Supplementary

		Crus	shing			Crushe	d fragmer	nt					Observat	
Sieve	Initial PSF				Rated			Po	oint		Total	Modeled	Observed	D:(6%)
Size	(Qa)	Rate ^b	Point	Crushing Particle Size Diameter/Sieve Size (mm)						Change ^g	PSF		Diff ²¹	
			_	19.0	12.7	4.76	19.0	12.7	4.76	Total			(0-1-11")	
(mm)	(%)	(%/%)	(%)	(%/%)	(%/%)	(%/%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(% ²)
38.1	0										0	0	0	0
19.0	10.89	-0.80	-8.71°								-8.71	2.18	2.80	0.39
12.7	11.58	-0.40	-4.63	0.14 ^e			1.21^{f}			1.21	-3.42	8.16	8.36	0.04
4.76	40.86	-0.20	-8.17	0.31	0.33		2.73	1.53		4.26	-3.91	36.94	39.08	4.57
2.38	11.24			0.18	0.20	0.24	1.57	0.94	1.93	4.45	4.45	15.69	14.93	0.58
0.595	10.20			0.23	0.28	0.40	2.04	1.31	3.24	6.60	6.60	16.80	14.44	5.55
0.074	6.01			0.12	0.16	0.30	1.02	0.73	2.42	4.17	4.17	10.17	8.40	3.13
< 0.074	9.23			0.02	0.03	0.07	0.14	0.12	0.58	0.83	0.83	10.07	11.99	3.68
Sum	100.00		-21.51	1.00	1.00	1.00	8.71	4.63	8.17	21.51	0	100.00	100.00	17.95

Table S1. Details on an example of the particle size fractions modeled for crushing process.

^a The PSFs from the quarry were used for the model. ^b Rock strength increases with decreasing particle size [28–30,34]. Therefore, we assumed that large-size particles were more likely crushed and small-size particles (≤ 2.38 mm) were not. We used arbitrary crushing rates, -0.80, -0.40, and -0.20, for the large-size particles, 19.0, 12.7, and 4.76 mm diameters, for the model, resulting in a total of -21.51 percentage points change. ^c Initial PSF for 19.0 mm (10.89%) × crushing rate for 19.0 mm (-0.80) = crushing point for 19.0 mm (-8.71%). ^d Crushed fragment size distribution could be described using a truncated logarithmic normal distribution by mass [33]. For the crushed fragment size distribution, we used a half-logarithmic normal distribution with a mean of the crushed particle diameter (sieve size) and a standard deviation of 10.0 mm. ^e The rate of the crushed fragments in mass, of which particle size was between 19.0 and 12.7 mm, from crushing 19.0 mm particles (Re(19.0, 10.0, 19.0, 19.0, 12.7)) = the probability between 19.0 and 12.7 mm in the logarithmic normal distribution with a mean of 19.0 mm (8.71%) × crushed fragment rate for 12.7 mm from crushing 19.0 mm particles (0.14) = crushed fragment point for 12.7 mm from crushing 19.0 mm (8.71%) × crushed fragment rate for 12.7 mm from crushing 19.0 mm particles (0.14) = crushed fragment point for 12.7 mm from crushing 19.0 mm (8.71%) × crushed fragment rate for 12.7 mm from crushing 19.0 mm particles (0.14) = crushed fragment point for 12.7 mm from crushing 19.0 mm extracted logarithmic normal distribution for 12.7 mm from crushing 19.0 mm particles (0.14) = crushed fragment point for 12.7 mm from crushing 19.0 mm particles (0.14) = crushed fragment point for 12.7 mm from crushing 19.0 mm particles (0.14) = crushed fragment point for 12.7 mm from crushing 19.0 mm particles (0.14) = crushed fragment point for 12.7 mm from crushing 19.0 mm particles (0.14) = crushed fragment point for 12.7 mm from crushing 19.

Sieve Size	Initial PSF (Q ^a)	Change ^b	Modeled PSF		Observed PSF (B-S-H ^d)	Diff ^{2e}
(mm)	(%)	(%)	(%)	(%)	(%)	(% ²)
38.1	0		0	0	0	0
19.0	10.89		10.89	8.38c	3.26	26.13
12.7	11.58		11.58	8.90	6.38	6.36
4.76	40.86		40.86	31.43	34.05	6.89
2.38	11.24		11.24	8.65	14.57	35.11
0.595	10.20	10.00	20.20	15.54	15.37	0.03
0.074	6.01	10.00	16.01	12.31	9.85	6.08
< 0.074	9.23	10.00	19.23	14.80	16.51	2.93
Sum	100.00	30.00	130.00	100.00	100.00	83.52

Table S2. Details on an example of the particle size fractions modeled for subgrade mixing process.

^a The PSFs from the quarry were used for the model. ^b We assumed that the subgrade mixing process added 10 percentage points to each of 0.595, 0.074, and less than 0.074 mm sieve sizes, resulting in a total of 30 percentage points change. ^c 10.89/130.00 = 8.38%. ^d The observed PSF was based on the PSFs at B–S–H [11], where the subgrade mixing process occurred. ^e Difference² = (Observed PSF – Modeled PSF)².

Table S3. Details on an example of the particle size fractions modeled for sweeping process.

Ciarra	Initial	Swe	eping-O	ut		Sweeping-In							
Size	PSF (Q ^a)	Change ^b	Mode	led PSF	Change ^d	Modeled PSF		Observed PSF (U-S-L ^f)	Diff ^{2g}				
(mm)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(% ²)				
38.1	0		0	0		0	0	0	0				
19.0	10.89	-10.00	0.89	1.27 ^c	20.00	30.89	19.31 ^e	10.20	82.97				
12.7	11.58	-10.00	1.58	2.25	20.00	31.58	19.73	15.76	15.82				
4.76	40.86	-10.00	30.86	44.08	20.00	60.86	38.04	47.09	81.98				
2.38	11.24		11.24	16.06		11.24	7.03	10.30	10.70				
0.595	10.20		10.20	14.57		10.20	6.37	6.70	0.11				
0.074	6.01		6.01	8.58		6.01	3.75	4.10	0.12				
< 0.074	9.23		9.23	13.19		9.23	5.77	5.87	0.01				
Sum	100.00		70.00	100.00	0	160.00	100.00	100.00	191.70				

^a The PSFs from the quarry were used for the model. ^b We assumed that the sweeping-out process subtracted 10 percentage points to each of 19.0, 12.7, and 4.76 mm sieve sizes, resulting in a total of –30 percentage points change. ^c 0.89/70.00 = 1.27%. ^d We assumed that the sweeping-in process added 20 percentage points to each of 19.0, 12.7, and 4.76 mm sieve sizes, resulting in a total of 60 percentage points change. ^e 30.89/160.00 = 19.31%. ^f The observed PSF was based on the PSFs at U–S–L (Rhee et al., in review), where the sweeping-in process occurred. ^g Difference² = (Observed PSF – Modeled PSF)².

		Crus	shing			Crushee	d fragmer	nt			_			
o: o:					Rated			Po	oint		Tatal abay ag	Madalad DCE	Observed PSF	D:62
Sieve Size	Initial PSF (Q")	Rate ^b	Point	Crushir	ng Particl	e Size Dia	meter/Sie	ve Size	(mm)		1 otal changes	Modeled PSF	(U–I–H ^h)	DIII
			_	19.0	12.7	4.76	19.0	12.7	4.76	Total	-			
(mm)	(%)	(%/%)	(%)	(%/%)	(%/%)	(%/%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%²)
38.1	0										0	0	0	0
19.0	10.89	-0.73	-7.97°								-7.97	2.91	2.80	0.01
12.7	11.58	-0.33	-3.88	0.10 ^e			0.79 ^f			0.79	-3.09	8.49	8.36	0.02
4.76	40.86	-0.11	-4.40	0.23	0.24		1.85	0.92		2.77	-1.63	39.23	39.08	0.02
2.38	11.24			0.15	0.16	0.17	1.18	0.61	0.74	2.53	2.53	13.77	14.93	1.33
0.595	10.20			0.24	0.26	0.31	1.88	1.01	1.36	4.26	4.26	14.45	14.44	< 0.01
0.074	6.01			0.20	0.23	0.32	1.58	0.90	1.42	3.90	3.90	9.91	8.40	2.27
< 0.074	9.23			0.09	0.11	0.20	0.69	0.44	0.88	2.01	2.01	11.24	11.99	0.56
Sum	100.00		-16.25	1.00	1.00	1.00	7.97	3.88	4.40	16.25	0	100.00	100.00	4.20

Table S4. Details on the particle-size fractions that are fitted to the particle size distribution result for crushing process.

^a The PSFs from the quarry were used for the model. ^b Rock strength increases with decreasing particle size [28–30,34]. Therefore, we assumed that large-size particles were more likely crushed and small-size particles (≤ 2.38 mm) were not. We found that the crushing rates, -0.73, -0.33, and -0.11, for the large-size particles, 19.0, 12.7, and 4.76 mm diameters, resulted in a total of -16.25 percentage points and a close match to the PSFs at U–I–H, where the crushing process occurred [11]. ^c Initial PSF for 19.0 mm (10.89%) × crushing rate for 19.0 mm (-0.73) = crushing point for 19.0 mm (-7.97%). ^d Crushed fragment size distribution could be described using a truncated logarithmic normal distribution by mass [33]. For the crushed fragment size distribution, we found that a half-logarithmic normal distribution with a mean of the crushed particle diameter (sieve size) and a standard deviation of 25.6 mm resulted in a close match to the PSFs at U–I–H, where the crushing process occurred [11]. ^e The rate of the crushed fragments in mass, of which particle size is between 19.0 and 12.7 mm, from crushing 19.0 mm particles (R_d(19.0, 25.6, 19.0, 19.0, 12.7)) = the probability between 19.0 and 12.7 mm in the logarithmic normal distribution with a mean of 19.0 mm (7.97%) × crushed fragment rate for 12.7 mm from crushing 19.0 mm particles (0.10) = crushed fragment point for 12.7 mm from crushing 19.0 mm (7.97%). ^s Total change = crushing point + total point from crushed fragment. ^h The observed PSF was based on the PSFs at U–I–H [11], where the crushing process occurred. ⁱ Difference² = (Observed PSF)².

Sieve Size	Observed DCE (D. C. Ha)	Usin	g PSD fror	n the Qu	arry		Using PSD After Crushing				
	Observed PSF (B-S-H ^a)	Initial PSF (Q ^b)	Change ^c	Model	ed PSF	Diff ^{2e}	Initial PSF (U–I–H ^f)	Change ^g	Model	ed PSF	Diff ^{2g}
(mm)	(%)	(%)	(%)	(%)	(%)	(% ²)	(%)	(%)	(%)	(%)	(% ²)
38.1	0	0		0	0	0	0		0	0	0
19.0	3.26	10.89		10.89	8.16 ^d	24.01	2.80		2.80	2.43	0.69
12.7	6.38	11.58		11.58	8.68	5.27	8.36		8.36	7.26	0.78
4.76	34.05	40.86		40.86	30.63	11.70	39.08		39.08	33.94	0.01
2.38	14.57	11.24	6.94	18.18	13.63	0.89	14.93	1.87	16.80	14.59	< 0.01
0.595	15.37	10.20	9.05	19.24	14.43	0.89	14.44	3.28	17.72	15.39	< 0.01
0.074	9.85	6.01	5.87	11.87	8.90	0.89	8.40	2.95	11.35	9.86	< 0.01
< 0.074	16.51	9.23	11.52	20.75	15.56	0.89	11.99	7.04	19.02	16.52	< 0.01
Sum	100.00	100.00	33.37	133.37	100.00	44.55	100.00	15.13	115.13	100.00	1.48

Table S5. Details on the particle-size fractions that are fitted to the particle size distribution results for subgrade mixing process.

^a The observed PSF was based on the PSFs at B–S–H [11], where the subgrade mixing process occurred. ^b The PSFs from the quarry were used for the model. ^c We found that adding 6.94, 9.05, 5.87, and 11.52 percentage points (a total of 33.37 percentage points) to 2.38, 0.595, 0.074, and less than 0.074 mm sieve sizes resulted in the PSFs that minimize the differences from the PSFs at B–S–H. ^d 10.89/133.37 = 8.16%. ^e Difference² = (Observed PSF – Modeled PSF)². ^f The PSFs at U–I–H, where the crushing process occurred [11] were used for the model. The PSFs for 2.38 and 0.595 mm were linearly interpolated using the PSFs at U–I–H for 3.36, 2.00, 1.00, and 0.420 mm. ^g We found that adding 1.87, 3.28, 2.95, and 7.04 percentage points (a total of 15.13 percentage points) to 2.38, 0.595, 0.074, and less than 0.074 mm sieve sizes resulted in a close match to the PSFs at B–S–H.

Sieve Size	Initial PSF (Q ^a)	Change ^b	Model	ed PSF	Observed PSF (U-S-L ^d)	Diff ^{2e}
(mm)	(%)	(%)	(%)	(%)	(%)	(% ²)
38.1	0		0	0	0	0
19.0	10.89	4.72	15.61	10.21 ^c	10.20	< 0.01
12.7	11.58	12.54	24.12	15.77	15.76	< 0.01
4.76	40.86	31.20	72.06	47.10	47.09	< 0.01
2.38	11.24	4.53	15.77	10.31	10.30	< 0.01
0.595	10.20		10.20	6.67	6.70	< 0.01
0.074	6.01		6.01	3.93	4.10	0.03
< 0.074	9.23		9.23	6.04	5.87	0.03
Sum	100.00	53.00	153.00	100.00	100.00	0.06

Table S6. Details on the particle size fractions that are fitted to the particle size distribution results for sweeping-in process.

^a The PSFs from the quarry were used for the model. ^b We found that adding 4.72, 12.54, 31.20, and 4.53 percentage points (a total of 53.00 percentage points) to 19.0, 12.7, 4.76, and 2.38 mm sieve sizes resulted in a close match to the PSFs at U–S–L, where the sweeping-in process occurred [11]. ^c 15.61/153.00 = 10.21%. ^d The observed PSF was based on the PSFs at U–S–L [11], where the sweeping-in process occurred. ^e Difference² = (Observed PSF – Modeled PSF)².

Table S7. Comparison of the modified model parameter values and the logarithmic normal distribution for sweeping-in process.

Sieve Size	Change ^a		F(j)-F(k) °	Diff ^{2e}
(mm)	(%)	(%)	(%)	(% ²)
38.1			0.58	0.33
19.0	4.72	8.91 ^b	10.70	3.18
12.7	12.54	23.67	21.31	5.57
4.76	31.20	58.87	59.36	0.24
2.38	4.53	8.54	7.71	0.68
0.595			0.34	0.11
0.074			< 0.01	< 0.01
< 0.074			< 0.01	< 0.01
Sum	53.00	100.00	100.00	10.11

^a We found that adding 4.72, 12.54, 31.20, and 4.53 percentage points (a total of 53.00 percentage points) to 19.0, 12.7, 4.76, and 2.38 mm sieve sizes resulted in a close match to the PSFs at U–S–L, where the sweeping-in process occurred [11]. ^b 4.72/53.00 = 8.91%. ^c F is the cumulative distribution function of the logarithmic normal distribution with a mean of 10.0 mm and a standard deviation of 1.70 mm. F(j)–F(k) is the probability between the sieve sizes of j and k mm in the logarithmic normal distribution. ^d Difference² = (Observed PSF – Modeled PSF)².