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Abstract: Changes in the microenvironment driven by forest gaps have profound effects on soil
nutrient cycling and litter decomposition processes in alpine forest ecosystems. However, it is unclear
whether a similar forest gap effect occurs in the soil decomposer community. A field experiment
was conducted in an alpine forest to investigate the composition and structure of the soil nematode
community among four treatments, including under a closed canopy and in small (<10 m in diameter),
medium (10–15 m in diameter), and large (15–20 m in diameter) gaps. A total of 92,787 individuals
and 27 species (genera level) of soil nematode were extracted by elutriation and sugar centrifugation,
respectively. Filenchus was the most abundant dominant taxa and represented 24.27–37.51% of the
soil nematodes in the four treatments. Compared to the closed canopy, the forest gaps did not affect
the composition, abundance, or species diversity of the soil nematode community but significantly
affected the functional diversity of the soil nematode community. The maturity indices (MI,

∑
MI,

and MI2-5) of the soil nematode community in the closed canopy were significantly lower than those
in the forest gaps. Moreover, the proportion of plant parasitic index and maturity index (PPI/MI)
values of the closed canopy and small gaps were significantly higher than those of the medium and
large gaps. Our results suggest that the forest gap size substantially alters the functional diversity of
soil nematodes in the debris food web, and changes in soil nematode community structure due to
gap formation may have profound effects on soil biogeochemical processes in alpine forests.

Keywords: gap size; nematodes; maturity indices; trophic structure; alpine forest

1. Introduction

A forest gap, which is caused by the death of one or more canopy trees, is the dominant form of
disturbance in various forest ecosystems [1]. After gap formation, more irradiance and rainfall reach
under the canopy, and the temperature and moisture conditions are generally improved compared to
those under a closed canopy [2,3]. These changes driven by gap formation have profound effects on tree
regeneration, plant nutrient uptake, and litter input under the canopy [4,5]. Moreover, the formation
of forest gaps may alter the compositional and structural diversity of the soil decomposer food web
on the forest floor through positive or negative effects to the microclimate and aboveground plant
community [6,7].

Numerous studies have suggested that the composition and structure of the nematode community
are sensitive ecological indicators that can be used to determine the integrated effects of disturbances
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on small-scale spatial variations in the decomposer community in forest ecosystems [8–10]. The main
reasons are that (1) soil nematodes are the Earth’s most abundant metazoan and respond rapidly to
environmental changes (e.g., warming, drought, and land-use change) and (2) their feeding specificity
and high number of species play an indispensable role in the soil decomposer food web, such as
by regulating the microbial community structure [11,12]. Furthermore, multitudinous studies have
reported that nematode communities are greatly affected by the spatial and temporal patterns of
soil moisture and temperature. For example, drought stress or warming was found to decrease the
abundance of soil nematodes [13,14], whereas the trophic groups responded differently to soil moisture,
with bacterivores decreasing and plant-parasitic nematodes increasing with an increase in moisture [15].
In alpine ecosystems, the microclimatic conditions (e.g., soil temperature and soil moisture) were found
to be higher under an open canopy than under a closed canopy [16], and these changes accelerated
litter decomposition, lignin loss, and nutrient cycling [17,18]. However, it is still unclear whether
a similar gap effect occurs in the soil decomposer community (e.g., nematode) in alpine forests.

For this study, we conducted a field experiment to investigate the composition and structure of soil
nematodes under a closed canopy and under different forest gaps in an alpine forest of southwestern
China. We hypothesized that (1) the abundance and species diversity of soil nematodes were greater in
the forest gaps than under a closed canopy due to increased soil temperature and moisture condition
and that (2) the structure of the soil food web differed under a closed canopy and in the forest gaps
due to variations in the functional diversity of soil nematodes. The aim of our study was to explore the
feasibility of using soil nematode communities as indicator species for environmental changes and to
gain a deeper understanding of the characteristics of soil biodiversity in alpine forests.

2. Materials and Methods

2.1. Site Description

This study was conducted at the Long-Term Research Station of Alpine Forest Ecosystems
(31◦14′ N, 102◦53′ E, 3582 m a.s.l.), which is located on the eastern Tibetan Plateau, China. The study
site is a primary fir (Abies fargesii var. faxoniana) forest with a tree age of approximately 140 years, and the
forest canopy is dominated by fir (70–80%) and spruce (Picea asperata). The mean annual air temperature
and the mean annual rainfall at the site are 2-4 ◦C and 850 mm, respectively. The understory shrubs
are dominated by Salix paraplesia, Sorbus rufopilosa, Rhododendron lapponicum, and Rosa sweginzowii, and
the coverage ratio of shrubs is approximately 0.4. The herbs consist of Cacalia auriculata, Cystopteris
montana, Carex spp., Cyperus spp., and other species, and the coverage ratio of herbs is approximately
0.6 [19]. The coverage ratio of herbs is approximately 0.85 in the forest gaps [20]. The soil is classified
as a Cambic Umbrisol according to the International Union of Soil Sciences (IUSS) Working Group,
and the basic chemical soil properties (0-15 cm) can be found in Tan et al. [21].

2.2. Experimental Design and Soil Sampling

In this study, we defined the forest gaps according to the conception of an expanded forest gap, and
the edges of the expanded gaps were defined by the trunk bases of the border trees [22,23]. Previous
investigations have found that the shapes of the forest gaps in the study site were approximately
elliptical [19]. Therefore, the distance between the two most distant trunks in the gap and the distance
between the two trunks perpendicular to each other were used as the long and short axes of the ellipse,
respectively, and the area of the gap was calculated by the ellipse area formula [22,24]. The gap age was
calculated from the degree of decomposition of the gap maker [25]. Moreover, our previous studies
suggested that treefalls account for 70% of the gap formation types and that the largest expanded forest
gap at the experimental site was approximately 280 m2 [19]. Thus, the treefall gap sizes selected in
this experiment are 255-290 m2 (large gap with a diameter 15-20 m), 153-176 m2 (medium gap with
a diameter 10-15 m), and 38-46 m2 (small gap with a diameter <10 m).
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The experimental plots were set up in a primary fir forest formed by natural vegetation succession.
The average tree height and diameter at breast height (DBH) were 28 m and 30 cm, respectively [19].
Three plots showing homogeneous topography were established. Within each plot, treefall gaps
were selected for soil sampling, including large, medium, and small gaps and a closed canopy area.
The properties of the selected gaps are shown in Table 1. Soil samples (approximately 500 g each)
were collected from the center of the forest gaps because the microclimates between the southern and
northern edges of the gap often show significant differences [2]. In each plot, three intact soil cores
(20 × 25 cm) were collected from the gaps and closed canopy at a depth of 15 cm for soil nematode
extraction in August 2016. A total of 36 soil samples (4 treatments × 3 plots × 3 samples) were collected
in the study. After screening out the rocks and coarse debris from the soil samples, the soil samples
were stored in a cooler box with ice packs and transported to the laboratory within 24 h. The samples
were stored in a laboratory refrigerator at 4 ◦C and the analysis was completed within one week.

Table 1. Characteristics of the four treatments (mean ± SE, n = 3).

Type of Gap Gap Size
(m2) Cause of Gap Gap Age

(Year) Gap Makers
Soil

Temperature
(◦C)

Soil Moisture
(%)

Large gap 281.7 ± 4.4 Breakage at trunk 31.4 ± 2.7 Fir (78%) + spruce (22%) 9.23 ± 0.22 a 40.72 ± 2.33 ab
Medium gap 165.0 ± 5.8 Breakage at trunk 30.1 ± 2.8 Fir (71%) + spruce (29%) 7.81 ± 0.15 b 37.54 ± 2.69 ab

Small gap 43.3 ± 3.3 Standing death 26.7 ± 1.9 Fir 7.48 ± 0.14 c 36.67 ± 1.94 b
Closed canopy - - - - 7.42 ± 0.16 c 43.71 ± 1.72 a

Lowercase letters indicate differences within treatments at the p < 0.05 level.

2.3. Soil Nematode Extraction

The soil nematode community structure was determined by extracting the nematodes from
each soil sample (100 g) using the elutriation and sugar centrifugation method [26]. The extracted
nematodes were killed and fixed in hot formalin. After counting the total number of nematodes,
100 specimens per sample were randomly selected and identified to the genus level using an inverted
compound microscope (Nikon Instruments, Melville, NY, USA) according to the reference of Yin [27].
The nematodes were assigned to the bacterivores (Ba), fungivores (Fu), omnivore-predators (OP) and
plant parasites (PP) trophic groups according to their feeding habits [28,29].

2.4. Data Calculations and Statistical Analyses

The abundance (the number of individuals per 100 g of dry soil) and generic richness (mean
number of genera per sample) were used to measure the response of the soil nematode community
to changes in the microclimate from a large gap to a closed canopy. The dominant species, frequent
species, and rare species were defined as those with abundances greater than 10% (+++), between 10%
and 1% (++), and less than 1% (+) of the total individual density, respectively [29]. Life strategy was
assessed by the colonizer-persister (c-p) scale from 1 to 5, which was used to provide information on
the functioning and condition of the nematode food web in the gaps and closed canopy [11].

The differences in soil nematode diversity between the gaps and the closed canopy were described
by using the species diversity indices, such as the Shannon–Wiener index (H’), Pielou index (J’),
dominance index (λ), and Margalef index (SR). Moreover, the life history diversity indices based on
different life history characteristics were also calculated to determine the differences in the soil nematode
community between the gaps and closed canopy, including the free-living nematodes with c-p1 through
c-p5 (MI), free-living nematodes with c-p2 through c-p5 (MI2-5), the plant parasite index (PPI), the sum
maturity index (

∑
MI), and the proportion of PPI and MI (PPI/MI). The structure index (SI), enrichment

index (EI), and channel index (CI) are functional diversity indices that were used to assess the soil
quality in the gaps and closed canopy. Life history diversity indices and functional diversity indices
were collectively referred to as functional group indices, which were used to characterize the functional
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structure of soil nematodes in the different treatments (Supplementary Materials). All indices were
calculated using the following equations:

H′ = −
S∑

i=1

Pi(InPi), (1)

J′ =
H′

In(S)
, (2)

SR =
S− 1
InN

, (3)

λ =
∑

Pi
2 , (4)

where N is the number of individuals identified, S is the number of taxa identified, and Pi is the
proportion of individuals in the ith taxon (a given taxon is regarded as the ith taxon) [30–32];

MI
(∑

MI, MI2–5, and PPI
)
=

n∑
i=1

cpi·pi, (5)

where n is the number of taxa in the sample, cpi is the c-p value of soil nematodes to the ith taxon, and
Pi is the proportion of individuals in the ith taxon [31,33–35];

SI = 100× (s/(s + b)), (6)

EI = 100× (e/(e + b)), (7)

CI = 100× (0.8Fu2/(0.8Fu2 + 3.2Ba1)) . (8)

The b component is calculated as
∑

kbnb, where the kb values are the weightings assigned to the
guilds that indicate the basal characteristics of the food web (0.8Ba2, 0.8Fu2) and the nb values are the
abundances of nematodes in those guilds. The e and s components are calculated similarly, and the kb
values are calculating using the guilds indicating enrichment (3.2Ba1, 0.8Fu2) and structure (1.8Fu3,
1.8Ba3, 3.2Fu4, 3.2Ba4, and 3.2OP) [36].

One-way ANOVA was conducted to test for significant differences in the nematode community
among the four gap treatments, and if significant differences were identified by ANOVA, multiple
comparisons were performed using Tukey’s honestly significant difference (HSD) post-hoc test.
Levene’s test for homogeneity of variance was performed before conducting the ANOVAs, and the data
were logarithmic transformed if required. ANOVAs were performed using SPSS version 20.0 (IBM SPSS
Inc., Chicago, IL, USA), and figures were prepared using Origin 9.1 (OriginLab, Northampton, MA,
USA). Principal component analysis (PCA) was performed using Canoco 5.0 (Microcomputer Power,
Ithaca, NY, USA) to assess the effects of the gap treatment on the composition of the soil nematode
community. The PCA was run separately for each treatment to reduce the number of variables and the
figure complexity. The PCA analyses were performed with the abundance data (ind.·100 g−1 dry soil)
at the family level.

3. Results

3.1. Soil Nematode Composition

In the four treatments, a total of 92,787 individuals and 27 species (genera level) of soil nematodes
were trapped. Compared to the closed canopy, the three gap treatments did not significantly (F = 2.40,
p = 0.09) affect the abundance of soil nematodes. The abundance of soil nematodes varied from 774.3 to
1288.5 ind.·100 g−1 with the rank of the medium gap > closed canopy > large gap > small gap (Table 2).
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Table 2. Composition and abundance (ind.·100 g−1 dry soil) of soil nematodes in the closed canopy and three types of forest gaps.

TG/Genera FG
Closed Canopy Small Gaps Medium Gaps Large Gaps Total

Ind. Dominance Ind. Dominance Ind. Dominance Ind. Dominance Ind. Dominance

Ba 386.5 250.2 423.7 370.1 1430.4

Rhabditis Ba1 92.1 ++ 45.4 ++ 61.4 ++ 40.6 ++ 239.5 ++
Bunonema Ba1 7.1 + 6.7 + 5.0 + 0.9 + 19.7 +

Eucephalobus Ba2 35.3 ++ 21.2 ++ 26.6 ++ 17.8 ++ 100.9 ++
Heterocephalobus Ba2 6.5 + 0.9 + 1.3 + 2.0 + 10.6 +

Acrobeloides Ba2 62.4 ++ 17.6 ++ 35.1 ++ 29.9 ++ 145.0 ++
Plectus Ba2 36.4 ++ 27.8 ++ 75.1 ++ 82.4 ++ 221.6 ++

Wilsonema Ba2 31.9 ++ 22.9 ++ 26.4 ++ 23.5 ++ 104.7 ++
Microlaimus Ba2 1.7 + 0.9 + 10.7 + 5.2 + 18.5 +

Teratocephalus Ba3 43.9 ++ 55.8 ++ 70.4 ++ 66.3 ++ 236.4 ++
Metateratocephalus Ba3 10.2 + 5.2 + 0 - 0.7 + 16.1 +

Rhabdolaimus Ba3 3.8 + 0 - 4.2 + 1.9 + 9.9 +
Prismatolaimus Ba3 30.5 ++ 17.2 ++ 53.7 ++ 25.9 ++ 127.4 ++

Alaimus Ba4 11.3 ++ 16.1 ++ 38.6 ++ 63.2 ++ 129.2 ++
Paramphidelus Ba4 13.4 ++ 12.4 ++ 15.2 ++ 9.8 + 50.9 ++

Fu 537.3 354.2 416.7 320.5 1628.8
Filenchus Fu2 421.3 +++ 278.7 +++ 312.8 +++ 261.6 +++ 1274.4 +++

Aphelenchoides Fu2 89.3 ++ 48.1 ++ 23.8 ++ 10.4 ++ 171.6 ++
Diphtherophora Fu3 17.1 ++ 14.6 ++ 36.5 ++ 27.0 ++ 95.2 ++
Tylencholaimus Fu4 9.5 + 12.9 ++ 43.6 ++ 21.5 ++ 87.5 ++

OP 46.5 40.7 113.7 68.8 269.7
Epidorylaimus OP4 5.9 + 9.9 ++ 47.0 ++ 20.3 ++ 83.0 ++

Dorydorella OP4 40.6 ++ 30.8 ++ 66.7 ++ 48.6 ++ 186.6 ++
PP 153.1 129.1 334.5 271.2 887.8

Coslenchus PP2 2.1 + 0 - 0 - 0 - 2.1 +
Basiria PP2 24.7 ++ 4.1 + 26.2 ++ 6.7 + 61.6 ++

Paratylenchus PP2 10.9 + 8.7 ++ 10.1 + 14.4 ++ 44.1 ++
Nagelus PP3 15.4 ++ 6.9 + 33.8 ++ 4.5 + 60.6 ++

Pararotylenchus PP3 90.1 ++ 102.0 +++ 259.8 +++ 237.5 +++ 689.3 +++
Pratylenchus PP3 3.4 + 3.4 + 1.1 + 0.7 + 8.6 +

Macroposthonia PP3 6.5 + 3.9 + 3.6 + 7.5 + 21.5 +

Total individuals 1123.3 774.3 1288.5 1030.6 4216.7
Total genera 27 25 25 26 27

TG, trophic group; FG, functional guild; trophic group with c-p value (Ba, bacterivores; Fu, fungivores; OP, omnivore-predators; PP, plant parasites). +++, dominant genera; ++, common
genera; +, rare genera; -, none observed.
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According to species proportions (Table 2), Filenchus was the most abundant dominant taxa
and represented 24.27–37.51% of the soil nematodes in the four treatments. Pararotylenchus was the
dominant genera that existed in only the forest gaps, whereas Coslenchus was a rare genus that occurred
in only the closed canopy. The PCA showed that the composition of the soil nematode community was
similar in the four treatments (Figure 1), but the spatial variations in nematode community composition
were relatively large in the closed canopy and medium gap. Tylenchidae and Hoplolaimidae were the
main taxonomic families associated with the separation of PC1 and PC2, respectively.
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Figure 1. Variations in community structure of the soil nematodes in four treatments. CC, closed
canopy; SG, small gaps; MG, medium gaps; LG, large gaps.

3.2. Soil Nematode Functional (Trophic, c-p) Groups

According to the proportions in the soil nematode trophic structure (Figure 2), fungivores and
bacterivores were the two main trophic taxa and represented 31.10–47.83% and 32.31–35.91% of the soil
nematodes in all treatments, respectively. Moreover, the trophic structure of the nematode community
varied among the four treatments. The fungivores were the most numerous trophic taxa in the
closed canopy and small gaps, whereas the bacterivores were the most numerous trophic taxa in the
medium and large gaps. The nematode community trophic structure was unaffected (all p > 0.5) by the
gap treatment.
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Figure 2. Ratio of the functional groups of the soil nematode community in the closed canopy and
three types of forest gaps (small, medium, and large gaps). Ba, bacterivores; Fu, fungivores; OP,
omnivore-predators; PP, plant parasites. CC, closed canopy; SG, small gaps; MG, medium gaps; LG,
large gaps.

The cp1, cp2, cp3, and cp4 groups of soil nematodes accounted for 6.26%, 51.05%, 29.96%, and
12.73% of the total number of soil nematodes, respectively. The result of one-way ANOVA indicated
that only the values of cp4 exhibited significant differences (p < 0.05) between the closed canopy and
the forest gaps. The proportions of soil nematodes in the cp1 and cp2 groups in the closed canopy
were higher than those in the forest gaps. In contrast, the proportions of soil nematodes in the cp3 and
cp4 groups in the closed canopy and small gaps were lower than those in the medium and large gaps
(Figure 3).Forests 2019, 10, 806 8 of 14 
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indicate differences within treatments at the p < 0.05 level. CC, closed canopy; SG, small gaps; MG,
medium gaps; LG, large gaps. CP1, CP2, CP3, and CP4 are the colonizer-persister scales from 1 to 4.
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3.3. Soil Nematode Community Indices

The species diversity indices (H’, J’, λ, and SR) of soil nematodes were not significantly different
among the four treatments. The highest H’, J’, and SR values were in the medium gaps, whereas the
lowest λ values were also in the medium gaps. The maturity indices of MI,

∑
MI, and MI2-5 were

significantly lower in the closed canopy than in the gaps. Moreover, the PPI/MI values of the closed
canopy and small gaps were significantly higher than those of the medium and large gaps (Table 3).
The enrichment index (EI) and channel index (CI) exhibited no significant differences among the four
treatments, but the structure index (SI) in the closed canopy was significantly (p < 0.05) lower than that
in the three gaps (Table 3 and Figure 4).

Table 3. Soil nematode community indices of the four treatments.

Indices Closed Canopy Small Gaps Medium Gaps Large Gaps

H’ 2.09 ± 0.24a 2.09 ± 0.26a 2.31 ± 0.24a 2.17 ± 0.19a
J’ 0.78 ± 0.08a 0.76 ± 0.07a 0.82 ± 0.06a 0.80 ± 0.05a
λ 0.19 ± 0.07a 0.21 ± 0.08a 0.16 ± 0.05a 0.17 ± 0.04a

SR 2.01 ± 0.32a 2.22 ± 0.38a 2.23 ± 0.41a 2.08 ± 0.47a
MI 2.19 ± 0.13c 2.38 ± 0.18b 2.53 ± 0.14a 2.52 ± 0.14ab∑
MI 2.29 ± 0.19b 2.47 ± 0.20a 2.59 ± 0.17a 2.60 ± 0.16a

MI2-5 2.32 ± 0.10b 2.52 ± 0.21a 2.65 ± 0.17a 2.61 ± 0.12a
PPI 2.68 ± 0.29a 2.88 ± 0.12a 2.73 ± 0.33a 2.80 ± 0.28a

PPI/MI 1.22 ± 0.10a 1.22 ± 0.10a 1.08 ± 0.11b 1.11 ± 0.10b
EI 54.92 ± 8.50a 57.53 ± 8.13a 53.74 ± 7.60a 49.31 ± 10.45a
SI 44.07 ± 8.84b 59.21 ± 13.48a 67.01 ± 8.47a 64.99 ± 6.88a
CI 59.42 ± 24.57a 57.59 ± 17.12a 58.90 ± 18.25a 69.02 ± 24.18a

Values are mean ± SE (n = 9). Different lowercase letters indicate significant differences among the four habitats
(p < 0.05). H’, Shannon–Weaver index; J’, Pielou index; λ, Simpson index; SR, Margalef index; MI, maturity index;∑

MI, sum MI; MI2-5, MI without c-p1; PPI, plant parasitic index; PPI/MI, proportion of PPI and MI; EI, enrichment
index; SI, structure index; CI, channel index.
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4. Discussion

In high-elevation ecosystems, the formation of forest gaps alters the soil temperature and moisture
conditions compared with those under a closed canopy [16], which has positive, negative, or neutral
effects on litter decomposition and soil nutrient mineralization [17,37,38]. Previous studies have shown
that the individual density and genera of the soil nematodes in a forest gap are significantly higher
than those under a closed canopy, although the soil physical and chemical properties show slight
differences between the gaps and the closed canopy [39,40]. Contrary to our first hypothesis and
previous results, forest gap formation did not affect the abundance of the soil nematode community
in this study. Moreover, the composition of the soil nematode community was similar in the closed
canopy and the forest gaps, and the species diversity indices (H’, J’, λ, and SR) of the soil nematodes
were not significantly different among the four treatments. One possible explanation for this finding
is that the vegetation types on the forest floor were the same among treatments, and the ratio of
herb coverage was similar in the closed canopy (0.6) and the forest gaps (0.85) during the growing
season at the study sites [19,20], as plant species diversity affects nematode diversity. Another possible
explanation is that the ecological niches of the soil nematodes in the four treatments were completely
differentiated through long-term adaptation (Table 1, gap age), so there were no significant differences
in soil nematode diversity among the different treatments [41]. Coslenchus (plant parasites) existed
in only the closed canopy, which was consistent with our previous findings in the same alpine and
subalpine forests [42], indicating that the roots of the primary fir (Abies fargesii var. faxoniana) forest
may be highly suitable for Coslenchus. In addition, Walker proposed that the loss of certain species can
be compensated for by the transformation of the abundance of other species to maintain the stability
of the entire soil ecosystem [43]. Interestingly, the medium gap had the lowest number of genera
but the highest abundance among the four treatments, which is consistent with Walker’s hypothesis.
Therefore, a medium gap (153-176 m2) may be a critical gap size for the change in the soil decomposer
community in an alpine forest.

The changes in forest gap size have been suggested to affect the activities of the soil decomposer
community and nutrient cycle under the canopy [4,6,44]. In our study, soil nematodes under the closed
canopy and in the small gaps (38–46 m2) were dominated by fungivores, whereas those in the medium
(153–176 m2) and large (255–290 m2) gaps were dominated by bacterivores. This finding is similar
to the results in the alpine forests of southeastern Tibet [40]. However, the CI of the soil nematode
community in the four treatments was greater than 50, illustrating that the soil organic matter in
the four treatments is mainly decomposed by fungal channels in the debris food web. This result is
different from the finding that the decomposition channel of soil organic matter in the debris food
web changes from fungi to bacteria from a closed canopy to a large gap. The disparate results can be
mainly explained as follows: (1) the recalcitrant substrates (e.g., lignin, cellulose, and hemicellulose)
and C/N ratios in the soil organic layer of the studied forest are relatively high [45–47], and the
decomposition of recalcitrant substrates is highly dependent on fungal involvement [48–50] and (2) the
soil temperature and moisture often increase with the increase in forest gap sizes in the growing season
(Table 1). The high temperature and moisture conditions are suitable for the growth of the bacterial
community [2,51], leading to the bacteria being the main trophic group in the medium and large gaps.

Nematode life history diversity indices (MI,
∑

MI, MI2-5, PPI, and PPI/MI) can sensitively respond
to the changes in the soil environment and the situation of the soil food web structure [52]. The values of
MI and PPI between 1 and 4 are used to indicate the succession status of the soil nematode community
and the stability of the soil environment. Generally, a small value suggests a weak soil environment,
and the soil nematode community can be considered to be in the early succession stage [34,41].
Additionally, cp1-2 nematodes have a competitive strategy (r-strategy) with a short life cycle, reproduce
well, and can tolerate external disturbance. In contrast, cp 3-5 nematodes have a competitive strategy
(k-strategy) with a long life cycle, reproduce weakly, and are sensitive to external disturbance [11].
The abundances of cp4 groups in the medium and large gaps were significantly higher than those in
the closed canopy and small gaps, indicating that the competitive strategy changed with gap size in the
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present study. Consistent with our second hypothesis, forest gaps significantly affected the functional
diversity of the soil nematode communities in our experimental sites. The maturity indices (MI,

∑
MI,

and MI2-5) were significantly lower in the closed canopy than in the forest gaps, indicating that the
soil microenvironment and soil nematode community structure in the closed canopy differed from
those in the forest gaps. Moreover, the MI values gradually increased from the closed canopy to the
large gaps, which suggested that a continuous change in the functional diversity of the soil nematode
community may occur between the closed canopy and forest gaps.

Bongers et al. considered that disturbance would increase the PPI/MI value of a soil nematode
community, whereas the PPI/MI value of an undisturbed natural environment would be lower than
that of a disturbed environment [33]. Plants optimally use nutrient resources when the PPI/MI values
are close to 0.9, whereas the PPI/MI values near 1.2 indicate slight nutrient disturbances [12]. As shown
in this study, the PPI/MI values of the closed canopy and small gaps were significantly higher than
those of the medium and large gaps (Table 3), which indicated that the environment of the medium
and large gaps was relatively stable or less disturbed. The reason for this finding may be that the
characteristics of the medium and large gaps are similar, such as the gap size, cause of the gap, gap
year, gap makers, and soil moisture (Table 1). Furthermore, according to the calculated EI and SI,
the nematode fauna can be divided into four quadrants, A, B, C, and D, where the values of EI and SI
vary from 0 to 100. When EI is greater than 50 but SI is less than 50 (A quadrant), the soil nutrient
status is good but the degree of disturbance is high, and the food web is subject to a certain degree
of disturbance. When both EI and SI are greater than 50 (B quadrant), the soil nutrient condition is
improved, the degree of disturbance is small, and the food web is stable and mature. When EI is less
than 50 but SI is greater than 50 (C quadrant), the soil nutrient condition is poor but the degree of
disturbance is small, and the food web is in a structured state. When both EI and SI are less than
50 (D quadrant), the soil nutrient condition is poor and the degree of disturbance is highest, which
causes stress to the environment and degrades the food web [36]. Nematode faunal analysis suggested
that the closed canopy belonged to quadrant A, the small and medium gaps belonged to quadrant
B, and the large gaps belonged to quadrant C (Figure 4). The results indicated that the degree of
disturbance (SI < 50) in the closed canopy was high, whereas it was low in the gaps. Moreover, soil
nutrient enrichment (EI) was close to 50 in all four treatments. Thus, the food web structure was more
stable and mature in the gaps than under the closed canopy.

5. Conclusions

In summary, this experiment investigated the effects of forest gap formation on the composition
and functional structure of the soil nematode community in an alpine forest. Our results suggested
that the changes in gap size caused slight changes in the composition, abundance, and diversity of the
soil nematode community. However, forest gaps showed significant effects on the functional diversity
of the soil nematode community. The maturity indices (MI,

∑
MI, and MI2-5) significantly increased

from the closed canopy to the large gap, whereas the PPI/MI values of the closed canopy and small
gaps were significantly higher than those of the medium and large gaps. Our results highlight the
conclusion that forest gap sizes have non-negligible effects on the soil nematode community in the
debris food web in alpine forests. Changes in the functional structure of the soil nematode community
due to gap formation may have profound effects for soil biogeochemical processes in alpine forests.
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