
Article

Estimation of DBH at Forest Stand Level Based on
Multi-Parameters and Generalized Regression
Neural Network

Runkai Zhou 1,2,3, Dasheng Wu 1,2,3,* , Ruyi Zhou 1,2,3, Luming Fang 1,2,3, Xinyu Zheng 1,2,3 and
Xiongwei Lou 1,2,3

1 Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and
Intelligent Equipment, Lin’an 311300, Zhejiang, China

2 Key Laboratory of Forestry Intelligent Monitoring and Information Technology Research of Zhejiang
Province, Zhejiang A & F University, Lin’an 311300, Zhejiang, China

3 School of Information Engineering, Zhejiang A & F University, Lin’an 311300, Zhejiang, China
* Correspondence: 19940019@zafu.edu.cn; Tel.: +86-139-6802-3105

Received: 10 July 2019; Accepted: 2 September 2019; Published: 6 September 2019
����������
�������

Abstract: The diameter at breast height (DBH) is an important factor used to estimate important
forestry indices like forest growing stock, basal area, biomass, and carbon stock. The traditional
DBH ground surveys are time-consuming, labor-intensive, and expensive. To reduce the traditional
ground surveys, this study focused on the prediction of unknown DBH in forest stands using existing
measured data. As a comparison, the tree age was first used as the only independent variable in
establishing 13 kinds of empirical models to fit the relationship between the age and DBH of the
forest subcompartments and predict DBH growth. Second, the initial independent variables were
extended to 19 parameters, including 8 ecological and biological factors and 11 remote sensing
factors. By introducing the Spearman correlation analysis, the independent variable parameters
were dimension-reduced to satisfy very significant conditions (p ≤ 0.01) and a relatively large
correlation coefficient (r ≥ 0.1). Finally, the remaining independent variables were involved in the
modeling and prediction of DBH using a multivariate linear regression (MLR) model and generalized
regression neural network (GRNN) model. The (root-mean-squared errors) RMSEs of MLR and
GRNN were 1.9976 cm and 1.9655 cm, respectively, and the R2 were 0.6459 and 0.6574 respectively,
which were much better than the values for the 13 traditional empirical age–DBH models. The use of
comprehensive factors is beneficial to improving the prediction accuracy of both the MLR and GRNN
models. Regardless of whether remote sensing image factors were included, the experimental results
produced by GRNN were better than MLR. By synthetically introducing ecological, biological, and
remote sensing factors, GRNN produced the best results with 1.4688 cm in mean absolute error (MAE),
13.78% in MAPE, 1.9655 cm for the RMSE, 0.6574 for the R2, and 0.0810 for the Theil’s inequality
coefficient (TIC), respectively. For modeling and prediction based on more complex tree species and a
wider range of samples, GRNN is a desirable model with strong generalizability.

Keywords: diameter at breast height (DBH); empirical model; multi-parameters; multivariate linear
regression (MLR); generalized regression neural network (GRNN)

1. Introduction

In forest monitoring, the diameter at breast height (DBH) is the diameter of a cross-section of
a tree trunk 1.3 m above the ground. The DBH is an important factor used to estimate important
forestry indices like forest growing stock, basal area, biomass, and carbon stock. The traditional DBH
ground surveys effectively provide objective and reliable monitoring and managing information for
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forest resources [1–4], but they are time-consuming, labor-intensive, expensive, and hard to implement,
particularly in mountainous and forest areas [4].

The establishment of DBH prediction models has mainly been based on stand growth models.
Three kinds of models are frequently used: Empirical models, process models, and hybrid models [5].
Empirical models require some biological factors such as tree height, age, and crown width as
independent variable sets, and introduce some regression estimation methods, such as curve, Gompertz,
Schumacher, or Richards models, in estimating DBH [6–10]. Although their construction is intuitive
and simple, the variability of the empirical relationship between the dependent and independent
variables means the empirical models are less adaptable. By introducing physiological and ecological
factors, such as climate, precipitation, and soil, the process models improve the ability to simulate stand
growth [11]. The inclusion of many physiological and ecological factors produces highly complex and
inflexible process models, which leads to difficulties in meeting the actual requirements. In combining
empirical models and process models, hybrid models—which include the linear mixed effect model
and the nonlinear mixed effect model—have better estimation accuracy and adaptability. However,
the combination further increases the complexity and flexibility of the models.

Artificial neural networks (ANNs) can be effectively used to solve nonlinear problems [12], such
as the prediction of forest growth. To find more effective methods for forest growth estimation, many
experts and scholars have introduced ANN models into the field of forestry for the dynamic monitoring
of forest resources and the simulation of forest growth process [13–15]. Compared with traditional
stand growth models, the backpropagation neural network (BP-NN) model provides the best prediction
effect to fit and analyze the growth of tree DBH [16–18].

Compared with the BP-NN model, the generalized regression neural network (GRNN) model
has the advantages of a simpler structure, fewer parameters, a faster prediction speed, and less
computational complexity [19]. Correspondingly, some scholars have used the GRNN model to
estimate forest parameters [20,21].

Scholars have found that DBH is strongly affected by environmental factors, such as topography,
soil, and climate [22–27]. Pach et al. showed that at fertile mountain sites and highland forest sites, fir
trees reached the highest growing stock [23]. Li et al. showed that the DBH growth of natural Korean
pine forest is affected by topographic factors, particularly the elevation and slope direction [24]. Ou
et al. found that DBH growth is correlated with the slope direction, soil hydrolytic nitrogen, dominant
tree height, average tree height, and tree density [25]. Yu et al. and Wang et al. found that temperature
and precipitation affect the DBH growth of larch, spruce, fir, and Tianshan spruce [26,27].

The increasing resolution of remote sensing images has provided additional benefits for forest
monitoring. Zarco-Tejada et al. showed that the tree height can be obtained by three-dimensional
(3D) reconstruction from unmanned aerial vehicle (UAV) images [28]. Ibanez et al. reported that
various forest parameters, with the exception of DBH, can be directly obtained using light detection
and ranging (LIDAR) images according to the point cloud characteristics at different forest levels [29].
Using field data and vegetation index (VI) data derived from Systeme Probatoire d’Observation de la
Terre 5 (SPOT-5) satellite images, Muhd-Ekhzarizal et al. used some simple and multilinear regression
methods to estimate the aboveground biomass in mangrove forests [30]. Chrysafis et al. found
a strong correlation between the growing stock volume and three indices derived from Sentinel-2
images, i.e., the difference vegetation index (DVI), enhanced vegetation index (EVI), and perpendicular
vegetation index (PVI) [31]. Using ALOS-PALSAR L-band full-polarization data, Chowdhury et al.
estimated the forest growing stock volume (GSV) and showed that the GSV at forest stand level in
Siberia could be quantified with reasonable accuracy, and that temporal variations of GSV could be
better tracked [2]. Vegetation indices (VIs) reflect the dynamic changes of forests to some extent and
are helpful in predicting forest parameters. For example, Mou et al. indicated that the normalized
difference vegetation index (NDVI) is most sensitive to changes in the canopy leaf area index and
Laurin et al. added NDVI values to aboveground biomass estimations to obtain better results [32,33].
Han et al. showed that the vegetation indices from different remote sensing data sources have different
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separability from ground objects [34]. Reyadh et al. found that a similar variability in the average
derived NDVI from different remote sensing data sources, but the average derived NDVI values were
different [35]. Buheaosier showed that the range of NDVIs is related to the spatial resolution of remote
sensing data sources [36]. However, limited by a lack of human power, high costs, weak endurance
capability, and a small communication range, UAV remote sensing and radar remote sensing are still
difficult to apply to large-scale forest monitoring [37,38]. Furthermore, airborne imagery is easily
affected by wind power and terrain, and is vulnerable to air traffic control [39]. In China, especially in
the south regions, the weather is usually changeable, and the terrain is usually complex, hence airborne
imageries are still difficult to be applied in large-scale forest monitoring. Therefore, satellite remote
sensing images remain the main supplementary data resource for dynamic monitoring of large-scale
forest resources in China.

During the estimation or prediction of DBH at the forest stand level, the data from the permanent
plots (the basic units of national forest inventory) are frequently chosen to validate the various
models [40,41]. However, in China, the number of subcompartments is much larger than the number of
permanent plots. To reduce the cost of investigating, the estimation of DBH based on subcompartments
is more valuable than the methods based on permanent forest plots.

This study focused on the prediction of DBH at the subcompartment’s level in Longquan city.
The specific purposes of this paper are to: (1) Ascertain the suitable ecological factors, biological
factors and remote sensing factors which have great impact on DBH with a relatively low cost for
data-acquisition; (2) explore a more accurate and more generalizable model to predict DBH. The
specific steps of this study are as follows: First, using tree age as the only independent variable, 13
kinds of empirical models were established to fit the relationship between the tree age and the DBH of
forest subcompartments and predict DBH growth. Second, the independent variables were extended
to 19 parameters, including 8 ecological and biological factors (elevation, slope, aspect, soil depth,
humus thickness, age of tree, canopy density, and number of stems per hectare), and 11 remote sensing
factors (bands 2–7 (B2–B7) from the operational land imager (OLI) sensor of the Landsat-8 satellite,
NDVI, ratio vegetation index (RVI), DVI, EVI, and red index (RI)). The correlation analysis method
was introduced to reduce the dimensions of the independent variables separately for either the set of
ecological and biological factors or the set of remote sensing factors. Lastly, the remaining independent
variables were adopted for modeling and prediction of DBH of the forest subcompartments using a
multivariate linear regression (MLR) model and GRNN model.

2. Materials and Methods

2.1. Study Area

Longquan (Figure 1), as a southwest city in Zhejiang province in China, with a total area of
3059 km2, extends from 118◦42′ to 119◦25′ E, and 27◦42′ to 28◦20′ N. Due to its location in a central
subtropical monsoon climate zone, the city is warm and humid with abundant rainfall. Longquan is
the largest forested city in Zhejiang province, with 265,667 ha of forest resources, 14.56 million cubic
meters of forest growing stock, and a forest coverage of 84.2% [42].
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Figure 1. Location of the study area.

2.2. Research Data

The research data included the inventory data for forest management planning and design, the
digital elevation model (DEM), and remote sensing images from Landsat-8 Thematic Mapper (TM).
The 2017 inventory data were supplied by the Forestry Bureau of Longquan. The TM and DEM data
were both derived from the Geospatial Data Cloud [43].

Six factors were derived from the inventory data for forest management planning and design,
including DBH, soil depth, humus thickness, canopy density, number of stems per hectare, and age of
tree. Three factors, elevation, slope, and aspect, were obtained from DEM and 11 factors were derived
from the remote sensing images, including B2–B7, NDVI, RVI, DVI, EVI, and RI.

The inventory data, containing 58,910 records of forest subcompartments, were obtained from the
Forestry Bureau of Longquan in 2017. According to the rules for the technical operation of the inventory
for forest management planning and design in Zhejiang province (2014) [44], the original inventory
data acquisition procedure is as follows: Within the scope of the subcompartments, some standard
plots or angle gauge plots are laid out using random, mechanical, or other sampling methods, and
the corresponding forest factors are measured in the plots by professionals, and the subcompartment
factors are then calculated. Therefore, whether modeling or predicting, all the data—including DBH,
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soil depth, humus thickness, canopy density, number of stems per hectare, and age of tree—are
presented as an average value at the forest subcompartment level. The unsuitable data were removed
via preliminary processing, including records for zero-volume subcompartments which were located
in non-forest plots, or those with subcompartment DBHs less than 5 cm, which do not meet the
standard for measurement [44]. Therefore, the final inventory data included 35,763 records of forest
subcompartments. These were randomly separated into two groups, with one containing 25,000
records for modeling, and the remaining 10,763 records used as testing data for prediction (Table 1).

Table 1. Diameter at breast height (DBH) and the tree age of the inventory data used for modeling
and prediction.

Modeling Data Prediction Data

DBH (cm) Age (years) DBH (cm) Age (years)

Maximum 80 200 35 200
Minimum 5 2 5 3
Average 11.69 26.43 11.75 26.62

SD 3.48 12.07 3.35 12.07

The DEM data were originally obtained from the first version data of the global DEM (GDEM)
generated by the advanced spaceborne thermal emission and reflection radiometer, including four
images in 2009, with 30 m resolution, IMG data type, World Geodetic System 1984 (WGS84), and
the universal transverse mercator (UTM) projection. The data were obtained from the International
Scientific and Technical Data Mirror Site, Computer Network Information Center, Chinese Academy of
Sciences [43].

The remote sensing images, which correspond fully with the timeline of the inventory data, were
generated by Landsat-8 TM from Landsat satellites in 2017. There are two sensors in each Landsat
satellite that collect data from discrete portions of the electromagnetic spectrum, known as bands,
according to their wavelength. The Landsat-8 satellite’s images, with the UTM/WGS 84 coordinate
system, include 11 bands representing portions of the electromagnetic spectrum, consisting of visible
bands and invisible bands to the human eye. Here, the visible bands include 5 bands, i.e., band 1, called
the coastal band, with wavelengths of 0.433–0.453 µm; band 2, called the blue band, with wavelengths
of 0.450–0.515 µm; band 3, called the green band, with wavelengths of 0.525–0.600 µm; band 4, called
the red band, with wavelengths of 0.630–0.680 µm; and band 8, called the pan band, with wavelengths
of 0.500–0.680 µm. The invisible bands include 6 bands, i.e., band 5, called the near infrared (NIR)
band, with wavelengths from 0.845 to 0.885 µm; band 6, called the SWIR-1 band, with wavelengths
of 1.560–1.660 µm; band 7, called the SWIR-2 band, with wavelengths of 2.100–2.300 µm; band 9,
called the cirrus band, with wavelengths of 1.360–1.390 µm; band 10, called the TIRS-1 band, with
wavelengths of 10.6–11.2 µm; and band 11, called the TIRS-2 band, with wavelengths of 11.5–12.5 µm.
The spatial resolution of the bands is mostly 30 m except for band 8, which contains panchromatic data
with a resolution of 15 m, and bands 10 and 11 provide data collected at a 100 m resolution.

3. Methods

3.1. Data Preprocessing and Integration

The geometric correction, radiometric calibration, and atmospheric correction of Landsat-8 TM
images were handled by ENVI 5.3 (Exelis Visual Information Solutions, Boulder, CO, USA). Afterwards,
VI was calculated from the processed images by the band math tool in ENVI 5.3. In ArcGIS 10.2
(Environmental Systems Research Institute, Redlands, CA, USA), the DEM data and remote sensing
data were extracted based on each subcompartment. For modeling and prediction, all the preprocessed
data, including the inventory data for forest management planning and design, DEM data, and remote
sensing images from TM, were integrated into the same relational database.
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3.2. Empirical Model

The traditional models used to predict DBH of the forest subcompartment are usually based on
the relationship between DBH and the independent variables of tree age, height, and crown width.
However, the costs of data-acquisition of the height and crown width of the trees are quite high in
practical measurement. In contrast, the tree-age of the subcompartment refers to the average tree-age
of the dominant species which is usually stable in a relative short period. In this way, as long as the
initial values of the tree age are obtained successfully, only 1 needs to be added for each year after the
measurement. Thus, the cost of data-acquisition is relatively low. Therefore, the 13 empirical models
based on the age–DBH model that use tree age as the only independent variable [45–48] were selected
to predict DBH in this paper (Table 2).

Table 2. The 13 empirical models based on the age—diameter at breast height (DBH) model for the
prediction of DBH.

Model Name Equation

Linear model y = a + bx
Logarithmic curve model y = a + b ln(x)
Reciprocal curve model y = a + b/x

Conic model y = a + bx + cx2

Cubic curve model y = a + bx + cx2 + dx3

Compound curve model y = abx

Power function curve model y = axb

S-shaped curve model y = exp(a + b/x)
Growth curve model y = exp(a + bx)

Exponential curve model y = a exp(a + bx)
Logistic curve model y =

(
1
u + abx

)−1

Gompertz model y = a exp(−b exp(−cx))
Schumacher model y = a exp(−b/x)

Note: y denotes the DBH of the forest subcompartments, x is the age of tree; a, b, c, and d are the parameters to
be estimated.

3.3. Correlation Analysis

The nonparametric test is an important part of statistical analysis methods that is used to infer
the population distribution using the sample data in situations where the total variance is unknown
or uncertain. As the total variance in advance was unable to be estimated, the nonparametric test
was preferable for inferring the population distribution. The Spearman rank correlation analysis
is a specific method used to implement the nonparametric test to estimate the correlation between
two variables. Here, the observed values of two variables needed to be paired with the graded data
originally or converted from the observed data of the continuous variables without considering the
overall distribution pattern and sample size of the two variables. The formula for calculating the
correlation coefficient of the Spearman rank is shown in Equation (1), and the calculation is based on the
rank of the value, rather than the value itself. The calculation was conducted in SPSS 20 (International
Business Machines Corporation, Armonk, NY, USA) using the double tail test.

r =

n∑
i=1

(Ri −R)(Si − S)[
n∑

i=1
(Ri −R)

2 n∑
i=1

(Si − S)
2
] 1

2

(1)

where Ri is the rank of the ith observed value for variable x; Si is the rank of the ith observed value for
variable y; R and S are the average ranks of variables x and y, respectively; and n denotes the total
number of observed values.
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3.4. Multiple Linear Regression Model

The multiple linear regression (MLR) is a statistical method. The MLR can be used to predict
the values of a response variable using several explanatory variables [49] and fitting the relationship
between the independent variables and dependent variable. It has been represented in Equation (2),
and was implemented in SPSS 20.

y = β0 + β1x1 + β2x2 + · · ·+ βnxi + ε (2)

where y denotes the dependent variable, xi denotes the ith independent variable, β0 represents a
constant, βi denotes the slope coefficient for the ith explanatory variable, and ε represents the residual.

The process for solving the parameters for Equation (2) was as follows. First, leaving aside the
remote sensing parameters, the four factors (elevation, age of tree, canopy density, and the number of
trees per hectare) that were involved in the MLR analysis were obtained from the inventory data for
forest management planning and design or DEM data. The various MLR selection methods include the
forward, backward, stepwise, entering, and deletion methods. This study chose the stepwise method,
also called the stepwise regression model, to filter the independent variables to feed to the MLR model,
which is represented in Equation (3). This was implemented in SPSS 20.

Y = 6.700668 + 0.130314X1 − 0.037245X2 − 0.000996X3 + 9.170188X4 (3)

where X1 is the tree age, X2 is the number of trees per hectare, X3 denotes elevation, and X4 is canopy
density.

Subsequently, the seven remote sensing image factors (bands 2–7 and DVI) together with the
previous four factors (elevation, age of tree, canopy density, and number of trees per hectare), for a
total of 11 factors, were introduced into the MLR model to analyze the linear relationship among DBH
and the parameters. This study also chose the stepwise regression method to fit the MLR model in
SPSS 20, and the fitting equation was established as:

Y = 7.189245 + 0.139459X1 − 0.036492X2 − 0.001706X3 + 8.663880X4 + 0.002292X5−

0.005670X6 + 0.005301X7 − 0.004161X8 − 0.012977X9 + 0.020564X10
(4)

where the variables from X1 to X4 denote tree age, number of trees per hectare, elevation, and canopy
density, respectively; X5 denotes DVI; X6 to X8 denote bands 2 through 4, respectively; and X9 and
X10 are bands 6 and 7, respectively. Note that band 5 was removed after the execution of the stepwise
regression model.

3.5. Generalized Regression Neural Network

The generalized regression neural network (GRNN) was first proposed by Specht in 1991 [50].
On the basis of the estimation of a probability distribution function, the GRNN can solve nonlinear
approximative problems. The GRNN gradually converges to the optimal regression surface as the
number of training samples increases. The advantages of the GRNN include its simplicity and high
accuracy in modeling and prediction. The GRNN architecture includes four layers (Figure 2): Input,
hidden, summation, and output [51].
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Figure 2. Topological structure of the generalized regression neural network (GRNN).

In the input layer, the amount of neurons is determined by the number of the input variables, and
each neuron represents an input variable. The input layer does not process the signal but nonlinearly
transmits the signal to the hidden layer.

In the hidden layer, the neurons accept the information from the input layer and express the
relationship (Pi) between the input layer and hidden layer with a pattern of radial basic function as the
activation function. The radial basic function is usually represented by the Gaussian function:

Pi = exp(−
(X −Xi)

T(X −Xi)

2σ2 ) (5)

where I = 1, 2, . . . , n, with n representing the number of training cases; Pi denotes the multivariate
Gaussian function; σ denotes the smoothing parameter, which is also called the spread parameter; X
represents the input variable; and Xi denotes a training sample for the ith neuron of the hidden layer.

There are two summations in the summation layer, Sw and Ss, which are defined by Equations (6)
and (7), respectively. Sw is the weighted summation of the summation layer and Ss is the arithmetic
summation of the summation layer, where wi represents the weight of the ith neuron of the hidden
layer to connect to the summation layer.

Sw =
n∑

i=1

wiPi (6)

Ss =
n∑

i=1

Pi (7)

In the output layer, the output variable y is calculated using Equation (8). The dimension of the
output matrix of the final training of the neural network depends on the number of neurons.

y =
Sw

Ss
(8)
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The GRNN model was implemented in MATLAB 2017b (The MathWorks, Natick, MA, USA). Its
network structure was determined by:

net = newgrnn(x, y, spread) (9)

where x denotes the input matrix for the independent variables, y denotes the output matrix for
the dependent variables, and spread is the smoothing factor. The value of this factor was tested by
cross-validation.

3.6. Model Performance Metrics

The following indices can be used to assess the performance of each model, where Yi represents
the measured values, yi represents the predicted values for sample i, Y denotes the predicted mean, y
denotes the observed mean, and n denotes the total number of samples.

The first statistical metric is the mean absolute error (MAE), expressed by

MAE =
1
n

∣∣∣∣∣∣∣
n∑

i=1

(Yi − yi)

∣∣∣∣∣∣∣ (10)

The mean absolute percentage error (MAPE) is represented by

MAPE =
1
n

n∑
i=1

∣∣∣ Yi − yi
∣∣∣

|Yi|
× 100% (11)

The root-mean-squared error (RMSE), one of the most commonly used indicators for evaluating
performance, is expressed by

RMSE =

√√
1
n

n∑
i=1

(Yi − yi)
2 (12)

The coefficient of determination (R2) is a statistical index used to describe the degree to which a
change in the results can be explained by a change in the independent variables. R2 ranges from 0 to 1;
the closer R2 is to 1, the better the model effect. The values of R2 are calculated by:

R2 =

[
n∑

i=1
(Yi −Y)(yi − y)

]2

n∑
i=1

(Yi −Y)
2
•

n∑
i=1

(yi − y)2
(13)

The Theil’s inequality coefficient (TIC) is a measure of the difference between the measured and
predicted values. When the value is between 0 and 1, and the closer the value is to 0, the better the
prediction effect. The TIC represented by:

TIC =

√
1
n

n∑
i=1

(Yi − yi)
2

√
1
n

n∑
i=1

Yi2 +

√
1
n

n∑
i=1

yi2

(14)
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4. Results

4.1. Modeling and Prediction Based on Empirical Models

The data from 25,000 samples were fed to the 13 empirical models. The results are illustrated in
Table 3.

Table 3. The modeling results based on the 13 empirical models.

Model
Parameter

R2 F p
a b c d

Linear model 6.603 0.193 0.445 20,026.240 0.000
Logarithmic curve model −3.253 4.753 0.503 25,313.036 0.000
Reciprocal curve model 15.093 −68.275 0.438 19,451.945 0.000

Conic model 5.464 0.274 −0.001 0.468 11,005.025 0.000
Cubic curve model 3.881 0.426 −0.005 0.000018 0.492 8065.732 0.000

Compound curve model 6.990 1.018 0.455 20,871.885 0.000
Power function curve model 2.5620 0.466 0.592 36,231.270 0.000

S-shaped curve model 2.764 −7.055 0.566 32,661.386 0.000
Growth curve model 1.945 0.018 0.455 20,871.885 0.000

Exponential curve model 6.990 0.018 0.455 20,871.885 0.000
Logistic curve model 0.133 0.980 0.459 21,168.400 0.000

Gompertz model 14.673 1.744 0.087 0.496 8188.008 0.000
Schumacher model 17.238 8.501 0.491 8056.734 0.000

Note: a, b, c and d are the parameters to be estimated; F and p are statistical indicators.

The modeling results of the 13 empirical models showed that the R2 values were between 0.438
and 0.592. The F-test was performed for the first 13 models, showing that the p-values (0.000) were less
than 0.01. This indicates a very high level of significance for the models.

Subsequently, the tree age data from the remaining 10,763 samples were fed to the above 13
empirical models to predict DBHs of the forest subcompartments. The results are illustrated in
Table 4 and Figure 3. The MAPEs ranged from 15.63 to 19.30%, which means that the accuracies of
the prediction were above 80%. Compared to the modeling results, the fluctuation in R2 obviously
increased with a range of 0.2492–0.5092 in the prediction results. Even if the four models (linear,
compound curve, growth curve, and exponential curve) produced the same R2 of 0.455 in modeling, the
prediction ability of the linear model, with an R2 of 0.4374, was obviously better than the curve models
(compound, growth curve, and exponential curve) with an R2 of 0.2492. The Gompertz model provided
the strongest generalizability with the best R2 of 0.5092, even if the modeling R2 was only 0.496.

Table 4. The prediction results based on the 13 empirical models.

Model MAE (cm) MAPE (%) RMSE (cm) R2 TIC

Linear model 1.9833 18.57 2.5184 0.4374 0.1042
Logarithmic curve model 1.7957 16.29 2.3553 0.5075 0.0973
Reciprocal curve model 1.8786 17.75 2.5045 0.4430 0.1037

Conic model 1.9148 17.63 2.4542 0.4656 0.1015
Cubic curve model 1.8210 16.55 2.3663 0.5027 0.0978

Compound curve model 2.1634 19.30 3.5567 0.2492 0.1464
Power function curve model 1.8611 16.47 2.4123 0.4914 0.1005

S-shaped curve model 1.8091 16.23 2.4130 0.4948 0.1011
Growth curve model 2.1634 19.30 3.5564 0.2492 0.1464

Exponential curve model 2.1634 19.30 3.5565 0.2492 0.1464
Logistic curve model 2.0993 18.99 2.7629 0.3699 0.1150

Gompertz model 1.7622 15.63 2.3598 0.5092 0.0983
Schumacher model 1.7917 16.43 2.3757 0.5004 0.0982

Note: RMSE, root-mean-squared error; MAE, mean absolute error; MAPE, mean absolute percentage error; R2,
coefficient of determination; TIC, Theil’s inequality coefficient.
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4.2. Correlation Analysis

The significance level was used to compute the confidence level with a value between 0 and
1, usually denoted by symbol p. Due to the rule that the lower the significance level, the higher
the confidence level, and the lower the probability of making mistakes, choosing an appropriate
significance level is necessary to guarantee the proper credibility level. A two-tailed test was used to
compute the significance level (p) here, and the correlation analysis was involved in the calculation of
the correlation coefficient (r).

Since forest growth is affected by many environmental factors, such as topography and soil [52,53],
the DBH of trees of the same age may vary considerably in different environments. From the inventory
data for forest management planning and design and DEM, this study initially chose eight influencing
factors—elevation, slope, slope aspect, thickness of soil layer, humus thickness, age of tree, canopy
density, and number of trees per hectare—to analyze the correlation coefficients [54–56]. The results
(Table 5) show that the six factors (elevation, slope aspect, humus thickness, age of tree, canopy density,
and number of trees per hectare) reached a very significant level (p ≤ 0.01), with a relatively large
correlation coefficient (r ≥ 0.1) for four factors, namely, the elevation, age of the tree, canopy density,
and the number of trees per hectare, which were included in further modeling and prediction by MLR
and GRNN.

Table 5. The Spearman correlation coefficient between DBH and nine factors from the forest inventory
or the digital elevation model (DEM) data.

DBH Elevation Slope Slope
Aspect

Thickness
of Soil
Layer

Humus
Thickness

Age of
Tree

Canopy
Density

No. Trees
Per

Hectare

DBH 1
Elevation 0.128 ** 1

Slope −0.008 0.390 ** 1
Slope aspect 0.028 ** 0.017 ** 0.043 ** 1
Thickness of

soil layer −0.002 −0.256 ** −0.290 ** –0.009 1

Humus
thickness −0.024 ** −0.192 ** −0.169 ** −0.004 0.168 ** 1

Age of tree 0.667 ** 0.325 ** 0.240 ** 0.028 ** −0.204 ** −0.124 ** 1
Canopy
density 0.445 ** 0.045 ** 0.078 ** 0.022 ** −0.107 ** −0.062 ** 0.439 ** 1

No. trees per
hectare −0.368 ** −0.135 ** −0.012 * −0.009 0.005 −0.026 ** –0.204 ** 0.302 ** 1

Note: * and ** indicate the two-tailed test was significant at p ≤ 0.05 and p ≤ 0.01, respectively.

From the remote sensing images and based on previous research, 11 influencing factors were
chosen, including bands 2–7, NDVI, RVI, DVI, EVI, and RI, as the primitive factors.

After the correlation analysis, the results (Table 6) showed that except for RI, the remaining 10
factors reached a very significant level (p ≤ 0.01), and the correlation coefficient was relatively large
(r ≥ 0.1) in the seven factors of bands 2–7 and DVI, which were included in further modeling and
prediction by MLR and GRNN.
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Table 6. The Spearman correlation coefficient between DBH and 11 remote sensing factors.

DBH B2 B3 B4 B5 B6 B7 NDVI RVI DVI EVI RI

DBH 1
B2 −0.183 ** 1
B3 −0.192 ** 0.905 ** 1
B4 −0.156 ** 0.871 ** 0.942 ** 1
B5 −0.179 ** 0.505 ** 0.770 ** 0.600 ** 1
B6 −0.163 ** 0.612 ** 0.849 ** 0.813 ** 0.880 ** 1
B7 −0.131 ** 0.670 ** 0.860 ** 0.907 ** 0.727 ** 0.954 ** 1

NDVI 0.058 ** −0.719 ** −0.568 ** −0.743 ** 0.036 ** −0.299 ** −0.521 ** 1
RVI 0.093 ** −0.619 ** −0.463 ** −0.542 ** −0.012 −0.237 ** −0.371 ** 0.766 ** 1
DVI −0.169 ** 0.396 ** 0.674 ** 0.476 ** 0.989 ** 0.819 ** 0.633 ** 0.175 ** 0.086 ** 1
EVI −0.056 ** 0.102 ** −0.157 ** −0.320 ** −0.167 ** −0.390 ** −0.480 ** 0.157 ** −0.050 ** −0.125 ** 1
RI −0.006 0.263 ** 0.272 ** 0.509 ** −0.025 ** 0.344 ** 0.523 ** −0.644 ** −0.289 ** −0.120 ** −0.554 ** 1

Note: ** indicate the two-tailed test was significant at p ≤ 0.01. B2–B7, bands 2–7 (B2–B7) from the operational land
imager (OLI) sensor of the Landsat-8 satellite; NDVI, normalized difference vegetation index; RVI, ratio vegetation
index; DVI, difference vegetation index; EVI, enhanced vegetation index; RI, red index.

4.3. Multiple Linear Regression

The testing data of 10,763 records were used for the prediction of DBH using Equations (3) and
(4). Compared to the results produced by the traditional empirical models (Table 4, Figure 3), better
outcomes were obtained. The results are displayed in Table 7 and Figure 4.

Table 7. Prediction results of the MLR and GRNN models.

Model Independent Variables MAE (cm) MAPE (%) RMSE (cm) R2 TIC

MLR

Elevation, age of tree,
canopy density, and

number of trees per hectare
1.6006 14.96 2.0707 0.6193 0.0854

Elevation, age of tree,
canopy density, number of
trees per hectare, bands 2–7,

and DVI

1.5300 14.38 1.9976 0.6459 0.0823

GRNN

Elevation, age of tree,
canopy density, and

number of trees per hectare
1.4926 13.99 1.9980 0.6484 0.0826

Elevation, age of tree,
canopy density, number of
trees per hectare, bands 2–7,

and DVI

1.4688 13.78 1.9655 0.6574 0.0810
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4.4. Modeling and Prediction Based on GRNN

As with the MLR method, the remote sensing parameters were first left aside, and the four factors
of the elevation, age of tree, canopy density, and the number of trees per hectare were used in the
GRNN. Subsequently, a total of 11 factors—the seven remote sensing image factors, including bands
2–7 and DVI together with elevation, age of tree, canopy density, and number of trees per hectare—were
used as the input for the GRNN model to estimate DBH.

The experiments showed that the optimal spread of the smoothing factor is 0.1 (Figure 5 and
Table 5).
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trees per hectare, and seven remote sensing image factors including bands 2–7 and DVI.

5. Discussion

Based on the research data that were divided into 25,000 training samples and 10,763 testing
samples (Table 1), the 13 empirical age–DBH models (Table 2), in which the only independent variable
was the tree age, were used to fit the relationship between the tree age and DBH of the forest
subcompartments (Table 3) and to predict the DBH (Table 4). The modeling results of the 13 empirical
models had R2 values between 0.438 and 0.592. The MAPEs ranged from 15.63 to 19.3%, which means
that the accuracies of the predictions were above 80%. The amplitude of R2 prediction results obviously
increased with a range of 0.2492–0.5092 compared to the modeling results. However, the Gompertz
model provided the strongest generalizability with the best performance metrics of 1.7622 cm in MAE,
15.63% in MAPE, and 0.5092 in R2, which were even better than the modeling result. These findings
are similar to those reported by Xu et al. and Lin et al. [57,58]. With the various size classes of DBH,
Xu et al., taking 90 felled maple trees (Liquidambar formosana Hance) as the study object, and Lin et al.,
taking 90 felled Schima superba trees (Schima superba Gardn. et Champ.) as the study object, found that
Gompertz was the optimal model, whether for DBH, tree height, or volume [57,58].

After the correlation analysis, the four factors from the inventory data for forest management
planning and design and DEM were retained for further modeling and prediction by MLR and GRNN,
namely, the elevation, age of the tree, canopy density, and the number of trees per hectare, as these
satisfied p ≤ 0.01 and r ≥ 0.1. The order of absolute values of the correlation coefficients from high to
low was the age of the tree, canopy density, the number of trees per hectare, and elevation. The R for
the relationship between the number of trees per hectare and the DBH was negative, which indicated
that competition among the trees affected the growth in DBH. This finding is similar to those reported
by Luo et al. [53], with a negative correlation between the number of trees per hectare and DBH, and
similar to Escalante et al. [54], in which forest stand simulations under fixed conditions indicated that
the probabilities of diameter growth increase with site productivity increase, and decrease with an
increase in the stand density index.
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From the remote sensing images, the seven factors of bands 2–7 and DVI were also retained. The
order of the absolute values of the correlation coefficients from high to low was B3, B2, B5, DVI, B6, B4,
and B7.

The prediction results obtained by MLR and GRNN (Table 7) when using more environmental
factors, such as topography and soil, were much better than those produced by the 13 empirical
age–DBH models. This indicates that the environmental factors are beneficial for the estimation
of DBH.

By adding the remote sensing image factors, the experimental results from MLR were further
improved from 1.6006 cm in MAE, 14.96% in MAPE, 2.0707 cm in RMSE, 0.6193 in R2, and 0.0854
in TIC to 1.5300 cm in MAE, 14.38% in MAPE, 1.9976 cm in RMSE, 0.6459 in R2, and 0.0823 in TIC.
Correspondingly, the experimental results from GRNN were improved from 1.4926 cm in MAE, 13.99%
in MAPE, 1.9980 cm in RMSE, 0.6484 in R2, and 0.0826 in TIC to 1.4688 cm in MAE, 13.78% in MAPE,
1.9655 cm in RMSE, 0.6574 in R2, and 0.0810 in TIC. This indicates that the remote sensing image factors
are beneficial to the estimation of DBH.

Regardless of whether remote sensing image factors were included, the experimental results
from GRNN—with lower MAE, MAPE, RMSE, and higher R2—were better than those of MLR.
In the forestry application of artificial neural networks (ANNs), He et al. used the ANN method
to simulate and predict the DBH for different age groups and showed that the mean predictive
accuracy of DBH for bamboo stands was satisfactory [16]. Vieira et al. estimated the growth of DBH
and height of eucalyptus trees in 398 plots using artificial intelligence techniques (AIT), including
ANN and an adaptive neuro-fuzzy inference system, and obtained good accuracy [59]. Although
different from previous studies, this study still achieved an acceptable accuracy to predict DBH at
the subcompartment’s level with GRNN based on more diversified tree species and a wider range of
samples totaling 35,763. Thus, the prediction results are more convincing.

6. Conclusions

The prediction results by MLR and GRNN when using more environmental factors, such as
topography and soil, were much better than those produced using traditional empirical age–DBH
models. The use of comprehensive factors, including ecological and biological factors, was beneficial for
improving the prediction accuracy of both the MLR and GRNN models. When remote sensing factors
were included, the performance metrics were further improved in the MLR and GRNN models, with
MAE decreasing by 0.0238 and 0.0706 cm, MAPE decreasing by 0.21% and 0.58%, RMSE decreasing
by 0.0325 and 0.0731 cm, R2 increasing by 0.09 and 0.0266, TIC decreasing by 0.0031 and 0.0016,
respectively. Regardless of whether remote sensing image factors were included, the experimental
results produced using GRNN were better than those using MLR. For modeling and prediction based
on more complex tree species and a wider range of samples, the GRNN model is more desirable due to
its stronger generalizability.
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