (CC), logarithmic averaging (LX), and combination of
gap size and logarithmic averaging (CLX) using Equations (1)–(3), respectively. pe(57) and Ωe(57) are
the canopy element gap fraction and Ωe measurements obtained at the zenith angle range of 52◦–62◦,
respectively. θi, pe_i(θi), Ωe_i, and Wi are the center zenith angle, canopy element gap fraction, Ωe

and weight factor of the ith annulus of digital hemispherical photography (DHP) or multispectral
canopy imager (MCI), respectively. For the LAI-2200 method, the zenith angle ranges of the five annuli
are 0◦–13◦, 16◦–28◦, 32◦–43◦, 47◦–58◦, and 61◦–74◦, respectively [19,46]. The Wi of the five annuli
of LAI-2200 are 0.041, 0.131, 0.201, 0.29, and 0.337, respectively [19,46]. For MCI, the zenith angle
ranges of the nine annuli are 0◦–5◦, 5◦–15◦, 15◦–25◦, 25◦–35◦, 35◦–45◦, 45◦–55◦, 55◦–65◦, 65◦–75◦, and
75◦–85◦, respectively (Equation (11)) [23]. The Wi of the nine annuli of MCI_0-85 are 0.0038, 0.0303,
0.0596, 0.0872, 0.1120, 0.1335, 0.1510, 0.1640, and 0.2580, respectively [23]. fc is the crown cover. α is the
woody-to-total area ratio. αi is the α of the ith annulus of MCI. αDCP is obtained by averaging the α of
the first and second annuli of MCI derived using CC.

Equations References

PAI = −ln(pe(θ))cos(θ)γc

Ge(θ)Ωe(θ)
(7) [44]

PAIBeer = −2ln(pe(57))cos(57)γc/Ωe(57) (8) [19,44]

PAIMiller = −2
∫ π

2
0

ln[pe(θ)]γc

Ωe(θ)
cos(θ)sin(θ)dθ (9) [45]

PAILAI−2200 = −
5∑

i=1

ln[pe_i(θi)]γccos(θi)Wi
Ge_iΩe_i

(10) [19,46]

PAIMCI_0−85 = −
9∑

i=1

ln[Pe_i(θi)]γccos(θi)Wi
Ge_iΩe_i

(11) [23]

LAIBeer = −2ln(pe(57)) cos(57)γc(1− α7)/Ωe(57) (12) [19,44]

LAIMiller = −2
∫ π

2
0

ln[pe(θ)]γc(1−α)
Ωe(θ)

cos(θ)sin(θ)dθ (13)

LAILAI−2200 = −
5∑

i=1

ln[pe_i(θi)]γc(1−α)cos(θi)Wi
Ge_iΩe_i

(14) [19,46]

LAIDCP = −
fcln(∅)γc(1−αDCP)

Ge(0)/cos(0) (15) [41]

Zou et al. [19] reported that the impact of the assumption of spherical angle distribution of canopy
element or woody components (canopy element or woody components projection coefficient is equal
to be 0.5) on the ESU PAI and WAI estimations of the leaf-on and leaf-off forests from DHP can be
reduced to a low level (<4%) if the three inversion models of Miller, LAI-2200 and Beer are adopted
in the estimation. Therefore, that assumption was made in this study. The equations of the three
inversion models (e.g., Beer, Miller, and LAI-2200) to estimate the WAI of the leaf-off forests from DHP
are the same as those used for estimating the PAI of the leaf-on forests, respectively (Equations (8)–(10)).
Similarly, the equations of the two inversion models (e.g., Beer and MCI_0-85) to estimate the WAI of
the leaf-off forests from MCI are the same as those used for estimating the PAI of the leaf-on forests,
respectively (Equations 8 and 11). For DCP, the equations used to estimate the PAI and WAI of the
leaf-on and leaf-off plots are the same to derive LAI (Equation (15)) by assuming that the woody-to-total
area ratio value is equal to zero. If the PAI and WAI measurements are simultaneously available, then
the LAI of leaf-on forests also can be calculated as follows:

LAI = PAI −WAI (16)
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2.3. Woody-to-Total Area Ratio (α)

The α of leaf-on forests can be derived based on the WAI and PAI as follows [14]:

α = WAI/PAI (17)

If the WAI and PAI in Equation (17) are derived using Equation (7) based on the canopy element
gap fraction (pe_i(θi)), woody components gap fraction (pw_i(θi)), Ωe_i, and Ωw_i of the ith annulus of
the MCI, respectively, then the estimate derived from Equation (17) is αi.

3. Materials and Methods

3.1. Plot Description

Five forest plots with varying LAIs, stand densities, mean tree heights and tree ages (Table 3) were
selected as the long-term observation ESUs with a size of 25 m × 25 m for validating LAI map products.
The selected plots are located in the Saihanba National Forest Park in Hebei Province, China [23].
The dominant tree species in the park is L. principis-rupprechtii, which is a tree species that is spread
widely in the northern area of China [47]. The five plots are single-species plots with the tree species
of L. principis-rupprechtii, and the tree ages covered by the five even-aged plots are the typical tree
ages of the park. The plots are at least 120–300 m away from the forest border with a flat terrain [47].
The canopy structure characteristics (e.g., tree height, diameter at breast height (DBH), tree age, stand
density, and LAI) of the canopy around the plots are similar to those of the canopies of the plots [47].
Forest inventory was collected during the field campaign in 2017. Table 3 presents the site description
of the five plots.

Table 3. Characteristics of the L. principis-rupprechtii plots [23].

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

Longitude and latitude 42◦24′43′′ N,
117◦19′4′′ E

42◦24′2′′ N,
117◦18′40′′ E

42◦18′2′′ N,
117◦18′9′′ E

42◦25′22′′ N,
117◦19′32′′ E

42◦17′42′′ N,
117◦16′53′′ E

Mean tree height (m) 19.43 20.4 12.58 13.31 8.73
Average DBH (cm) 26.58 27.22 12.71 14.14 9.23

Mean element width (mm) 21.66 23.34 17.91 21.09 17.60
Stand density (stems/ha) 464 384 2320 1760 3904

Tree age (approximate years) 54 55 21 22 13
Corrected needle-to-shoot area ratio (γc) 1.30 1.17 1.14 1.17 1.28

Woody-to-total area ratio (α) 0.16 0.16 0.20 0.24 0.23
Litter collection LAI 4.65 3.58 4.96 3.04 6.69

Slope ~0◦

Tree species Larix principis-rupprechtii

3.2. Data Collection and Processing

3.2.1. TRAC

The TRAC measurements were collected in the five plots using TRAC-II (Nanjing Huiming
Instrument Inc., Nanjing, China). The leaf-on TRAC measurements were collected between 11 August
and 12 September 2017 at the maximum PAI (maximum LAI) of the plots [48–50]. The leaf-off

TRAC measurements were collected between 30 October and 15 November 2017 at the minimum PAI
(LAI = 0) of the plots. For the leaf-on plots, approximately six TRAC measurements were collected
with the zenith angles within the maximum range of local solar elevation angle (0◦–70◦) with an
interval of 10◦. For the leaf-off plots, approximately four TRAC measurements were collected with the
zenith angles within the maximum range of local solar elevation angle (0◦–40◦) with an interval of 10◦.
The TRAC instrument was operated at a height of approximately 1.2 m. The transect length of each
TRAC measurement ranged from 100 m to 170 m and it was divided into several 10-m sub-transects
using the flags. All TRAC measurements were collected under clear days. The TRAC measurements
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were processed using TRACWin software (version 5.5.4). Some TRAC measurements were not correctly
stored by the instrument because of the Bluetooth module failure. Thus, these measurements were not
used in this study. The measurements with the photosynthetic photon flux density equal to zero were
not used in this study because no gaps were detected by TRAC. Only the TRAC measurements with
zenith angles near 57◦ were adopted to derive the ESU LAI of the five forests.

3.2.2. DCP

The DCP images were collected at a resolution of 5472 pixels × 3648 pixels using a Canon EOS 6D
camera equipped with a Canon 24–70 mm lens. The focal length of the camera was fixed at 24 mm.
The camera height was approximately 1.2 m. Manual mode was used to avoid overexposure and
underexposure of the image collection. All images were collected under an overcast sky, before sunrise
or after sunset. A sampling scheme with 16 sampling points that were evenly distributed within the
plot with a 5-m distance was adopted for DCP image collection. The leaf-on DCP images were collected
between 11 August and 3 September 2017 at the maximum PAI of the forests [48–50]. The leaf-off

DCP measurements were collected between 30 October and 9 November 2017 at the minimum PAI of
the forests. A total of 160 DCP images were obtained from the five forests. The center areas of the
original DCP images were clipped into a new image with a resolution of 2227 pixels × 2061 pixels
(a field of view of approximately 15◦ × 15◦) before further processing. Then, the clipped images
were processed using Adobe PhotoShop 7.0 (Adobe Inc., USA) following the procedures described
by Macfarlane et al. [41]. Subsequently, the Ωe and Ωw of the five leaf-on and leaf-off forests for DCP
were calculated using Equation (4) following the same procedures described by Macfarlane et al. [41],
respectively. Two LAI estimates were obtained for each plot. One LAI estimate was derived using
Equation (15) from the leaf-on DCP images. Another LAI estimate was obtained based on the derived
PAI and WAI measurements using Equation (16). The PAI and WAI of leaf-on and leaf-off plots were
obtained using Equation (15) by assuming that the woody-to-total area ratio value is equal to zero
based on the leaf-on and leaf-off DCP images, respectively.

3.2.3. DHP

The sampling scheme of DHP was the same as that of DCP. DHP images were collected using
a Canon 6D camera equipped with a Sigma 8 mm fisheye lens [23]. The DHP image resolution was
5472 pixels × 3648 pixels. The camera height was approximately 1.2 m. Manual mode was used to
avoid overexposure and underexposure of the DHP image collection [23]. The DHP images were
collected before sunrise, after sunset, or under overcast sky conditions. The leaf-on DHP images were
collected between 11 August and 2 September 2017 at the maximum PAI of the five forests [48–50],
whilst the leaf-off DHP images were collected between 30 October and 15 November 2017 at the
minimum PAI of the five forests. A total of 160 DHP images were obtained from the five plots.

The procedures described in Gonsamo and Pellikka [51] were adopted to process the DHP images,
including selecting the blue channel, applying a correction to the gamma and thresholding to classify the
canopy element and sky. The classified images were then inputted into MTVSP (version 2018) [23,52]
to calculate pe(θ), pw(θ), Ωe(θ), Ωw(θ), WAI, PAI, and LAI. The two segment sizes of 5◦ and 15◦ were
selected for LX and CLX in the Ωe or Ωw estimations, respectively. The detailed explanation of the
choice of the two segment sizes can be found in the work of Zou et al. [47].

Three Ωe(θ) or Ωw(θ) estimates were derived by using CC, LX, and CLX at each zenith angle
in the zenith angle range of 10◦ to 90◦ with an interval of 1◦ in each forest (one estimate for each
Ωe or Ωw algorithm). To obtain 91 Ωe(θ) and Ωw(θ) estimates that match the pe(θ) and pw(θ)

measurements at the same zenith angle range of 0◦ to 90◦ with an interval of 1◦ in each forest, the
Ωe(θ) or Ωw(θ) at the zenith angles ranging from 0◦ to 9◦ were assumed to be equal to Ωe(10) or
Ωw(10) [19]. Two LAI groups (9 estimates of each group for the nine combinations of the three Ωe

algorithms and inversion models) were calculated for each forest using Equations (12)–(14) based on
pe(θ), pe_i(θi), Ωe(θ), Ωe_i, corrected needle-to-shoot area ratio, and destructive or MCI woody-to-total
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area ratio measurements. In addition to the LAI estimates derived using Equations (12)–(14) based on
the leaf-on DHP images, another alternative to derive the ESU LAI of the five forests was based on the
PAI and WAI estimates of the leaf-on and leaf-off forests, respectively. One PAI group (9 estimates for
the nine combinations of the three Ωe algorithms and inversion models) was calculated for each leaf-on
forest using Equations (8)–(10) based on the pe(θ), pe_i(θi), Ωe(θ), Ωe_i, and corrected needle-to-shoot
area ratio measurements. One group of WAI (9 estimates for the nine combinations of the three Ωw

algorithms and inversion models) was calculated for each leaf-off forest using Equations (8)–(10)
based on the pw(θ), pw_i(θi), Ωw(θ), and Ωw_i measurements (corrected needle-to-shoot area ratio was
assumed to be equal to 1). Then, another LAI group (9 estimates) could be derived using Equation (16)
based on the two groups of PAI and WAI. Thus, 27 ESU LAI estimates were obtained for each forest.

3.2.4. MCI

The detailed procedures of collecting and processing MCI images can be found in the work
of Zou et al. [23]. We provide a brief description here. Both leaf-on and leaf-off MCI images were
collected from the same two representative sampling points in each forest. The MCI image pairs of
each sampling point were collected in zenith directions ranging from 0◦ to 80◦ with an interval of
10◦ [23]. The MCI instrument height was approximately 1.2 m. Six azimuthal measurements were
collected at each zenithal direction with an interval of 60◦ [14,23]. The MCI image resolution was
3488 pixels × 2616 pixels. The leaf-on and leaf-off MCI images of the five forests were collected at the
same or similar period of the leaf-on and leaf-off DHP or DCP image collection, respectively. A total
of 1080 MCI image pairs were collected from the five forests. The MCI image pairs were processed
using ENVI 4.7 (Harris Geospatial Solutions Inc., USA) with the “IsoData” classification method [14].
The MCI image pairs were eventually classified into three classes of sky, woody components, and
shoots, respectively [23]. The full size of each pixel of the MCI images was calculated based on the field
of view of MCI, the image resolution, mean tree height of the plot and zenith angles where the images
were collected [14,23]. Then, the pixel number in each segment which is required as the key parameter
for LX and CLX to derive Ωe or Ωw can be obtained based on the derived values of the full size of each
pixel. The classified MCI images were inputted into MTVSP (version 2018) [23,52] to calculate pe(θ),
Pe_i(θi), pw(θ), Pw_i(θi), Ωe(θ), Ωe_i, Ωw(θ), Ωw_i, WAI, PAI, and LAI of each forest.

For MCI, both MCI_0-85 and Beer were used for the LAI estimation. The seventh annulus (55◦–65◦)
of MCI was adopted by the Beer inversion model in the LAI estimation. One group of six PAI estimates
(one estimate for each combination of the Ωe algorithm and the inversion model) was calculated using
Equations (8) and (11) based on the pe_i(θi), pe(57), Ωe_i, and Ωe(57), which were calculated from the
classified leaf-on MCI images, and corrected needle-to-shoot area ratio measurements. Two groups
of twelve WAI estimates (one estimate for each combination of the Ωw algorithm and inversion
model) were derived using Equations (8) and (11) based on the pw_i(θi), pw(57), Ωw_i, and Ωw(57)
measurements that were calculated from the classified leaf-on and leaf-off MCI images, respectively.
Then, 12 LAI estimates were derived from the MCI in each forest using Equation (16) based on the one
PAI group and two WAI group measurements.

For MCI, only the MCI_0-85 inversion model was used for the woody-to-total area ratio
determination of the five forests. The woody-to-total area ratio values of the five forests were
calculated using Equation (17) based on the obtained PAI and WAI measurements, which were derived
using Equation (11). Detailed procedures for obtaining the woody-to-total area ratio of the five forests
from MCI can be found in Zou et al. [23].

3.2.5. Mean Element Width, Litter Collection LAI, Corrected Needle-to-Shoot Area Ratio and
Woody-to-Total Area Ratio

The mean element width, litter collection LAI, corrected needle-to-shoot area ratio and destructive
woody-to-total area ratio of the five plots were obtained during the field campaign. The detailed
procedure of obtaining the mean element width, corrected needle-to-shoot area ratio, and destructive
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woody-to-total area ratio measurements of the five plots can be found in the work of Zou et al. [23].
Here, we provide a brief description. The mean element width of each plot was obtained using
typical shoot samples clipped from the three height classes of forest canopies (i.e., top, middle, and
bottom) (two to four typical shoot samples for each height class). Then, the method described by
Leblanc et al. [53] was used to calculate the mean element width of each typical shoot. The mean
element width of each plot is the average of the mean element width values of all typical shoots of each
plot [23]. Another group of 2-4 typical shoots was clipped from each height class of the canopy (i.e., top,
middle, and bottom) for the needle-to-shoot area ratio calculation in each plot. The projection areas of
each typical shoot were obtained using a Canon 6D camera equipped with a Canon 24–70 mm lens by
rotating the shoot’s main axis at azimuth angle 0◦ and zenith angles 0◦, 45◦, and 90◦, respectively [23].
The half the total needle area of each typical shoot was obtained using the volume displacement method
described by Chen et al. [36]. Then, the needle-to-shoot area ratio of each typical shoot was calculated
using Equation (5) based on the three projection areas and half the total needle area measurement of
the shoot. The needle-to-shoot area ratio of each plot was obtained by averaging the needle-to-shoot
area ratio of all typical shoots of each plot [23]. Thereafter, the corrected needle-to-shoot area ratio of
each plot was calculated using Equation (6) based on the needle-to-shoot area ratio and woody-to-total
area ratio measurements.

The destructive method was used to measure the destructive woody-to-total area ratio values of
five plots. Two or three representative trees were harvested in each plot. Then, the woody components
(i.e., stem, branch, and fruit) area of each harvested tree was measured using a tape measure or digital
caliper by assuming that the stem or branch sections were circular truncated cones and the fruits were
spheroids [23]. The leaf area of each harvested tree was calculated using the dry mass of all needles and
the specific leaf area of the harvested tree. The specific leaf area of the harvested tree was determined
based on the dry mass and the hemisurface area of a number of typical needles (approximately 300–350)
which was estimated using the volume displacement method [36]. Afterward, the woody-to-total
area ratio value of each harvested tree was calculated based on the woody components area and
needle areas of all needles of each tree. Finally, the destructive woody-to-total area ratio value of each
plot was obtained based on the woody-to-total area ratio values of the harvested trees and the DBH
measurements of all trees of the plot [23].

The litter collection LAI of the five plots was obtained using the litter collection measurements.
Nine litter traps with a size of 50 cm × 50 cm were evenly placed in each plot with a distance of 6.25 m.
The trap height was approximately 0.5 m. Six litter collection measurements were collected from
1 September 2017 to 28 October 2017 with a time interval of approximately one to two weeks [47].
The specific leaf area of the collected typical needles was derived using the same method applied in
the woody-to-total area ratio estimation of the representative trees. Then, the litter collection LAI of
each plot was obtained based on the specific leaf area and dry mass of all collected needles. Details of
the determination of litter collection LAI for each plot can be found in the work of Zou at al. [47].

4. Results

4.1. Gap Fraction

Large differences were observed between the pe(θ) or pw(θ) of the four optical methods in the five
plots (Figures 1 and 2). For example, the difference between the pw(0) of DHP and MCI was as large as
0.45 in leaf-off plot 5 (Figure 2). However, no large differences were observed between the pe(θ) or
pw(θ) of TRAC and MCI even though the estimates of TRAC tended to be slightly smaller than those
of MCI in most cases (Figures 1 and 2). We also found that the pe(θ) or pw(θ) of MCI was smaller than
those of DHP and DCP in the five leaf-on or leaf-off plots (Figures 1 and 2). Similarly, the pe(0) or pw(0)
of DHP tended to be larger than those of DCP in most cases (Figures 1 and 2). The differences between
the pe(θ) or pw(θ) of the four optical methods tended to decrease with the increasing zenith angles
due to the pe(θ) or pw(θ) estimates of the four methods were decreased with zenith angles obviously.
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Figure 1. Canopy element gap fraction (𝑝𝑒(𝜃)) measurements obtained from DHP, tracing radiation 

of canopy and architecture (TRAC), MCI, and digital cover photography (DCP) in the five leaf-on 

plots: (a) plot 1, (b) plot 2, (c) plot 3, (d) plot 4, and (e) plot 5. 

  

Figure 1. Canopy element gap fraction (pe(θ)) measurements obtained from DHP, tracing radiation of
canopy and architecture (TRAC), MCI, and digital cover photography (DCP) in the five leaf-on plots:
(a) plot 1, (b) plot 2, (c) plot 3, (d) plot 4, and (e) plot 5.
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Figure 2. Woody components gap fraction (pw(θ)) measurements obtained from DHP, TRAC, MCI,
and DCP in the five leaf-off plots: (a) plot 1, (b) plot 2, (c) plot 3, (d) plot 4, and (e) plot 5.

4.2. Canopy Element and Woody Components Clumping Indices

Large differences were observed between the Ωe(θ) or Ωw(θ) obtained from DHP and MCI using
the same Ωe or Ωw algorithm as well as from DHP or MCI using different Ωe or Ωw algorithms in the
five leaf-on or -off plots (Figures 3 and 4). For example, the differences between the Ωe(60) of DHP
and MCI in leaf-on plot 2 are 0.25, 0.16, and 0.05 for the three Ωe algorithms of CC, LX, and CLX,
respectively (Figure 3); the differences between the Ωe(60) of CC and LX as well as CC and CLX in
leaf-on plot 2 are 0.36 and 0.47 for DHP, respectively (Figure 3). However, the trend of the Ωe(θ) or
Ωw(θ) obtained from TRAC was nearer to that of MCI derived using CC with a similar zenith angle in
the five leaf-on or leaf-off plots, except leaf-on plot 5 in most circumstances (Figures 3 and 4). Similarly,
no large differences were found between the Ωe(0) or Ωw(0) measurements obtained from DCP and
MCI using CC in the five leaf-on plots, except plots 1, 2, and 5, or five leaf-off plots, except plots 1 and 2
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(Figures 3 and 4). Interestingly, no large differences (<0.07) were observed between the Ωe(θ) or Ωw(θ)

obtained from MCI using LX and CLX in the five leaf-on or leaf-off plots, except leaf-off plot 5 (Figures 3
and 4). For DHP, CC tended to produce Ωe(θ) or Ωw(θ) estimates equal to 1 at the zenith angle range
of approximately 40◦–90◦ in the five leaf-on or leaf-off plots (Figures 3 and 4). That indicates that CC
was not performed well in estimating the Ωe or Ωw of the five leaf-on or leaf-off plots from DHP at the
zenith angle range of 40◦–90◦.Forests. 2019, 10, x FOR PEER REVIEW  12 of 28 
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Figure 4. Woody components clumping index (Ωw(θ)) measurements obtained from DHP, TRAC,
MCI, and DCP in the five leaf-off plots: (a) plot 1, (b) plot 2, (c) plot 3, (d) plot 4, and (e) plot 5.

4.3. LAI

4.3.1. Canopy Element and Woody Components Clumping Index Algorithms

Tables 4–6 show that the LAI estimations of DHP and MCI were greatly affected by the Ωe or Ωw

algorithm adopted in the estimation. Large differences were observed between the LAIs obtained from
DHP or MCI using the same inversion model and woody components correction method but with
different Ωe or Ωw algorithms in the five plots (Tables 4 and 6). For example, the differences in the LAIs
obtained from DHP using the same inversion model and the woody components correction method but
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with CC and LX or CC and CLX ranged from 0.73 to 1.54 (25%–47%) when destructive woody-to-total
area ratio measurements were adopted in the estimation (Table 4). The differences between the RMSE
and MAE of the LAI obtained from DHP using the same inversion model but with CC and LX or CC
and CLX ranged from 0.94–1.17 (21%–25%) and 1–1.22 (23%–28%) when destructive woody-to-total
area ratio measurements were used in the estimation (Table 5). By contrast, small differences were
observed between the RMSE (0.01–0.24, 0%–5%) and MAE (0.03–0.23, 1%–5%) of the LAI obtained
from DHP using the same inversion model and woody components correction method but with LX
and CLX (Table 5). A similar trend of differences between the LAI obtained using the same inversion
model and woody components correction method but with different Ωe or Ωw algorithms for DHP
was also observed for MCI (Tables 6 and 7).

For DHP, CC tended to underestimate the ESU LAI of the five forests obviously compared with LX
and CLX (Tables 4 and 5). LX and CLX outperformed CC in ESU LAI estimation with smaller RMSE
and MAE for DHP regardless of the inversion model and woody components correction methods used
in the estimation (Tables 4 and 5). Compared with DHP, CC outperformed LX and CLX in the ESU LAI
estimation with the smallest MAE for MCI when the leaf-on MCI images were used in the estimation
(Table 7).

Table 4. LAI derived from the leaf-on DHP images using the three canopy element or woody
components clumping index (Ωe and Ωw) algorithms, three inversion models and destructive or MCI
woody-to-total area ratio (α) or WAI obtained from the leaf-off DHP images in the five plots.

Destructive α MCI α WAI Obtained from Leaf-off
DHP Images

Inversion
Model

Ωe
or Ωw Algorithm

Plot
1

Plot
2

Plot
3

Plot
4

Plot
5

Plot
1

Plot
2

Plot
3

Plot
4

Plot
5

Plot
1

Plot
2

Plot
3

Plot
4

Plot
5

Beer
CC 1.93 1.25 2.26 1.80 3.00 2.07 1.25 2.28 1.82 3.24 1.31 0.69 1.42 1.1 2.45
LX 3.04 1.98 3.34 2.77 4.40 3.11 1.98 3.05 2.59 4.40 2.07 1.11 2.09 1.82 3.75

CLX 3.30 2.38 3.37 2.86 4.38 3.34 2.35 2.95 2.52 4.10 2.01 1.15 1.99 1.74 3.55

Miller
CC 2.62 1.82 2.99 1.88 3.16 2.81 1.82 3.02 1.91 3.41 1.42 1.25 2.25 1.22 2.47
LX 3.64 2.55 4.01 2.86 4.40 3.72 2.55 3.66 2.67 4.40 2.04 1.54 2.67 1.79 3.45

CLX 3.75 2.69 4.01 2.85 4.32 3.79 2.66 3.51 2.51 4.04 1.92 1.52 2.56 1.62 3.21

LAI-2200
CC 1.99 1.41 2.18 1.83 2.87 2.14 1.41 2.21 1.85 3.09 1.38 0.68 1.29 1.12 2.29
LX 3.19 2.22 3.37 2.96 4.41 3.27 2.22 3.07 2.77 4.41 2.25 1.04 2.28 1.95 3.68

CLX 3.32 2.39 3.37 2.96 4.33 3.36 2.36 2.95 2.61 4.05 2.13 1.01 1.79 1.75 3.4

Table 5. Correlation statistics between the litter collection LAI and the LAI derived from the leaf-on DHP
images using the three canopy element or woody components clumping index (Ωe or Ωw) algorithms,
three inversion models, and destructive or MCI woody-to-total area ratio (α) or WAI obtained from the
leaf-off DHP images in the five plots (two-tailed Student’s t-test with 95% confidence level). The root
mean square error (RMSE) and mean absolute error (MAE) are expressed in LAI units (m2/m2).

Destructive α MCI α WAI Obtained from Leaf-off DHP Images

Inversion
Model

Ωe
or Ωw Algorithm

RMSE
(%)

MAE
(%) R2 Intercept Slope p RMSE

(%)
MAE
(%) R2 Intercept Slope p RMSE

(%)
MAE
(%) R2 Intercept Slope p

Beer

CC 2.66
(58%)

2.54
(55%) 0.90 0.17 0.41 0.04 2.56

(56%)
2.45

(53%) 0.91 −0.03 0.47 0.03 3.28
(72%)

3.19
(70%) 0.92 −0.55 0.42 0.03

LX 1.62
(35%)

1.48
(31%) 0.89 0.54 0.56 0.04 1.67

(37%)
1.56

(33%) 0.92 0.36 0.58 0.03 2.50
(54%)

2.42
(53%) 0.89 −0.63 0.61 0.04

CLX 1.49
(33%)

1.33
(27%) 0.93 1.01 0.49 0.02 1.69

(37%)
1.53

(32%) 0.94 0.92 0.47 0.02 2.58
(56%)

2.50
(55%) 0.9 −0.51 0.57 0.04

Miller

CC 2.23
(49%)

2.09
(45%) 0.92 0.64 0.40 0.03 2.11

(46%)
1.99

(43%) 0.94 0.45 0.47 0.02 2.98
(65%)

2.86
(62%) 0.9 −0.01 0.38 0.04

LX 1.29
(28%)

1.09
(22%) 0.92 1.17 0.51 0.03 1.34

(29%)
1.18

(24%) 0.96 0.98 0.53 0.01 2.38
(52%)

2.29
(50%) 0.94 −0.06 0.51 0.02

CLX 1.28
(28%)

1.06
(21%) 0.92 1.37 0.47 0.03 1.48

(32%)
1.28

(26%) 0.92 1.27 0.44 0.03 2.51
(55%)

2.42
(53%) 0.95 −0.03 0.48 0.01

LAI-2200

CC 2.67
(58%)

2.53
(54%) 0.91 0.47 0.35 0.03 2.57

(56%)
2.44

(53%) 0.92 0.3 0.4 0.03 3.33
(73%)

3.23
(71%) 0.9 −0.37 0.38 0.04

LX 1.53
(33%)

1.35
(28%) 0.89 0.95 0.50 0.04 1.59

(35%)
1.44

(30%) 0.91 0.76 0.52 0.03 2.43
(53%)

2.34
(51%) 0.88 −0.46 0.59 0.05

CLX 1.50
(33%)

1.31
(26%) 0.91 1.18 0.46 0.03 1.69

(37%)
1.52

(31%) 0.92 1.08 0.43 0.03 2.67
(58%)

2.57
(56%) 0.86 −0.43 0.53 0.06
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Table 6. LAI derived using the three canopy element or woody components clumping index (Ωe or
Ωw) algorithms and inversion models from the leaf-on MCI images or both the leaf-on and leaf-off MCI
images in the five plots. When only the leaf-on MCI images were used in the LAI estimation, the WAIs
of the five plots were obtained using Equations (8) and (11) based on the leaf-on MCI images. When
both the leaf-on and leaf-off MCI images were used in the LAI estimation, the WAIs of the five plots
were obtained using Equations (8) and (11) based on the leaf-off MCI images. Then, the LAI of the five
plots was derived using Equation (16) based on the PAI and WAI measurements.

Leaf-on MCI Images Leaf-on and Leaf-offMCI Images

Inversion
Model

Ωe
or Ωw Algorithm Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

Beer
CC 4.92 3.53 5.21 4.41 6.47 3.80 2.48 4.02 3.50 5.11
LX 6.12 5.28 4.94 4.79 6.23 4.17 3.38 3.07 3.31 4.45

CLX 6.09 5.30 4.74 4.58 6.01 4.03 3.34 2.98 2.99 4.20

MCI_0-85
CC 3.77 3.10 3.71 2.94 5.63 2.57 2.15 2.50 1.89 4.40
LX 5.40 4.28 4.40 4.04 5.57 3.48 2.70 2.65 2.66 4.17

CLX 5.48 4.40 4.33 4.08 5.34 3.41 2.71 2.52 2.61 3.84

Table 7. Correlation statistics between the litter collection LAI and LAI derived from the leaf-on or both
the leaf-on and leaf-off MCI images using the three canopy element or woody components clumping
index (Ωe or Ωw) algorithms and the inversion models in the five plots (two-tailed Student’s t-test with
95% confidence level). The RMSE and MAE are expressed in LAI units (m2/m2).

Leaf-on MCI Images Leaf-on and Leaf-offMCI Images

Inversion
Model

Ωe
or Ωw Algorithm

RMSE
(%)

MAE
(%) R2 Intercept Slope p RMSE

(%)
MAE
(%) R2 Intercept Slope p

Beer
CC 0.64

(14%)
0.43

(12%) 0.91 1.71 0.70 0.03 1.05
(23%)

0.99
(21%) 0.86 1.12 0.58 0.06

LX 1.29
(28%)

1.08
(29%) 0.71 3.93 0.34 0.18 1.34

(29%)
1.02

(19%) 0.68 2.36 0.29 0.21

CLX 1.26
(27%)

1.12
(29%) 0.62 3.94 0.31 0.26 1.45

(32%)
1.08

(20%) 0.70 2.21 0.28 0.19

MCI_0-85
CC 0.86

(19%)
0.75

(15%) 0.97 0.47 0.73 0.01 1.95
(43%)

1.88
(41%) 0.95 −0.34 0.66 0.01

LX 0.85
(19%)

0.83
(19%) 0.81 2.89 0.40 0.09 1.67

(36%)
1.45

(29%) 0.83 1.30 0.40 0.08

CLX 0.97
(21%)

0.93
(22%) 0.70 3.28 0.32 0.19 1.82

(40%)
1.57

(31%) 0.77 1.58 0.31 0.13

4.3.2. Inversion Model

Large differences were observed between the LAIs obtained from DHP using the same Ωe or
Ωw algorithm and woody components correction method but with different inversion models in the
five plots (Table 4). For example, the difference between the LAI of Miller and LAI-2200 for DHP
was as large as 0.81 (27%) in plot 3 when CC and MCI woody-to-total area ratio were adopted in the
estimation (Table 4). The differences between the RMSE and MAE of the LAI obtained from DHP
using the same Ωe algorithm and woody components correction method but with different inversion
models were in the range of 0.0–0.45 (0%–10%) and 0.01–0.46 (0%–10%), respectively (Table 5). The LAI
of Miller tended to be larger than LAI-2200 or Beer for DHP in the five plots in most cases (Table 4).
Miller is amongst the three inversion models to derive the LAI with the smallest MAE and RMSE for
DHP (Table 5).

Similar to DHP, a large difference (1.61, 46%) was also observed for MCI between the LAI of Beer
and MCI_0-85 in plot 4 when CC and the WAI obtained from the leaf-off MCI images were adopted
in the estimation (Table 6). The differences between the RMSE and MAE of the LAI obtained from
MCI using the same Ωe or Ωw algorithm and woody components correction method but with different
inversion models were in the range of 0.22–0.90 (5%–20%) and 0.19–0.89 (3%–20%) (Table 7). For MCI,
the best inversion model for estimating the ESU LAI of the five forests changed with the Ωe or Ωw

algorithm and woody components correction method adopted in the estimation (Table 7).
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4.3.3. Woody Component Correction Method

The LAIs obtained from DCP, DHP, and MCI in the five plots were remarkably affected by the
woody components correction methods used in the estimation (Tables 4–9). For example, the difference
was as large as 1.87 (49%) in plot 1 between the LAIs obtained from the leaf-on DHP images using
CLX and Miller but with two woody components correction methods of MCI woody-to-total area
ratio and the WAI obtained from the leaf-off DHP images, respectively (Table 4). For DHP, large
differences were observed between the RMSE or MAE of the LAIs obtained using the same Ωe or
Ωw algorithm and inversion model but with two woody components correction methods of MCI
woody-to-total area ratio and the WAI derived from the leaf-off DHP images in the range of 0.72–1.04
(16%–23%) or 0.74–1.14 (17%–27%) (Table 5). However, small differences were found for DHP between
the RMSE or MAE of the LAIs obtained using the same Ωe or Ωw algorithm and inversion model
but with MCI and destructive woody-to-total area ratio values (Table 5). Like DHP, large differences
were also observed for MCI between the RMSE or MAE of the LAIs obtained using the same Ωe or
Ωw algorithm and inversion model but with the two woody components correction methods, ranging
from 0.05–1.09 (1%–24%) or 0.04–1.13 (9%–26%) (Table 7). The LAI obtained from DHP or MCI or DCP
using the woody components correction method of WAI derived from the leaf-off DHP or MCI or
DCP images was obviously smaller than that derived using the same inversion model and Ωe or Ωw

algorithm but with other woody components correction methods (Tables 4, 6, and 8).

Table 8. LAI derived from DCP using two calculation schemes. One scheme calculates the LAI from
the leaf-on DCP images (Equation (15)), and the other scheme calculates the LAI based on the PAI and
WAI derived from the leaf-on and leaf-off DCP images, respectively (Equation (16)).

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

Leaf-on DCP images 1.44 2.35 3.89 2.81 4.92
Leaf-on and leaf-off DCP images 0.53 1.94 2.66 1.95 3.5

Table 9. Correlation statistics between litter collection LAI and LAI derived from DCP using two
calculation schemes (two-tailed Student’s t-test with 95% confidence level). The RMSE and MAE are
expressed in LAI units (m2/m2).

RMSE (%) MAE (%) R2 Intercept Slope p

Leaf-on DCP images 1.80 (39%) 1.50 (32%) 0.68 0.08 0.65 0.20
Leaf-on and leaf-off DCP images 2.70 (59%) 2.47 (53%) 0.56 0.13 0.43 0.33

4.3.4. LAI Estimation Methods

Tables 4, 6, 8, and 10 indicate large differences between the LAI obtained using the same or similar
inversion models, Ωe or Ωw algorithm and woody components correction method but with different
optical methods in the five plots. For example, the difference between the LAI of DCP derived from
the leaf-on DCP images and that of MCI obtained from the leaf-on MCI images using CC and Beer
is 3.48 (71%) in plot 1 (Tables 6 and 8). Amongst the four optical methods, TRAC exhibited the best
performance in terms of obtaining the ESU LAI of the five forests with the smallest RMSE (0.31, 6%)
and MAE (0.24, 4%) followed by MCI (Tables 5, 7, 9 and Figure 5). For MCI, the ESU LAIs with the
smallest RMSE (0.64, 14%) and MAE (0.43, 12%) were obtained from leaf-on MCI images using CC
and Beer (Table 7). DHP tended to underestimate the ESU LAI of the five forests regardless of the
inversion model, Ωe or Ωw algorithm and woody components correction method used in the estimation
(Tables 4 and 5). For DHP, the ESU LAIs with the smallest RMSE (1.28; 28%) and MAE (1.06; 21%)
were obtained using Miller, CLX and destructive woody-to-total area ratio (Table 5). The trend of LAI
underestimation for DHP in the five plots was also observed for DCP (Tables 8 and 9). MCI and TRAC
did not systematically underestimate the LAI in the five plots (Tables 6 and 10). For plot 5 with a high
litter collection LAI of 6.69, DHP, DCP, and MCI tended to underestimate the LAI (Tables 4, 6, and 8).
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Table 10. LAIs derived using the leaf-on TRAC measurements and destructive woody-to-total area
ratio values in the five plots. Only those TRAC measurements collected with a zenith angle near 57◦

were used for LAI estimation.

Plot 1 Plot 3 Plot 5

θ 54.1◦ 64.85◦ 55.25◦ 44.9◦

LAI 4.73 4.60 5.24 7.23
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5. Discussion

5.1. Which Canopy Element or Woody Component Clumping Index Algorithm(s) or Inversion Model(s) Is (Are)
More Reliable to Be Adopted in the ESU LAI Estimation of L. principis-rupprechtii Forests from DHP and MCI?

Based on Tables 4–7, the ESU LAI estimation of DHP and MCI was largely affected by the canopy
element or woody components clumping index (Ωe or Ωw) algorithm and inversion model adopted in
the estimation. This finding is consistent with the conclusions drawn in previous studies [19,24,32,41].
As expected, large differences were found between the LAIs obtained from DHP or MCI using the same
inversion model and woody components correction method but with different Ωe or Ωw algorithms or
the same Ωe or Ωw algorithm and woody components correction method but with different inversion
models (Tables 4 and 6). Three factors contributed to the large LAI differences: the obvious variation
of pe(θ) or pw(θ) and Ωe(θ) or Ωw(θ) at the zenith angle range of 0◦–90◦ (Figures 1–4); the large
differences between the Ωe(θ) or Ωw(θ) derived using different algorithms (Figures 3 and 4) and the
different zenith angle ranges covered by the four inversion models (Table 2).

The best Ωe or Ωw algorithm for estimating the ESU LAI of the five forests changed with the
optical methods. For DHP, CLX, and LX outperformed CC in obtaining LAIs with the smallest RMSE
and MAE (Table 5). This finding is consistent with the finding of previous studies which reported
that CLX and LX outperformed CC for DHP in estimating the Ωe or Ωw of the leaf-on or leaf-off forest
plots [19,33,41]. For MCI, CC outperformed LX and CLX in LAI estimation with the smallest RMSE
and MAE (Table 7). The different conclusions on the best Ωe or Ωw algorithm for DHP and MCI can
be attributed to the following reasons: (1) DHP has the disadvantage of insufficient sampling at the
zenith and a coarse resolution of DHP images at large zenith angles [54]. By contrast, MCI has the
advantage of sampling the canopy with high resolution at all zenith angles. (2). The “P” method
described by Chen and Cihlar [40], which was adopted by DHP to derive the mean element width
values, tended to overestimate the mean element width values and result in Ωe or Ωw overestimation
for CC. The good performance of CC in the ESU LAI estimation for MCI was further confirmed by the
small RMSE and MAE of the LAI obtained from TRAC (Figure 5). This point illustrates that when the
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canopy was sufficiently sampled and an accurate mean element width value was obtained, CC could
provide relatively more accurate Ωe or Ωw estimates than those of LX and CLX. CC has two advantages
in deriving Ωe or Ωw over LX and CLX. Firstly, CC requires no spatial distribution assumption of
canopy element. By contrast, an assumption of the randomly distribution of canopy element at the
segment scale with a length that is 10 times mean element width value was made for LX or CLX [37].
This assumption seems to almost hold true for MCI based on the close agreement between the Ωe or Ωw

obtained from LX and CLX in most cases (Figures 3 and 4). The agreement illustrates that the canopy
element at the segment scale approached random distribution. However, a reasonable guideline for
defining the segment lengths of LX and CLX for DHP was unavailable. Obvious differences were
found between the Ωe or Ωw of LX or CLX obtained with varying segment sizes [33,54]. Secondly, the
large between-crown gaps, which dominated the clumping effects of forest canopies [39,40], can be
effectively captured by CC, whereas LX or CLX was not qualified to detect and utilize such kinds of
large gaps to derive Ωe or Ωw due to the small segment size.

The best inversion model for estimating the ESU LAI of the five forests was different between DHP
and MCI (Tables 4–7). For DHP, Miller outperformed Beer and LAI-2200 in the ESU LAI estimation with
the smallest RMSE and MAE (Table 5). For MCI, Beer outperformed MCI_0-85 in the LAI estimation
with the smallest RMSE and MAE when CC was used in the estimation; by contrast, MCI_0-85
outperformed Beer in the LAI estimation when LX or CLX was adopted in the estimation (Table 7).
This finding is consistent with the finding of Zou et al. [19] who reported that the best inversion
model for estimating the PAI and WAI of leaf-on and leaf-off forest plots from optical methods is the
function of the Ωe or Ωw estimation algorithm, PAI, LAI and WAI and the plant functional types of
forests. When CC was adopted in the ESU LAI estimation, the best inversion model was expected with
differences between DHP and MCI as the contrasting performance of CC in estimating the Ωe or Ωw of
the five forests for DHP and MCI (Figures 3 and 4).

5.2. Which Woody Components Correction Method(s) Is (Are) Better in ESU LAI Estimation for the Four
Optical Methods?

Destructive woody-to-total area ratio was the best woody components correction method amongst
the three woody components correction methods in obtaining the LAI with the smallest RMSE and MAE,
followed by MCI woody-to-total area ratio (Tables 5, 7, and 9). By contrast, the woody components
correction method of obtaining WAI from leaf-off DHP or MCI or DCP images was the worst method
for deriving an LAI with the largest RMSE and MAE in most cases (Tables 5, 7, and 9). As expected,
destructive woody-to-total area ratio was the best woody components correction method as they were
obtained based on the destructive woody-to-total area ratio measurements of representative trees of
each plot, which were usually regarded as the highly accurate woody-to-total area ratio estimates
compared with those obtained from indirect methods [14,23,55]. The small differences between the
RMSE or MAE of the LAIs obtained from DHP using the same Ωe or Ωw algorithm and inversion model
but with MCI and destructive woody-to-total area ratio measurements (Table 5) illustrate that MCI is
an effective and relatively accurate solution to correct the overestimation of the woody components on
the LAI estimation from DHP. Compared with the destructive method, MCI has the advantage of low
cost, high efficiency, and non-destructiveness to canopies. Thus, MCI can be adopted as the routine
option for deriving the woody-to-total area ratio values of L. principis-rupprechtii forests.

The PAI obtained from the leaf-on DHP images only using Miller and the three Ωe algorithms was
systematically smaller than those obtained by summing the LAIs derived from the leaf-on DHP images
using the same inversion model and Ωe algorithm with MCI woody-to-total area ratio and the WAI
obtained from the leaf-off DHP images using the same inversion model and Ωw algorithm (Figure 6).
This finding is consistent with the finding of Calders et al. [56], although different tree species were
covered in the two studies. The differences between the derived PAI of the two calculation methods
were mainly attributed to the preferential shading of woody components by the shoots in the canopies.
The preferential shading of woody components by shoots would increase the pw(θ) and reduce the
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WAI and PAI obtained from the leaf-on DHP images as they should be [56]. Zou et al. [23] reported
that the proportions of woody components shaded by shoots were large at the zenith angles ranging
from 0◦ to 80◦ with a 10◦ interval (7%–73%) in the five leaf-on plots of this study. Therefore, if the WAI
derived from the leaf-off DHP images was used as the woody components correction method, then the
contribution of woody components to the LAI estimation would be overcorrected as the PAI, which
was obtained from the leaf-on DHP images containing a certain degree of WAI underestimation due
to the preferential shading of woody components by the shoots in the canopies. This condition also
explains why the LAIs obtained from leaf-on and leaf-off measurements were obviously smaller than
those derived from the leaf-on measurements regardless of the optical methods, inversion models,
and Ωe or Ωw algorithm used in the estimation (Tables 4, 6, and 8). Therefore, the WAI obtained from
the leaf-off measurements is not recommended as the woody components correction method in the
LAI estimation. Caution is required when adopting the WAI obtained from the leaf-off measurements
as the woody components correction method in the LAI estimation even this method was frequently
adopted in previous studies, such as Cutini et al. [57], Breda [17], Ryu et al. [35], and Toda et al. [58].
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Figure 6. Comparison of two methods of deriving the PAIs of the five leaf-on plots. One method
calculates the PAI of the leaf-on plots using the sum of the LAIs obtained from the leaf-on DHP
images using Miller, MCI woody-to-total area ratio, and the three canopy element clumping index (Ωe)
algorithms and the WAI derived from the leaf-off DHP images using the same inversion model and Ωw

algorithm (PAI = LAI + WAI). The other method calculates the PAI from the leaf-on DHP images using
Miller and the three Ωe algorithms. Only the results of Miller are shown here as the results of LAI-2200
and Beer show similar behaviors. Similarly, the results of MCI and DCP also show similar behaviors
as DHP.
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5.3. Which Optical Method(s) Is (Are) More Reliable to Obtain the LAI of L. principis-rupprechtii Forest Plots?

On the basis of TAbles 5, 7, 9 and Figure 5, TRAC and MCI are recommended for use in obtaining
the ESU LAI of L. principis-rupprechtii forests followed by DHP. DCP is not recommended because it
results in obvious LAI underestimation. Given that DCP can sample the canopies sufficiently due
to its high image resolution and the large sample size of the sampling scheme (16), accurate pe(0) or
pw(0) and gap measurements can be obtained from DCP. Therefore, the assumption of the spherical
angle distribution of the canopy element made in this study would be the key reason for the LAI
underestimation of DCP. On the other hand, the LAI underestimation for DCP indicates that the
canopy element and woody components projection coefficients of L. principis-rupprechtii forests at
0◦ obviously deviated from 0.5, which was also observed for forests with other tree species [59,60].
Macfarlane et al. [41] and Chianucci et al. [34] reported that accurate ESU LAI estimates can be
obtained from DCP in broad-leaved forests because of two reasons. Firstly, the leaf angle distribution
of the forests in the studies of Macfarlane et al. [41] and Chianucci et al. [34] approached spherical
distribution. Secondly, the estimates derived from DCP in the two studies were PAIs and not LAIs.
Good agreement was found between the PAI and LAI obtained through the litter collection method or
allometric equation in the two studies [34,41]. Therefore, if woody components were considered in
the LAI estimation, then DCP would underestimate the ESU LAI of forests in the two studies [34,41].
Thus, when the field collected leaf or shoot angle distributions are not available, caution is needed if
DCP is adopted in estimating the ESU LAI of forests.

The pe(θ) or pw(θ) of MCI tends to be smaller than those of DHP and DCP in the five plots
(Figures 1 and 2) because of two reasons. Firstly, the isolated shoots and branches in the visible band
of the MCI or DHP images tended to be easily overexposed due to the high contrast between the
canopy element and the sky (Figure 7a). However, the contrast between the canopy element and the
sky or cloud in the near-infrared band of MCI is relatively small (Figure 7b) [61]. Secondly, the shoots
have a low reflectance in the visible band due to the strong absorption by chlorophyll, a relatively
high reflectance in the near-infrared band due to the internal leaf scattering, and no absorption [62].
Consequently, the shoot sizes in the near-infrared band were larger than those in the visible band for
the same shoot (Figure 7a,b). This issue was not carefully considered by the “IsoData” classification
algorithm adopted in the MCI image classification.

MCI was originally designed to obtain the woody-to-total area ratio values of forests [14,23].
Compared with DHP, MCI has two advantages in the ESU LAI estimation of forests. Firstly, the
ESU LAI of forests can be derived from this single method without the combination of any other
optical method due to its ability to discriminate between leaves or shoots, woody components, and
sky [14]. Secondly, the forest canopies can be sufficiently sampled by MCI at all zenith directions of
the hemisphere due to its high image resolution and hemispherical sampling scheme [14]. MCI also
has two disadvantages in ESU LAI estimation. Firstly, MCI is a proprietary device and is unavailable
as a commercial instrument for scientists compared with LAI-2200 and TRAC. Secondly, great effort
and a large amount of resources are needed to collect and process the MCI images. For example,
54 or 60 measurements (6 measurements for each zenithal direction) and 1 measurement must be
collected at each sampling point for MCI [14,23] and DHP, respectively. It is encouraging that the two
disadvantages of MCI can be overcome as follows: (1) The charge couple devices of consumer-level
cameras have an imaging capability in the near-infrared band after removing the infrared blocking
filter before the charge couple devices [63]. Then, consumer-level cameras can be modified following
the procedures described in Chapman [63] to obtain the visible and near-infrared band images of
forests similar to MCI with the combination of filters. (2) Given that relatively accurate woody-to-total
area ratio measurements [23] and LAI can be derived from MCI using Beer (Table 7), the Beer inversion
model can be used to derive the ESU LAI of forests, and then only those MCI images with a zenith
angle near 57◦ should be collected to reduce the effort and resources needed for MCI.
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Figure 7. An example of the visible (a) and near-infrared (b) band images of one MCI image pair
collected at one sampling point with azimuthal and zenith angles of 0◦ and 20◦ in plot 1, respectively
(only half of the original images are shown here to improve the readership). (c) shows the corresponding
classified MCI image of the MCI image pair.

The pe(θ) or pw(θ) of TRAC tended to be smaller than those of MCI, DHP, and DCP (Figures 1
and 2). This finding is consistent with the finding of Raabe et al. [64], Leblanc et al. [32], Pisek et al. [33],
and Ryu et al. [35]. This can be attributed to the limitation of TRAC sensor resolution as the small
within canopy gaps were underestimated by TRAC [64]. For TRAC, a problem occurred when the
LAI-2200 or Miller inversion model was adopted by TRAC in the ESU LAI estimation because only
one pe(θ) or pw(θ) and Ωe(θ) or Ωw(θ) estimate can be obtained from each TRAC measurement.
In practice, the TRAC measurement datasets of each plot with the same zenith angle range covered by
LAI-2200 or Miller are difficult to gather, especially for plots in high latitude areas where the solar
zenith angles of daytime are usually small. An alternative option for TRAC to be adopted as the routine
method in the LAI estimation is to derive the LAI with the combination of TRAC and Beer. Similar Ωw

estimates were obtained from MCI and TRAC (0.90 and 0.94) at a zenith angle of 64◦ in the leaf-off

plot 3, indicating that TRAC remains effective in deriving Ωw at this zenith angle (Figure 8). However,
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Law et al. [65] suggested avoiding taking TRAC measurements at zenith angles larger than 60◦ due to
the difficulty of TRAC to distinguish small gaps at these zenith angles. An error Ωe estimate of 0.75
was derived at zenith angle of 75◦ for TRAC in the leaf-on plot 5 as all the photosynthetic photon flux
density values of this TRAC measurement was equal to zero µmol m−2 s−1 (not shown in Figure 4).
Therefore, caution is needed for TRAC to derive the Ωe or Ωw and LAI of L. principis-rupprechtii forests
at zenith angles larger than 70◦.
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Figure 8. An example of the measured, reduced, and theoretical random accumulated gap size
distributions obtained from TRAC and MCI in leaf-off plot 3 (a,b), respectively.

Two reasons contributed to the ESU LAI underestimation for DHP in the five forests [47]. Firstly,
previous studies reported that the gap fraction measurements of optical methods tended to be saturated
at forests with large LAIs due to canopy closure, especially for forests with LAIs ~ > 5.0–6.0 [16,47,55].
Secondly, the Ωe(θ) or Ωw(θ) of DHP was larger than that of MCI in the five leaf-on or leaf-off plots in
most cases (Figures 3 and 4), indicating that DHP overestimated the Ωe or Ωw estimates in the five
leaf-on or leaf-off plots because the Ωe or Ωw estimation of DHP suffered from the two error sources of
canopy sampling and mean element width estimation.

Compared with TRAC, MCI, and DCP, DHP has the advantage of obtaining the hemispherical
direction measurements of pe(θ) or pw(θ) and Ωe(θ) or Ωw(θ) simultaneously from single or several
DHP images. Therefore, less effort and resources are required for DHP than the other three optical
methods in the ESU LAI estimation of forests. DHP is frequently used as the routine method for
obtaining the ESU LAI of forests. However, the performance of DHP in deriving the ESU LAI of the
five forests was strongly affected by the inversion model, Ωe or Ωw algorithm and woody components
correction method adopted in the estimation (Tables 4 and 5). This finding is consistent with the
finding of Liu et al. [24], Zou et al. [19], and van Gardingen et al. [66] who reported large differences
between the LAIs derived from DHP using various inversion models, Ωe or Ωw algorithms and
woody components correction methods. Therefore, the best combination of inversion model, Ωe or Ωw

algorithm and woody components correction method should be identified before DHP is selected as
the routine method to estimate the ESU LAI of forests.

5.4. Do the Four Optical Methods Qualify to Obtain the ESU LAI of Forests with the Accuracy Match the
Requirements of GCOS?

Table 5 indicates that the LAI of DHP with the smallest MAE (21%) was obtained using Miller,
CLX and destructive woody-to-total area ratio. This result indicates that DHP is not qualified to derive
the ESU LAI of L. principis-rupprechtii forests with estimation errors of <5% or 20% required by GCOS.
However, the LAI with the MAEs <20% can be obtained from DHP in the five L. principis-rupprechtii
forests using Miller, CLX and destructive woody-to-total area ratio by optimizing the sampling schemes
reported by Zou et al. [47]. An LAI MAE range of 11%–16.4% was obtained from DHP when Miller,
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CLX, and destructive woody-to-total area ratio in addition to two sampling schemes with the sample
sizes in the range of 3–9 were adopted in the ESU LAI estimation of the five plots except plot 5 [47].
This point illustrates that DHP is qualified to derive the ESU LAI of L. principis-rupprechtii forests
with estimation errors of <20% if the inversion model, Ωe or Ωw algorithm and woody components
correction method in addition to sampling scheme are considered in the estimation. The LAI MAE
range of 11%–16.4% is near that in the study by Leblanc and Fournier [20] who reported a minimum
MAE of 11% for the PAI derived from DHP when an appropriate inversion model and Ωe algorithm
are adopted in the PAI estimation of the simulated forest scenes. The LAI MAE range of 11%–16.4% is
larger than the minimum PAI MAE in the study of Leblanc and Fournier [20] because the LAI estimation
from the field-collected DHP images suffered from three additional estimation errors (i.e., observation
conditions, DHP image classification, and woody components correction method) compared with
those in the simulation study [47].

Table 5 indicates that DHP is not qualified to derive the ESU LAI of L. principis-rupprechtii forests
with estimation errors of <5%. Table 9 shows that DCP is not qualified to derive the ESU LAI of L.
principis-rupprechtii forests with estimation errors of <5% or 20%. Unlike DCP and DHP, MCI and
TRAC are qualified to derive the ESU LAI of L. principis-rupprechtii forests with estimation errors of
<20% (Table 7 and Figure 5). Moreover, TRAC shows the potential in obtaining the ESU LAI of L.
principis-rupprechtii forests with estimation errors of <5% (Figure 5).

6. Conclusions

In this study, the performance of four optical methods (i.e., DHP, DCP, TRAC, and MCI) in
estimating the ESU LAI of L. principis-rupprechtii forests was evaluated using the LAIs obtained from
litter collection measurements. The impact of three factors (i.e., inversion model, Ωe or Ωw algorithm,
and woody components correction method) on the LAI estimation was analyzed. Results show that
the ESU LAI estimation was largely affected by the three factors. To obtain accurate ESU LAIs of L.
principis-rupprechtii forests, we suggest the following procedures:

(1) using MCI and TRAC as the ESU LAI estimation methods;
(2) using CC to derive the Ωe or Ωw;
(3) using the destructive or MCI woody-to-total area ratio as the woody components

correction method;
(4) using the Beer inversion model to derive the ESU LAI.

The accuracies of ESU LAIs obtained by the four optical methods were evaluated in terms
of whether they matched the LAI accuracy target required by GCOS. Results show that the four
optical methods, except for DCP, could obtain the ESU LAI of L. principis-rupprechtii forests with
an MAE of <20% required by GCOS. Only TRAC shows potential in obtaining the ESU LAI of
L. principis-rupprechtii forests with an MAE of <5%.

Given the limited efforts and resources available, only five plots were covered in this study. More
plots should be covered in the future to improve the conclusions drawn in this study and evaluate
whether management activities (e.g., branches harvesting and thinning) and the LAI range of the
plots are factors that affect the performance of the four optical methods for deriving the ESU LAI
of L. principis-rupprechtii forests. Future work could include efforts to evaluate the performance of a
commonly used method of LAI-2200 in the ESU LAI estimation of L. principis-rupprechtii forests.
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Abbreviations

List of Symbols [19,47]
An half the total needle area in a shoot

Ap(0◦, 0◦)
shoot projection area measured by projecting shoot at zenith angle 0◦ and azimuth
angle 0◦

Ap(45◦, 0◦)
shoot projection area measured by projecting shoot at zenith angle 45◦ and azimuth
angle 0◦

Ap(90◦, 0◦)
shoot projection area measured by projecting shoot at zenith angle 90◦ and azimuth
angle 0◦

Beer Beer inversion model (Equations (8) and (12))
CC gap size distribution algorithm
CLX combination of gap size and logarithmic averaging algorithm
DBH diameter at breast height
DCP digital cover photography
DHP digital hemispherical photography
ESU elementary sampling unit
Fm(0,θ) measured total canopy element gap fraction at θ

Fmr(0,θ)
total canopy element gap fraction after removing large gaps resulting from
non-random distribution of canopy element at θ

fc crown cover
f f foliage cover
GCOS global climate observing system
Ge canopy element projection coefficient
Ge(θ) canopy element projection coefficient at θ
Ge_i canopy element projection coefficient of ith annulus
LAI leaf area index
LAIBeer leaf area index estimated using the Beer inversion model
LAILAI−2200 leaf area index estimated using modified Miller theorem of LAI-2200 instrument
LAIMiller leaf area index estimated using Miller theorem
LAIDCP leaf area index estimated from digital cover photography method
LAI-2200 LAI-2200 inversion model (Equations (10) and (14))
ln[pe(θ)] mean logarithmic canopy element gap fraction for all segments at θ
LX logarithmic averaging algorithm
MAE mean absolute error
MCI multispectral canopy imager

MCI_0-85
modified Miller integration similar to calculation method of LAI-2200 instrument
for MCI

Miller Miller theorem (Equations (9) and (13))
pe(θ) canopy element gap fraction at θ
pe(θ) mean canopy element gap fraction of all segments at θ
pe_i(θi) canopy element gap fraction of ith annulus
pe_k(θ) canopy element gap fraction of segment k at θ
pw(θ) woody components gap fraction at θ
pw_i(θi) woody components gap fraction of ith annulus
PAI plant area index
PAIBeer plant area index estimated using Beer inversion model
PAILAI−2200 plant area index estimated using modified Miller theorem of LAI-2200 instrument
PAIMCI_0−85 plant area index estimated using the MCI_0-85 inversion model
PAIMiller plant area index estimated using Miller theorem
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RMSE root mean square error
TRAC tracing radiation of canopy and architecture method
WAI woody area index
Wi weight of ith annulus
θ zenith angle
θi centre zenith angle of ith annulus
α woody-to-total area ratio
αi α of ith annulus of MCI, which were derived using CC
αDCP mean αi of first and second annuli of MCI, which were derived using CC
γ needle-to-shoot area ratio
γc corrected needle-to-shoot area ratio
n number of segments
Ωe canopy element clumping index
Ωe_i Ωe of ith annulus
Ωe(θ) canopy element clumping index at θ
Ωe_CC(θ) canopy element clumping index estimated using gap size distribution algorithm at θ
Ωe_CC_k(θ) Ωe of segment k at θ
Ωe_DCP(0) canopy element clumping index estimated from digital cover photography
Ωe_LX(θ) canopy element clumping index estimated using logarithmic averaging algorithm at θ

Ωe_CLX(θ)
canopy element clumping index estimated using a combination of gap size and
logarithmic averaging algorithm at θ

Ωw woody components clumping index
Ωw(θ) woody components clumping index at θ
∅ crown porosity
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