
Review

Catering Information Needs from Global to Local
Scales—Potential and Challenges with National
Forest Inventories

Annika Kangas 1,* , Minna Räty 2 , Kari T. Korhonen 1, Jari Vauhkonen 3 and Tuula Packalen 1

1 Natural Resources Institute Finland (Luke), P.O. Box 68, 80101 Joensuu, Finland;
kari.t.korhonen@luke.fi (K.T.K.); Tuula.packalen@luke.fi (T.P.)

2 Natural Resources Institute Finland (Luke), P.O. Box 2, 00791 Helsinki, Finland; minna.raty@luke.fi
3 Department of Forest Sciences, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland;

jari.vauhkonen@helsinki.fi
* Correspondence: Annika.kangas@luke.fi

Received: 16 August 2019; Accepted: 11 September 2019; Published: 12 September 2019
����������
�������

Abstract: Forest information is needed at global, national and local scales. This review aimed at
providing insights of potential of national forest inventories (NFIs) as well as challenges they have to
cater to those needs. Within NFIs, the authors address the methodological challenges introduced by
the multitude of scales the forest data are needed, and the challenges in acknowledging the errors
due to the measurements and models in addition to sampling errors. Between NFIs, the challenges
related to the different harmonization tasks were reviewed. While a design-based approach is often
considered more attractive than a model-based approach as it is guaranteed to provide unbiased
results, the model-based approach is needed for downscaling the information to smaller scales
and acknowledging the measurement and model errors. However, while a model-based inference
is possible in small areas, the unknown random effects introduce biased estimators. The NFIs
need to cater for the national information requirements and maintain the existing time series,
while at the same time providing comparable information across the countries. In upscaling the NFI
information to continental and global information needs, representative samples across the area are
of utmost importance. Without representative data, the model-based approaches enable provision of
forest information with unknown and indeterminable biases. Both design-based and model-based
approaches need to be applied to cater to all information needs. This must be accomplished in a
comprehensive way In particular, a need to have standardized quality requirements has been identified,
acknowledging the possibility for bias and its implications, for all data used in policy making.
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1. Introduction

International agreements and processes, such as United Nations (UN) Sustainable Development
Goals, UN Convention on Biological Diversity, UN Framework Convention on Climate Change,
and Forest Europe require versatile monitoring of forests. International reporting processes,
e.g., the Global Forest Resources Assessment (FRA) and Pan-European reporting for monitoring
sustainable forest management, have been developed to meet these international information needs.
These global monitoring processes are largely dependent on national forest inventories (NFIs).
NFIs produce statistics based on a large, representative sample. At the same time, the availability
of remote sensing material has enabled producing forest resources maps also based on smaller,
experimental datasets [1]. These maps are increasingly used as an information source for policy making
in addition to statistics. With a multitude of data available for decision making, it is more and more
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important that the decision makers have information on the quality of data used for decision making,
and understand the implications of the uncertainties on the decisions.

Forest information is produced according to two different approaches, namely design-based or
model-based approaches. The main difference between the two approaches is the reliance on the
probability sample and model [2]. In a design-based approach, all inferences are based on the sampling
design and known inclusion probabilities of the sampling units. While a model can be utilized in
estimation using model-assisted estimation, the model does not need to be correct to improve the
estimation efficiency. The design ensures design-unbiasedness, which means the parameter of interest
on average equals the population parameter over all the possible samples obtainable with the given
design. In the model-based approach, on the other hand, all inferences rely on an assumed model
that describes the population. While the probability sample may be recommended, it is not the
basis of inference. Instead, the validity of the inference depends solely on the validity of the model.
In this context, the question is about model-unbiasedness, which means that the expected value of the
parameter under the model equals the population parameter [3]. As it is never possible to state that a
given model is correct, no guarantee of unbiasedness can be given.

The model-based approach enables optimizing the field data selection process, again assuming
the model is correct. When it is not possible to obtain a probability sample, for instance when the plots
in a probability sample are hard to access, a model-based approach may be the only option. In the
model-based setting, the sampling design can be ignored, if the joint distribution of the variable of
interest and the indicator of the sample inclusion do not depend on the auxiliary variable used in the
model [4].

Traditional NFIs are based on field measurements using a design-based sample [5,6]. As NFIs
have been initiated to respond to national needs, the sampling design and variables measured vary
between countries [6]. To compare the national results between the countries or to sum up the national
results to the European or global level, harmonization between countries is needed. The need for
harmonization also includes the future projections of forests [7,8], especially due to the new policies
and reporting obligations related to international agreements on deforestation, biodiversity, and forest
carbon sinks and stocks.

The NFIs are constantly challenged by new information needs [9–11] resulting in an increasing
number of variables that are collected in an NFI. Thus, the methods applied in NFIs need to be
such that it is possible to cater for new needs when they emerge [10]. There is also an increasing
demand for information in varying scales [12] and for monitoring change [13]. The challenge is that no
single method can cater to all these simultaneous needs, but different approaches—both design-based
and model-based [14,15]—need to be utilized. For instance, at the smallest scale, at the pixel level,
the produced data are a map [16,17], which is always essentially model-based, irrespective if the field
sample is collected as a probability sample or not. The use of a multitude of methods can, in turn,
form a challenge in communicating the results and their accuracies [4].

The new remote sensing technologies and materials [18] have a great potential to improve the
accuracy of the provided information through using models in the estimation [19–21]. It will also
enable defining more efficient sample designs [22–24]. Specifically, remote sensing material enables
downscaling the results to local scales [12,25]. Linking remote sensing with NFIs also calls for
re-thinking the harmonization between countries.

Our aim is to review the potential of new data and methodology as well as challenges due to
the increasing demands of information at varying scales within and between NFIs. Within NFIs,
this review focuses on the potential of model-based and design-based estimators, challenges in error
estimation and change detection. Between NFIs, potential and existing challenges of harmonization
are considered. The discussion outlines the future development needs.
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2. Potential and Challenges within NFIs

2.1. Dependence between Scale and Inference

By definition, the primary objective in an NFI in each country is to produce country-level results
with known accuracy. However, in many countries, the NFI also produces information for the county
level, municipality level, stand level and map information at the pixel level [26,27]. From a statistical
point of view, the smaller scale estimates are small area estimators, which can be either design-based
or model-based.

In the case of design-based sampling, the small area estimation requires field observations from the
small area of interest. Those are used to calibrate the estimate according to the sample [28] (chapter 6).
Post-stratification, for example, can be used for small-area estimation, when the small area still has
reasonable amounts of plots in it [22,29,30]. Then, it is possible to have design-unbiased estimates for
both the mean and variance.

When the scale goes smaller, the pressure to use plots from outside the area (i.e., to use synthetic,
model-based estimators) increases [31]. A possibility in such a case is to utilize a composite of
model-based and design-based estimator [32]. In the extreme case, at the stand level, most stands have
zero plots and only a couple of stands have one (or more) plots. Then, a pure model-based approach
is the only possibility. For instance, the area-based method used in forest management inventory
is essentially a model-based method [27]. Thus, a model-based approach becomes more and more
important as the scale gets smaller. The approaches relying on prior information, such as Kalman filter
and/or Bayesian analysis might be used to enhance accurate results [33,34].

Using a model-based approach and borrowing strength from outside the inventory area, can
also introduce a possibility of bias [4]. This is manifested in the statistically significant differences
between the model-based and design-based estimators for the same small areas [35]. When the
number of plots within the area of interest diminishes towards zero, the risk of area-level bias increases.
Only approximate estimators of accuracy are then possible, as the true bias can never be estimated.
However, many ways to approximate the possible bias exist [36,37].

If it were possible to estimate an area effect for all of the areas of interest, it could be used to
estimate the bias component [29,38]. Often that is not possible, and for such a case, [28] (chapter 10.5)
has proposed using a group effect for a group or similar domains or areas. It would also be possible
to utilize the autocorrelation function and kriging-type estimation [31,39]. This means that instead
of a constant correlation within the area of interest, a correlation depending on the distance between
the plots is assumed. Both these approaches are based on a parametric model, while the predictions
are often carried out using a non-parametric approach, such as the k-nearest neighbors method
(k-NN) [40,41]. However, Lappi [31] (p. 1559) concluded that it is possible to use a variogram model to
calculate the variance for the small area results also using a k-NN method, and Opsomer et al. [42]
combine the use of a non-parametric trend to the random effects. On the other hand, Salvati et al. [43]
proposed a bias-robust estimator based geographically weighted regression. The bias-robustness
comes from the model giving larger weight to nearby plots.

The upscaling of design-based national forest inventories to continental or global levels are, in
principle, easy. If all the countries had a design-based sample, the global results could be calculated
by assuming a stratified sampling approach, where the administrational borders would serve as
stratum borders. The differences in the sampling designs and intensities are not problematic, and
analytical inferences are possible. Often, however, information for the large areas is obtained by
aggregating pixel-level results based on remote sensing to the scale needed. As the pixel level results
are model-based, so are the aggregated results. This means that the validity of the results lies solely
on the validity of a used model. Estimating a valid model requires representative data across the
area of interest. While it is possible to obtain such data with purposive sampling, a probability
design is more likely to provide the needed data. Even with a representative data, it is a challenge
to account for the differences in the conditions and forest types in a way that would provide even a
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near-unbiased model-based estimator in very large scales. With a purposive sample, a risk of unknown
and indeterminable bias is even higher.

Thus, the dependency on the model (and/or prior information) increases as the scale gets either
smaller or larger than the national level (Figure 1). The design-based approach is yet the most robust
at a national or regional case, as then it is possible to guarantee design-unbiased results. Therefore,
Chen et al. [44] argue that the design-based approach is a golden standard, which should be preferred.
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2.2. Measurement and Model Errors

Traditionally, the information from the field plots in a probability sample has been assumed to
be correct. However, the main variables of interest, such as the volume or above ground biomass,
have been predicted using a model, not measured. Therefore, the model errors should be accounted
for in the analyses [45–47], even though the contribution of such errors may be small compared to the
sampling error. The model errors involved can also be due to the growth and yield models used in
scenario predictions [48]. In addition, there may be measurement errors in the predictors that have a
contribution [49].

Measurement errors have also been assumed to be negligible in the forest inventory, and the
measurement errors in the basic variables such as diameters and heights measured with electronic
devices are, indeed, small [50]. However, there is increasing interest in making the measurements
using a terrestrial laser scanner TLS or mobile laser scanner MLS, and if those are used in the field data
collection, the measurement errors are no more negligible. For instance, the tree heights and diameters
measured with TLS or MLS can be seriously biased [51,52] and correct inclusion probabilities of trees
may be difficult to obtain [53]. If such devices become common in NFI, including the measurement
errors into the uncertainty analysis becomes important.

Chen et al. [54] defined model-related errors that affect the results as (1) model residual errors,
(2) model parameter errors and (3) model predictor errors (see also [55]). The relative roles of these
error sources depend on the scale of the analysis. For instance, while the residual errors of the
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models may be negligible in the large-scale estimation (national or regional level), they may well
be dominant in smaller scales. Chen et al. [44] stated that in the pixel scale (13 m × 13 m), the
uncertainty of the above ground biomass (AGB) estimates due to the residual errors is 55.8%, but
when the scale is increased to 100, 200 and 300 m cells, this uncertainty reduces to 11%, 6.5% and
5.1%, respectively. However, this analysis is carried out assuming a zero autocorrelation between the
plots, resulting from the 2700 m distance between the plots in the data used. In Finnish NFI using
cluster sampling, the smallest distances between the plots are approximately 200–300 m, and a small
but clear autocorrelation can be detected [56,57]. The higher the autocorrelation, the larger would be
the contribution of the residual errors of the models in scales larger than the pixel level. However,
McRoberts et al. [39] concluded that in scales larger than 75 km2, it is safe to ignore the autocorrelations
between the pixels in the predictions in model-based estimation. When considering tree-level models,
it is typical that the trees have a within-plot correlation (or plot effect [58]) with a similar effect than a
short-term autocorrelation.

The estimation errors of the parameters are, in principle, due to the sampling errors in the
data [15,44]. However, in reality it would be possible to interpret the parameter errors as model
misspecification errors rather than as random errors. This is the case with regard to the tree level
models, which are typically estimated from one specific dataset and then the same model is used in
all future applications. If new models are estimated for each inventory, the interpretation of random
parameter errors is more fitting. This may be the case with the pixel level models that are used to
predict the AGB from selected airborne laser scanning (ALS) metrics for each campaign separately.

The errors in the predicting variables may be due to ALS points hitting birds or power lines or
other obstacles [44]. Other important errors are the positional errors, which reduce the correlation
between the auxiliary data and field plot data [59]. Saarela et al. [59] concluded that the model-based
approach is less susceptible to the positional errors. The model-based and model-assisted estimators
they compared have one term in common, namely the model predictions ŷ for each pixel. In addition,
the model-assisted estimator has another term, which is designed to calibrate for the potential model
errors using the observed sample, namely 1

n
∑n

i=1 (yi − ŷi). For the positional errors to have a larger
effect on the model-assisted results means that the observed yi used for calibration has even larger
error than the predicted ŷi compared to the true value. This is likely an anomaly from the way the
location errors are simulated.

The measurement and model errors can be introduced into the variance estimators of NFI through
a so-called hybrid approach [2,60], including design-based sampling errors and model-based sampling,
measurement or model errors. In the hybrid approach, the assumption is that there is a probability
sample, but model-based estimation is used within the sampling units [46]. For instance, such sampling
unit may be a strip of area where the laser scanning is available and the variable of interest (e.g., AGB)
is estimated for the whole strip area using a model [61]. Then, both the errors due to sampling and
the model need to be accounted for in the inference. It is also possible to combine a probabilistic
and non-probabilistic sample [62] using the hybrid approach. However, the most obvious use of the
hybrid inference would be introducing the model errors from the volume and biomass models into the
analysis [58].

In a stand or small-area level, there may be random effects (stand-effect or area-effect) in the
population. If those effects are ignored in the modelling phase, the resulting model is not correctly
specified for the small areas of interest. This results in biased small-area estimators and introduces
underestimates of variance [63]. In the studies carried out so far, the random part of the model error
has been included, but the possible model misspecification bias and its importance have been mostly
ignored (except for the included random effects in [63]).

Field plots are expensive, and therefore it would be tempting to use the data collected as a side
product, such as data collected by logging machines instead of field plots [64]. Another option would
be to utilize the data collected with very high-resolution remote sensing data, such as data collected
with unmanned aerial vehicles (UAVs), instead of field plots. However, while such data may be cheap,
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the resulting data may be biased (due to e.g., omission of small trees or missing the tip of trees) and
the uncertainty due to measurement and prediction errors is markedly higher than the actual field
data. Using such data obviously introduces additional variation into the prediction models. On the
other hand, the possibility to use more plots than would be possible when using sole field plots may
alleviate this problem. However, if the data used as training data are biased, all the resulting forest
data from the national scale to pixel scale will be biased. The importance of such bias is dependent on
the application.

The most important source of error, however, may be the uncertainty concerning the model
specification, i.e., the form of the function and the predictors selected to describe the relationship.
For instance, [49] conclude that with the regional biomass models, the relative proportions of standard
error due to the measurement, model and sampling errors were 5%, 2% and 93%, respectively.
When they tested a common model for the regions, with models predicting the proportion of biomass
from the bole, branches, bark and foliage, the respective proportions were 13%, 55% and 32%, i.e.,
the contribution of model errors was much higher. This directly reflects the uncertainty concerning
the model specification. Partly, the large differences could be shown to result from extrapolation to
extreme values [49].

2.3. Change Detection

One of the most important tasks of an NFI is to provide information of the change in the forests.
This can be carried out using either a direct or indirect approach [13]. A direct approach means that
plot-level information on the growth and drain, for instance, is available. The plot-level information can
be based on re-measuring the sample plots (permanent plots) or taking increment cores for estimating
the growth and measuring the stumps to estimate the harvests on temporary plots. If neither is
available, the only possible approach is indirect, meaning that change is estimated from the difference
between the two state estimates at given time points, t1 and t2. The indirect approach is problematic
in a sense that it is not possible to separate the components of growth: Survivor growth, ingrowth,
mortality, and harvest [65]. Utilizing remote sensing and model-assisted estimation is possible also in
the case of change estimates, with the additional complications of the plots not shared, partially shared
or completely shared between the two inventories [13].

3. Harmonization between NFIs

3.1. Implications on Measurements

If all countries had standardized definitions and measurements in their NFI, international
reporting would be straightforward. Due to the regional differences in forests, traditions, economies
and information priorities, different definitions, thresholds and measurement practices have been
used in the data collection. The most critical discrepancy in harmonizing the inventory results has
been due to the different definitions, like the definition of trees and forests [5,6]. As the forests and
forest conditions differ, it is a challenge to introduce definitions that would suit the purposes of all
countries [66]. It is already a challenge to have a common definition to a tree as opposed to a shrub [67].

The variation in the measurement thresholds is great. A well-known example of varying measuring
conventions is the minimum threshold for the diameter at breat height (dbh) of trees to be included in
the definition of growing stock. In Europe this varies from 0 cm in the Nordic countries to 12 cm in
Switzerland [6,66]. Obviously, in each country there have been good practical reasons for selecting the
minimum thresholds for measurement. In the relatively sparse northern forests, even low thresholds
for trees cannot lead to an overwhelming work load in the measurements. In more dense forest
ecosystems in the south, the same thresholds would lead to an impractical amount of work, and may
produce irrelevant data for the original purpose of data collection. Further, a tree of a given size plays
completely different role in different vegetation zones and forest types. A tree of 15 cm in diameter is a
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dominant tree in a mature forest in the most northern forests of Europe, where as a tree of the same
size in most forest types in southern Europe is a youngster that recently passed the seedling stage.

Transferring from national definitions to common ones is not a straightforward solution. This could
mean a loss of nationally important information or a national time series of forest inventories [68].
In those kinds of situations, the discrepancies need to be harmonized using a conversion of the end
results rather than standardization of the original measurements [69].

In order to harmonize traditional design-based NFIs for international reporting, European NFIs
have bridged national and reference definitions [68,70]. The bridging functions can be either reductive
or expansive. In the case of a reductive bridging function, the original measurements are reduced to
the smallest common nominator which serves as a reference definition [66,68]. It would mean that
when the minimum diameter in Switzerland is highest, all other countries provide their inventory
results so that all the information from trees smaller than 12 cm is used for national purposes, and only
the results for the largest trees are used for international reporting. While this produces harmonized
results, it also loses a considerable amount information that could potentially be important, including
information from seedling stands or coppice stands.

In a case of expansive harmonization, the missing data are predicted using an auxiliary data
source. For instance, instead of discarding all the measured small trees in the previous example,
it would be possible to predict the number of small trees in a plot for the countries applying higher
than the minimum measurement threshold, i.e., to use the smallest diameter as a reference definition.
This would mean no loss of information in harmonization, but on the other hand it would mean
reduced accuracy of the results, as a part of the data is based on predictions rather than measurements.
It may also be difficult to obtain the additional data for such bridging functions, and using the data,
for instance, from neighboring regions or countries may lead to a regional or national level bias.
A compromise solution would then be to utilize a minimum threshold that is most common in the
countries, which would mean the minimum amount of harmonization needed. Then, part of the
countries would utilize reductive and part expansive bridging.

For biodiversity considerations, it would also be important to produce harmonized data on
other plants than trees, e.g., shrubs. However, due to cultural, economic and ecological differences
between the countries, there are large differences between the countries in which species are monitored,
if any [71]. While differences between the measurement scales can be bridged, no bridging is possible
without data. Another complicating fact is that a species may occur as a tree in one vegetation zone or
forest type and as a shrub in another. In this situation, a meaningful international comparison requires
also understanding of the ecosystems.

3.2. Implications on Information Contents

Even if the plot measurements were standardized, there would still be need for harmonization
in the growing stock volumes. Most countries have some kind of volume models, but the models
may have different explanatory variables (dbh, dbh and height, or dbh, height and upper diameter)
and produce volume estimates with varying accuracy. Furthermore, the functional forms of volume
models vary [72].

The tree-level volume estimates also vary in the sense that different parts of the stem are included
in the estimates. The bole is included in all countries, but in some countries, the growing stock volume
includes also the volume of the stump, tree top (volume from bole top diameter to the tip), and even
large branches [72]. The additional challenge is introduced by different definitions for the stump height
and for the bole top diameter. To overcome these differences, a reference definition needs to be defined,
which can be used as a basis for bridging.

The reference definition developed for the volume included the stem volume above the stump,
but not the branches [67]. Therefore, it is most useful for coniferous species with a clear stem, but might
be less useful for broadleaved trees [72]. This may be a problem, as the branches can be utilized in the
same way as the bole, and they may be important also from the greenhouse gas reporting point of view.
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Therefore, a set of reference definitions rather than just one definition, allows harmonization for different
purposes while preserving the information content in the national level models (Figure 2). The bridging
functions to as many as five different reference volumes have been estimated [72]. The differences
between the volume models developed in each country and the reference volume defined in the
harmonization process can be covered by using bridging functions or generic volume models.
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Making a bridging function requires additional data in the case that an expansive bridge is used.
In the case that no such auxiliary data exist, the bridging functions from similar conditions from other
areas or countries may be used [68]. This, in turn, involves a risk of introducing bias into the estimators
(Figure 2).

3.3. Implications on Modelling

The generic models applicable to all countries could be another solution. Even if the model
form was fixed, the estimated national models can show large discrepancies [73]. In such a case,
using a larger dataset across the countries might produce more stable volume and biomass models.
However, the generic models may also mean less accurate results in the level of smaller areas, even if
data are available from all countries. This would be the case if there is an unaccounted-for gradient
(or area-effect) in the tree volume or biomass across the countries [74]. It is possible that part of
such a gradient can be removed by introducing additional variables, such as the stand age, into the
equations [75], but such data may not always be available. There may also be a gradient in time which
would reflect the effect of changes in the forest management in time. Using models based on old data
would then possibly introduce time-dependent (or forest management customs dependent) bias to the
predictors across the whole area, rather than just in the country with the old data.

A H2020 project DIABOLO (Distributed, integrated and harmonized forest information for
bioeconomy outlooks) has been working on the harmonization of the NFI results from different
perspectives. The results show important differences between the national and generic volume
models [76], which would lead to regional biases if the generic models were used instead of national



Forests 2019, 10, 800 9 of 17

models. It can be assumed that generic models are useful for those countries with no models or very
poor-quality models, but may result in worse estimates for the countries with accurate and up-to-date
national models. On the other hand, the misspecification of such generic models could potentially be
reduced using similar approaches as in a model-based small-area estimation, for instance, the locally
weighted parameters for the models [43].

3.4. Implications on Mapping

Spatially located information, i.e., a forest resources map, is useful for many applications.
For instance, information on the distribution of forest ecosystems may be of importance for monitoring
the provision of ecosystem services [8,77]. The problem is that the relevant indicators for one ecosystem
service may well be quite different for different countries. For instance, when producing map
information on the production of recreation possibilities at an EU level, while the service in itself may
be the same, the indicators vary, because people in different parts of the EU appreciate different kinds of
recreation areas. Then, there is an obvious trade-off between producing meaningful data at the national
level and producing comparable information at the EU level. It needs to be questioned, if combining
different types of land cover classes under the label “recreation area” is a better harmonization than
defining it separately e.g., recreation forests, meadows and moors.

The well-established classification products, such as CORINE (coordination of information on the
environment), produce harmonized land use land cover maps across Europe. However, the level of
details in the product is quite low for making meaningful inferences at the regional or even national
level. For instance, in general, the forests are classified to three classes: Broadleaved, mixed and
coniferous forests [78]. However, CORINE maps may be useful for visualizing what is happening to
the extent of the forest at a European level. In fact, the Corine Land Cover (CLC) 2018 map is already
the 5th successive map since the project was initiated in 1985.

For national and regional level inferences, more details are typically needed. For instance, in Italy,
a forest type map with 14 classes based on the dominant species are used instead of the classes of the
CORINE product [79]. However, at the local level, a classification system of higher levels in detail still
might be needed. If the bridging can be carried out by combining the more detailed classes to new ones,
harmonized estimates can be obtained with a little work, as in reductive bridging. However, if the
local classes have been developed for another purpose, and the new classes cannot be obtained by just
combining the old classes, problems can arise [79]. For instance, the number of classes locally used
may be different. Additionally, when the harmonized information is produced from the classifications
made for different purposes, the resulting maps may not coincide well.

3.5. Implications on Change Estimation

In addition to the differences in measurements and information contents, NFIs have additional
discrepancies that affect specifically the change estimation [65]. For instance, depending on the country,
the inventory may be based on permanent plots, temporary plots or a combination of these two
approaches. The inventory can be annual (plots are annually measured from the whole country) or
discontinuous so that after one inventory is completed, there may be gap years without measurements.
In addition, the periodicity, i.e., the time between two measurements may vary. This, in turn has an
effect on the periods for which the growth estimates can be calculated. Therefore, an important issue
in the harmonization is to allow for all countries to report the growth for the same periods.

If the growth estimation is based on temporary plots, it is difficult to separate the growth
components. However, even though the growth components could be separated, some countries have
chosen not to report the growth of the trees that died or harvested during the period considered [65].

3.6. Implications on Future Projections

The data for the projections vary from the use of NFI data sources in the countries where NFIs have
been established and have run for some time, to the use of standwise forest inventory data and yield
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tables [7]. Due to the resulting variation in the definitions, the assumptions and modelling methods,
up- or downscaling, the results obtained at a given scale may lead to biased estimators of wood supply
in another scale used for evaluation. Furthermore here, common definitions are of utmost importance.

In the DIABOLO project, a forest biomass supply assessment template with associated guidelines
and definitions was developed to promote the interpretation and inter-comparisons of different forest
biomass supply assessments [80]. In this work, the earlier concept of “Forest Available for Wood Supply”
(FAWS; [81,82] was found useful. The categories of “forest where any legal, economic, or specific
environmental restrictions do not have a significant impact on the supply of wood” and “forest where
legal, economic or specific environmental restrictions prevent any significant supply of wood” were
distinguished as FAWS and “Forests Not Available for Wood Supply” (FNAWS), respectively [80].
In addition, “Forests with Restrictions on Availability for Wood Supply” (FRAWS) can be distinguished
as forests where forestry operations are restricted but (near-natural) management and therefore also
wood supply is possible [83]. While the definitions for FAWS and FNAWS are established by many
NFIs [81,82], FRAWS are not standardly distinguished and the availability of wood projections for
these areas may include many more uncertainties. When the categories are distinguished in the NFI
data, they can be treated with different assumptions regarding forest management and, subsequently,
more realistically accounted for the production possibilities of wood or other ecosystem services [83,84].
Vauhkonen and Packalen [85] additionally demonstrated that simulating shifts between these categories
can be a feasible way to account for the effects of the assumed future land use policies.

The use of NFI data as an input for European-wide forest projections has been of interest for outlook
studies [86,87]. Packalen et al. [88] recognized that studying actual forestry dynamics-driven effects
required that the simulation tool could be more flexibly tailored with respect to country-specific forestry.
The European forestry dynamics model (EFDM; [88]) that was developed to simulate forest development
based on data from European NFIs was parameterized to include even-aged [88], uneven-aged [89]
and, combining multiple Markov chain models, any-aged forest management [83]. In DIABOLO,
the EFDM was used for the projections of 20 countries following the method described by [83] to
adapt the EFDM to the forest structure prevailing and the management applied in each country [90].
The results obtained from this test were considered comparable between country groups such as
those corresponding to [86] or at the European level due to the harmonized definitions, assumptions,
and modelling methodology applied. However, because of maintaining country-specific forestry
practices, the results retain the forestry characteristics typical to the initial countries. Further studies
should consider a potential risk of over-harmonizing (see [90]). As the sustainability constraints for
forest use differ between countries in Europe, their full harmonization would make sense only if the
forestry policy across Europe was also harmonized.

4. Discussion

4.1. Maintaining the Time Series of NFIs in Changing Demands

With the increasing demand for data, the times series data collected for NFIs have shown their
importance. For instance, in biodiversity monitoring, an important source of information concerning
the changes in the environment are the NFI data. For example, in Finland, the NFI data have been
available since year 1921 enabling the monitoring of some biodiversity indicators, such as large,
old trees [91]. Inevitably, the importance of remote sensing data is increasing also in considerations
of the time series of biodiversity [92], but the importance of field information is not diminishing.
Nevertheless, the provision of meaningful data on the different ecosystem services remains as a
challenge for the NFIs [77]. In the case of ecosystem services, the fact that the meaningful scale varies
between the services is part of the challenge.

In Europe, forest policy is mainly decided at the national level, even though international
agreements play an increasing role in outlining the policies. For the national level policies, e.g., forest
programs, monitoring data harmonized over time are the most relevant. It is not enough to harmonize
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between countries. The results between subsequent inventories need to be harmonized if changes
in the classifications, measurements or definitions are to occur. The well-established harmonization
methods that can be applied without breaking the national time series exist [68].

4.2. Models as a Part of Forest Inventory

The models have an important role in calculating the inventory results. The uncertainties of models
have always been acknowledged, but little has been done to include them in the uncertainty assessments.
In the era of model-based and hybrid inference approaches, introducing the model uncertainties into
the forest resources assessments is likely to increase in the future. However, the uncertainty due to
model specification has been largely ignored until recently, but it may have a large effect on the accuracy
of the harmonized inventory results [44]. The importance of the model specification, especially on the
uncertainty in long run projections, suggests using a bridging function harmonizing the end result
rather than the common generic models and standardized measurements. The role of bias due to
model misspecification in general, and the possibilities of reducing such biases with locally weighted
parametrizations should be subject to further research. In other words, the model would be generic,
but the regional variation would be taken into account, and, consequently, the results would be both
harmonized and accurate across the countries.

Thus far, the models utilized in the NFIs for map production and model-assisted estimation,
for instance, have ranged from parametric regression to non-parametric k nearest neighbors. There is
currently considerable interest in using the machine learning algorithms in remote sensing applications.
The deep leaning methods, such as convolutional neural networks, are gaining more and more
interest [93]. It is yet to be shown, if these methods would be applicable and/or useful in the context
of forest inventory. If the new techniques enable formulating new metrics that would improve the
accuracy of the models, utilizing the new methods might prove useful. For instance, utilizing remote
sensing time series data, hyperspectral data or spatial neighborhood data might benefit from such
new metrics.

Other methodological advancements currently under considerable interest are the Kalman
filtering methods. These methods have so far mainly been utilized in estimating the pixel level or map
results [34], but its application in the NFIs would involve using the plots measured in the previous
inventory in addition to the current ones to improve accuracy [94]. Assumedly, the usefulness of this
prior information is related to the scale of interest, sample size available and also the utilization of
other auxiliary data. Moreover, the possibilities of Bayesian filtering in general, i.e., also for analyzing
the past and predicting the future, are largely unacknowledged in the context of NFI.

4.3. Maintaining the Coherence of Results in Multiple Scales and Methodologies

Decision making at different regional levels benefits from the data that are harmonized over the
regions. The cited literature showed that there are statistical methods that can be used for planning
and implementing the data collection in such a way that the same data can serve different levels.
Further, the advanced estimation methods, such as the model-supported inference, can and should
be applied to improve the estimates/predictions based on the data. New remote sensing data with
improved geographic and temporal resolution are available for auxiliary information.

The main challenge in the future is to be able to provide a coherent combination of results and
methodologies in the various scales, so that the results are useful and trustworthy for the users of the
data. There can be problems where the municipality level results do not add up to the regional level,
or the regional level results do not add up to the national level results. There may be cases where some
variables are calculated using one methodology such as model-assisted estimation, while others are
estimated using some other method, such as post-stratification. For some variables, prior information
from the previous inventory may be useful, while for others utilizing only the most recent information
is the best option.
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Great challenges remain in applying the advanced statistical methods in practice. The methods
need to be implemented in forest information systems in such a way that utilization of the methods
is possible. Examples exist at a national level (Sweden, Finland, Switzerland), and now for the first
time at a European level, for instance, the nFiesta package which includes tools for imputation and
updating [95].

In addition to the statistics of current forest resources, future projections are a major potential use
for NFI data. Notably, the outcomes of future projections vary depending on the scenario assumptions,
i.e., multiple factors that are not directly related to the current estimates of forest resources as provided
by the NFIs. For example, future forest resources and the degree of them that is available for different
uses, such as wood production or carbon sequestration, evolve according to the markets and climate.
Further, the factors that are unknown at the moment, like future management regimes and even
ownership structures, can have complex interactions with the development of forest resources.

The projections often assume that future management practices and their intensities are realized
according to silvicultural instructions (also called as handbook harvesting by [96]). By comparing
handbook harvests to those realized amongst the regions, owners, tree species and diameter classes,
Schelhaas et al. [96] concluded that assuming a handbook type of harvesting is not feasible, if the
scenarios aim at capturing realistic management patterns. Vauhkonen and Packalen [83] demonstrated
the magnitude of assuming either handbook (in their study, schoolbook) or business-as-usual harvesting
probabilities and different harvest allocations in their projections of future forest biomass supply
in Finland. Nevertheless, the assumptions related to future forest management may be fixed in
computation rules, of which the “continuation of forest management” as applied in the LULUCF
Regulation (The Regulation on the inclusion of greenhouse gas emissions and removals from land
use, land use change and forestry, EU, No 2018/841) is a recent example. Several studies have already
considered the effects of this principle from different points of view [84,97,98].

5. Conclusions

While National Forest Inventories were designed to provide information for the regional and
national scales, information is increasingly required at different scales from the pixel level to the global
level. This introduces challenges, as to cater for all these needs, a toolbox of different methods needs to
be adopted. The design-unbiased results at the regional and national scales can be obtained, but both
upscaling and downscaling the information requires a model-based approach with possibly biased
estimators. Acknowledging the potential for bias is important both in the use of forest resources maps
for decision making and also in harmonizing the NFI results between the countries.
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