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Abstract: Although the understory vegetation abundance, diversity, and composition associated with
stand development in natural forests have been well reported, only a few studies have examined
the age-related changes of understory vegetation in fast-growing planted forests in reclaimed soils.
This study measured the understory vegetation and soil variables in 8-, 12-, and 18-year-old
poplar plantations in reclaimed coastal saline soil of Eastern China. This study examined how the
abundance, diversity, and composition changed with stand development and the soil variables.
Further, structural equation modeling (SEM) was used to evaluate the direct and indirect factors
influencing the abundance and plant diversity throughout stand development. Herb abundance
was significantly higher in the youngest and oldest stands, whereas shrub abundance was higher in
the middle-aged stands. Shannon’s diversity index was significantly higher in the youngest stand
for herbs, whereas it was highest in the middle-aged stands for shrubs. A multivariate analysis
revealed that the herb and shrub composition were influenced by the stand age, total soil carbon
and soil pH. The most parsimonious SEM model showed the negative direct effects of the stand
age and the negative indirect effects of the stand age via the soil variables on shrub abundance,
shrub diversity, and herb diversity, suggesting that the increase of overstory biomass with the stand
age reduces resources available for the understory. Our results revealed that understory diversity
and composition might change with stand development mediated by the changes in understory light
and soil resources in fast-growing plantations.

Keywords: understory; Poplar plantation; abundance; diversity; composition; stand age; SEM;
soil properties

1. Introduction

Understory vegetation (woody and non-woody) is an essential constituent of forest ecosystems [1],
as it comprises the majority of plant diversity, containing up to 90% of the plant species in temperate
deciduous forests, and plays a significant role in maintaining the structure and functionality of forest
ecosystems [2]. Understory vegetation is an integral component of food chains [1] (e.g., as habitat for
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wildlife also providing microclimatic regulation). Despite the low (1–2%) contribution of understory
vegetation to aboveground biomass in forest ecosystems, its role in facilitating energy flows and
nutrient recycling is very significant in proportion to its biomass [2–5]. These characteristics may
highlight the importance of understory vegetation in a framework of ecosystem functionality.

In recent decades, fast-growing exotic tree species, such as eucalyptus [6], pine [7], and poplar [8]
have been widely planted to meet increasing demands for industrial timber and pulp. Poplar (Populus
deltoides L. ‘Lux’) is a fast-growing deciduous tree species that is extensively planted in the Northern
Jiangsu Province of China, due to its high productivity and diverse end uses being the dominant
broadleaved forest species in China [9]. In 2003, poplar accounted for 13.5% of the total planted
forest area in China [10]. Plantation forests are also recognized as an important element of the global
forest cover [11], and are increasingly emerging as highly relevant in mitigating global climate change.
The intensive management of fast-growing tree species in plantations does not only assist with
mitigating the increased demand for timber, but also enhancing carbon sequestration [12].

Planted poplar trees accumulate and store carbon and nutrients aboveground, which in due time,
are cycled influencing soil processes [13,14]. However, this might increase the competition for available
resources at some stages during stand development. Understory composition shifts from pioneer to
shade-tolerant species following canopy closure [15]. The overstory may create altered understory
conditions in terms of more shade and coolness, along with changes in moisture that facilitate the
establishment of shade-tolerant plant species [16,17]. Plant diversity seems to decline with age, which is
governed by the competition for light and the loss of shade-intolerant species [8]. Understory biomass,
production and turnover are mainly influenced by the stand age, soil resources and heterogeneity
in light conditions mediated by the overstory composition [18]. At the initial stage, there is rapid
colonization of herbaceous species in the understory due to high light intensity, soil nutrients and
abundant space [5,15,19].

Overstory development reduces the resources available to the understory, thereby decreasing
the abundance of shade-intolerant and nutrient-demanding herbaceous understory in natural
forests [20–24]. Therefore, the understory abundance, diversity, and composition are also expected to
change with stand development because of changes in resource availability [5,25]. The light and soil
resources also have profound effects on the abundance, diversity and composition of the understory
vegetation of reclaimed highly disturbed areas [26]. A chronosequence study of 5, 16 and 27 years-old
Pinus radiata D. Don plantation forests in different biogeographic regions of New Zealand showed
that both understory richness and the cover of exotic species decreased significantly with stand
development, richness and the cover of indigenous species was highest in the oldest stands, while the
overall richness was lowest at middle-aged stands [27].

Understory abundance and diversity are significantly affected by light, as the understory
abundance decreases under low light, which reduces the competition for soil resources and thus,
increases understory species richness [23]. Soil nutrients also have a positive influence on species
richness in natural boreal forests [2,23,28,29]. The changes in environmental conditions as the result
of fast-growing tree plantations have been considered as a key factor that drives the variation in
understory plant diversity and composition [30–33]. A previous study in natural Pinus ponderosa
Douglas ex C.Lawson forests showed that the richness and cover of understory vegetation were
significantly affected by soil organic matter and soil nitrogen, being also associated to overstory
plant composition and soil physical properties [34]. The soil moisture has shown to influence species
distributions across different stand ages [35]. Collectively, soil properties can enforce direct and indirect
restrictions on plant diversity [34]. Therefore, the soil physical and chemical properties are relevant to
changes in understory diversity and composition over the life of a stand.

Understory vegetation makes a significant contribution to overall species diversity in forest
plantations as many plant species are restricted to this layer [36,37]. Although previous studies of
the abundance, diversity, and composition of understory vegetation have been carried out in natural
forests [38,39], the dynamics of understory vegetation in plantation forests, in particular by various
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life forms, in relation to stand development remain poorly understood. This study was designed to
examine how (1) the abundance, diversity, and composition of understory vegetation change with stand
development in a fast-growing poplar plantation, and (2) the soil factors affect the abundance, diversity,
and composition of understory vegetation. This study hypothesized that the abundance, diversity,
and composition of understory vegetation are significantly influenced by the stand age, because of
the direct effect of time for understory colonization [18,40]. In addition, it was hypothesized that
understory abundance and diversity would decrease with stand development because of a decrease in
available resources, i.e., light and nutrients [5].

2. Materials and Methods

2.1. Site Description

This study was conducted at the Dongtai Forestry Farm, which is located in a coastal area of the
Yellow Sea in the Northern Jiangsu Province of Eastern China (102◦49′E, 32◦52′N). This area experiences
a north subtropical to warm, temperate climate with monsoon influences. The growing season extends
from May to October, whereas the dry season spans from November to April [14]. The mean annual
temperature is 14.6 ◦C, with small monthly variations during the growing season (i.e., 24.1 ◦C in June,
28.1 ◦C in July, 27.7 ◦C in August, and 21.6 ◦C in September), and a frost-free period of 220 days [14].
The mean annual precipitation is 1051 mm, with a mean relative humidity of about 88%. The plantation
is located on reclaimed land from the sea via the construction of coastal levees, characterized as saline
land of the silting lower reaches of the coastal alluvial soils [14]. Once the alluvial soils started to
form above sea level after five to ten years, the land was typically converted to tree plantations with
species such as Populus deltoides L. ‘Lux’ (Italy-69/55), Populus euramericana ‘San martino’ (Italy-72/58),
Populus deltoides L. ‘35/66’, Populus euramericana L. ‘JP7’, Metasequoia glyptostroboides Miki ex Hu,
and Ginkgo biloba L. [14]. During the establishment of these plantations, the shrub and herb species
present were retained.

2.2. Sampling Design and Field Measurement

This study followed a chronosequence approach by sampling stands of the different ages [41,42].
The selection was 8-, 12-, and 18-year-old poplar (Populusdeltoidescv. ‘I-35’) plantations with approximately
uniform site conditions and management histories [42,43]. A completely randomized design was used
with 15 replications (sites) for each age class plantation, i.e., stratified random sampling. The distance
between any two adjacent 25 m × 30 m sample plots was greater than 10 m. A total of 45 plots (three
age classes × 15 plots) were established.

Within each sample plot, five quadrats of 1 × 1 m and 2 × 2 m to for the herb and shrub layer,
respectively, were systematically established. The shrubs were defined as any species with heights
between 1.3 and 4.0 m [19], and as such, the species found in the shrub layer could also be present
in the herb layer. All vascular and non-vascular plants of <1.3 m in height were sampled as herb
understory vegetation [5,19]. Understory vegetation surveys were conducted during July 2013 when
the peak of vegetation cover occurs, and all plants could be identified to the species level. The cover (%)
of each species was visually determined following methods previously described [5,19]. The quadrat
data were pooled by individual sample plot prior to the statistical analysis. All analyses were done
separately for herbs and shrubs.

2.3. Laboratory Analyses

Within each of the 45 sample plots, five random locations were chosen to conduct soil sampling
by excavating to a depth of 30 cm using a hand shovel. The soil samples from the five locations within
each sample plot were pooled to a composite sample and transported to the laboratory in ice coolers
for the analysis of soil physical and chemical properties. In the laboratory, total carbon, total nitrogen,
C:N ratio, soil moisture, and soil pH content in the 0–30 cm layers were determined. The soil moisture



Forests 2019, 10, 764 4 of 14

content was determined using the classical methods of drying and weighing [44]. The air dried
samples were used to analyze the total carbon and total nitrogen using an element analyzer (Elementtar,
vario ELIII Analysen Systeme GMbH, Hanau, Germany). The soil pH was measured in a 1:2.5 soil to
the water suspension [45].

2.4. Data Analysis

2.4.1. Species Diversity Indices

Species abundance (% cover) was used to calculate the Shannon-Wiener index (H′), which is most
widely used to assess the diversity of the understory vegetation [46] as, H′ = Σ(pi)ln(pi), where, pi is
the relative abundance of the ith species, expressed as a proportion of the total in the community,
and ln is log base-e. These calculations were performed separately for the herb and shrub layers.

2.4.2. Influence of Stand Age and Environmental Factors on Understory Abundance, Diversity,
and Composition

The effects of stand age on the abundance (% cover) and diversity (Shannon’s diversity index)
of the herbs and shrubs and soil properties were tested by a one-way analysis of variance (ANOVA).
Additionally, Pearson’s correlation analysis was used to test the associations of soil variables with
the abundance and diversity of herbs and shrubs. The effects of the stand age and soil variables on
the species composition (all species covers as a matrix) were tested by permutational multivariate
analysis of variance (perMANOVA) [47]. PerMANOVA was performed using the adonis function
of the vegan package in R software [48]. Nonmetric multidimensional scaling (NMDS) was then
used to graphically show how the soil properties affect the understory composition [49–51]. NMDS is
recognized as a robust ordination technique that avoids normality and homogeneity assumptions,
which are commonly not met for ecological community data [52]. NMDS ordinations were carried out
to test the effects of stand age and soil variables on the species composition with the metaMDS and
envfit function of the vegan package in the R software [48]. All analyses were conducted with the R
statistical software, version 3.5.2 [53].

2.4.3. Structural Equation Modeling

Structural equation modeling (SEM) is a multivariate statistical technique that provides the
link between empirical observations and theoretical hypotheses [54]. This method is preferred by
the researcher because it estimates the multiple and interrelated dependence among variables in a
single analysis [5]. As the soil variables were highly correlated, a composite soil variable, which is a
combined influence of measured soil variables (e.g., total carbon, total nitrogen, C:N ratio, soil moisture,
and soil pH), was created separately for the abundance and diversity of herb and shrub vegetation
using linear regression. It was found that the soil variables were insignificant (p < 0.05) for the
herb abundance. Therefore, SEM was fitted with the direct effects of the stand age and soil variables
and the indirect effects of the stand age via soil variables on the shrub abundance, shrub diversity,
and herb diversity. The model structure was based on our introduced hypotheses. Several tests were
used to determine the final models. The maximum likelihood chi-square tests were used to determine
the model’s goodness of fit, and the model was considered a good fit if the p-value was >0.05 [55].
Asthe chi-square test may be influenced by the sample size [56], the comparative fit index (CFI) and
Tucker-Lewis index (TLI) were also employed to examine the adequacy of the model fit to the data.
The CFI and TLI are known to be less affected by the sample size, ranging from 0 to 1, with values >0.9
indicating an acceptable model fit [57]. The standardized coefficient value, which ranged from 0 to 1
(i.e., values closer to 1 indicate a greater degree of influence), was examined to evaluate the relative
importance of the relationships between the variables. The SEM was fitted and analyzed using the sem
function of the laavan package in the R statistical software [57].
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3. Results

3.1. Influence of Stand Age on Understory Abundance and Diversity

A total of 98 understory species were recorded across the 45 sample plots, which included 75 herb
species and 23 shrub species. The ANOVA revealed that herb abundance was significantly lower in
the 12-year-old whereas shrub abundance was the highest in the 12-year-old compared to other stands
(Figure 1A; Table 1). Herb diversity was significantly higher in the 8-year-old stands without significant
differences in diversity between the 12- and 18-year-old stands (Figure 1B; Table 1). Shrub diversity
was the highest in the 12-year-old stands with the lowest in 18-year-old stands (Figure 1B; Table 1).
Shrubs had higher coefficients of variation for both the abundance and diversity compared to herbs
(Table 1).

Figure 1. The differences (mean ± 1SE) in (A) abundance (% cover), and (B) Shannon diversity index of
the herb and shrub layers among three stand ages.

Table 1. One-way analysis of variance (ANOVA). The estimated plot level mean values of the abundance
and Shannon’s diversity index for the herb and shrub vegetation categories, the total soil carbon
(total C, g kg−1), the total soil nitrogen (total N, g kg−1), C:N ratio, the soil moisture (%), and the
soil pH for three stand ages of a poplar plantation. Separation of means was determined by a Tukey
test where applicable. Different letters indicate that means were significantly different at p < 0.05.
The degrees of freedom were 2 for the nominator and 42 for the denominator for all analyses.

Categories Index
Stand Age (Years) ANOVA Statistics

8 12 18 CV (%) F p

Herb
Abundance a b a 23.0 12.16 <0.001

Shannon a b b 8.6 26.30 <0.001

Shrub
Abundance b a c 54.5 41.49 <0.001

Shannon a a b 57.1 24.55 <0.001

Soil properties

Total C 15.8 ± 0.2b 17.4 ± 0.2a 17.2 ± 0.2a 7.9 17.31 <0.001

Total N 0.81 ± 0.05a 0.69 ± 0.05a 0.86 ± 0.05a 35.7 2.71 0.072

C:N ratio 20.5 ± 2.0b 31.2 ± 2.0a 24.9 ± 2.0ab 45.4 7.42 0.001

Soil moisture 0.22 ± 0.005b 0.24 ± 0.005a 0.23 ± 0.005ab 13.0 4.61 0.013

Soil pH 8.24 ± 0.01b 8.19 ± 0.01c 8.32 ± 0.01a 1.0 30.43 <0.001

The total carbon was significantly higher in the 12- and 18-year-old than 8-year-old stands, with no
difference in soil nitrogen among the stand age classes (Table 1). The C:N ratio and soil moisture were
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the highest in the 12-year-old stands and the lowest in the 8-year-old stands. The soil pH was the
highest in the 18-year-old stands (Table 1). The measured soil properties, except for pH, exhibited high
coefficients of variation, indicating that the distribution of soil variables was highly diverse.

3.2. Influence of Soil Factors on the Understory Abundance, Diversity, and Composition

Herb abundance was positively correlated to soil pH (r = 0.35, p < 0.05), whereas shrub abundance
was negatively correlated to soil pH (r = −0.61, p < 0.05) and positively correlated to the C:N ratio
(r = 0.30, p < 0.05) (Table 2). This suggested that herb species were most abundant in areas with high pH,
while shrub abundance decreased with high pH and low C:N ratio. Herb diversity was negatively
correlated to total carbon (r = −0.36, p < 0.05) and the C:N ratio (r = −0.32, p < 0.05), whereas shrub
abundance was negatively correlated to soil pH (r = −0.57, p < 0.001) (Table 2). This suggested that
herb diversity was low in areas with high soil carbon content and the C:N ratio, while shrub diversity
decreased at high soil pH.

Table 2. Pearson’s correlation between the soil properties and the abundance and diversity of herbs
and shrubs. Significance of main effects are shown as: *, significant at p < 0.05; and ***, significant at
p < 0.001.

Variable Total Carbon Total Nitrogen C:N Ratio Soil Moisture Soil pH

Herb Abundance −0.10 0.15 −0.23 −0.18 0.35 *

Shannon −0.36 * 0.15 −0.32 * −0.12 0.00

Shrub Abundance −0.02 −0.23 0.30 * 0.10 −0.61 ***

Shannon −0.27 −0.12 0.05 −0.07 −0.57 ***

The perMANOVA analysis revealed that the composition of herbs and shrubs differed between the
stand ages (p < 0.001). The stand age explained the largest proportion of the compositional variation
being 51% and 39%for herbs and shrubs, respectively. The grouping of species by stand age in the
ordination space revealed clear compositional separations among the stand age classes for herbs
(Figure 2A) and shrubs (Figure 2B).

Figure 2. Cont.
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Figure 2. Non-metric multidimensional scaling (NMDS) ordination of study plots across understory
species compositions based on (A) herb and (B) shrub layers across three different strand ages (8-, 12-,
and 18-years). In each diagram, only total carbon and soil pH showed significant goodness of fit based
on post-hoc correlations (p < 0.05) that were represented as vectors. The abbreviated species names in
the figures are given Table S1.

The NMDS analysis using the soil variables indicated that the herb and shrub composition were
significantly (p < 0.05) related to total carbon and soil pH (Tables 3 and 4; Figure 2). Total nitrogen,
C:N ratio, and soil moisture were insignificant for both vegetation categories under study.

Table 3. Permutational multivariate analysis of variance (perMANOVA) examining the influence of
the stand age, total soil carbon, total soil nitrogen, C:N ratio, soil moisture, and soil pH content on the
herb and shrub species composition. Significance of main effects are shown as: ** p < 0.01, *** p < 0.001,
and R2 is the fit index of the model.

Variable
Herb Shrub

F-Value R2 F-Value R2

Age 21.59 *** 0.51 13.19 *** 0.39

Total carbon (C) 4.46 ** 0.09 3.28 ** 0.07

Total nitrogen (N) 0.86 0.02 0.93 0.02

C:N ratio 2.01 0.04 1.55 0.03

Soil moisture 1.60 0.04 1.46 0.03

Soil pH 5.09 *** 0.11 5.40 *** 0.11

Table 4. Nonmetric multi-dimensional scaling (NMDS) showing the associations between the
composition of herbs and shrubs and soil variables. The significant relationships are in bold, and R2 is
the fit index of the model.

Vegetation Variable NMDS1 NMDS2 R2 p-Value

Herb Total carbon (C) 0.97 −0.24 0.28 0.002

Total nitrogen (N) −0.11 0.99 0.03 0.500

C:N ratio 0.73 −0.68 0.11 0.090

Soil moisture 0.89 −0.45 0.07 0.240

Soil pH 0.41 0.91 0.31 0.002
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Table 4. Cont.

Vegetation Variable NMDS1 NMDS2 R2 p-Value

Shrub Total carbon (C) 0.74 0.67 0.16 0.026

Total nitrogen (N) 0.66 −0.75 0.03 0.571

C:N ratio 0.04 0.99 0.04 0.395

Soil moisture 0.51 0.86 0.08 0.195

Soil pH 0.81 −0.59 0.27 0.002

3.3. Structural Equation Modeling

The resultant SEM models (Figure 3) yielded adequate fits for shrub abundance (χ2 = 0.000,
df = 3, p = 0.000, CFI = 1; TLI = 1), herb diversity (χ2 = 0.000, df = 3, p = 0.000, CFI = 1; TLI = 1),
and shrub diversity (χ2 = 0.000, df = 3, p = 0.000, CFI = 1.000; TLI = 1). In the final SEM, the stand
age had a negative direct (standardized coefficient, r = −0.20) and indirect effect via soil properties
(r = −0.15 × 0.62 = −0.09) on shrub abundance (Figure 3A). The stand age had a negative direct effect
on herb diversity (r = −0.60) and shrub diversity (r = −0.41), and negative indirect effects via soil
variables on herb diversity (r = −0.04) and shrub diversity (r = −0.16) (Figure 3B,C).

Figure 3. Structural equation modeling (SEM) for (A) shrub abundance, (B) herb Shannon, and (C) shrub
Shannon, linking the soil variables with species abundance and diversity. The stand age was fitted as
direct pathways of influence on the abundance or diversity, while the stand age via the soil condition was
fitted as indirect pathways of influence. The abbreviations are denoted as follows: abndn (abundance),
shnnn (Shannon’s diversity index), age (stand age), and soil (composite soil variables).
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4. Discussion

4.1. Influence of Stand Age on Understory Abundance and Diversity

This study supported our fundamental hypothesis that the abundance, diversity and composition
of understory species change with stand development in poplar plantations. Our result suggests
that young poplar plantations generally exhibit greater herb diversity in contrast to mature stands.
The changes in species composition with the stand age and soil variables of this study could be
attributed to the measured soil carbon, nitrogen, moisture and pH, as well as the light availability in
young stands [10,58]. The prediction of understory plant diversity and composition can be a difficult
task [39]. Our results confirmed this as they revealed the diverse results of the increased or decreased
abundance and diversity with the stand age, which also varied between herbs and shrubs. For example,
herb abundance was greatest in young and old stands, while shrub abundance was greatest in the
middle-aged stands.

Our findings of declining herb abundance from young to middle-aged stands are consistent with
other studies [59,60]. Our finding of the reduced shrub abundance in the oldest stand might be attributed
to reduced light availability in the understory [19,61–64], lower soil moisture [65], and increased canopy
shading [30]. Further, greater aboveground biomass in mature stands may require additional nutrients
and thus reduces the nutrients available to herbs and shrubs [14]. The contrasting age-dependent
patterns of herb abundance versus shrub abundance suggest that resource competition does not only
occur between the overstory and the understory, but also between the shrub and herb layers [22].
The positive relationship between total soil carbon and understory diversity may suggest a positive
plant diversity effect on the soil carbon pool [66].

The age-dependent patterns in understory vegetation characteristics could be attributed to
understory light availability [5,33]. The studies have suggested that the high light availability in young
poplar plantations was well suited for the growth of heliophytes, whereas low light availability in
older plantations was better suited for neutrophilia or shade plants [30]. In the study area, the high
light availability in young but low in middle-aged poplar stands might have contributed to low herb
abundance but greater shrub abundance in the middle-aged stands since understory light availability
in young poplar stands tends to be an important determinant for understory vegetation abundance [10].
The structural and environmental heterogeneity increases significantly at later stand development
stages in fast-growing tree plantations due to canopy stratification [67]. As such, the increased structural
diversity in fast-growing tree plantations is typically associated with increasing plant diversity and
abundance [68,69]. Overstory structure, as influenced by stand development, is a key factor that
determines the available levels of light and soil resources in the understory [2,19,70,71], which in turn
impacts the abundance and diversity of understory species [22,38]. One of the limitations of our study
in assessing abundance and diversity was that the overstory structures and understory light availability
were not measured, which are considered important factors in the analysis of understory diversity [5].

4.2. Influence of Soil Factors on Understory Abundance, Diversity and Composition

Soil resources are also important drivers of understory abundance, diversity, and composition in
poplar plantations, as shown in this study. This study observed the associations between understory
abundance and diversity with soil total carbon, C:N ratio, and soil pH as shown by a correlation
analysis. The soil factors were recognized as key factors for understory plant diversity [72]. In our study,
herb abundance was positively, but shrub abundance was negatively correlated with soil pH. However,
the herb diversity was negatively correlated with total carbon and the C:N ratio, and shrub diversity
was negatively correlated with soil pH. These results suggest that controls for understory abundance
and diversity could be decoupled [15,23].

Our perMANOVA results showed that the soil properties (i.e., total carbon, and soil pH) were the
most significant factors that mediated the distribution of understory vegetation, with others reporting
similar findings [73–75]. It was found that the total carbon and soil pH were critical towards explaining
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the variation of the understory vegetation composition. This finding is consistent with the ideas
that soil nutrition played a vital role in understory species composition [76]. The herb species in
middle-aged stands located in the bottom right of the NMDS plot are related to a habitat with a
relatively low total carbon, soil moisture, and C:N ratio, while in the older stands, the habitats had a
relatively high total nitrogen and soil pH (Figure 2a). The shrub species in the middle-aged stands
located in the top left of the NMDS plot are related to a habitat with a relatively high total carbon,
soil moisture, and C:N ratio, while in the older stands, the habitats were relatively low in total nitrogen
and soil pH (Figure 2b). These results suggest that the soil chemical characteristics play important
roles not only in natural forests where substrate heterogeneity is high [5,18], but also in single-tree
species plantations from reclaimed soils with low substrate heterogeneity.

4.3. Structural Equation Modeling

This study found that the stand age negatively affected the understory abundance and diversity.
This result was not consistent with a previous study where the stand age was shown to have a significant
positive effect on understory cover and richness [5]. The difference in the stand age effects between our
study and Kumar et al. [5] could be attributed to the fact that bryophytes were included in the latter
but not in our study since bryophytes are slow colonizers. Thus, the stand age played strong positive
roles in their abundance and diversity. Our finding that the soil properties influence the understory
vegetation diversity was similar to other studies [77–79]. Our SEM result suggests that the increase
of overstory biomass with stand development reduces both light and soil resources available for the
understory abundance and diversity. This result was consistent with the understanding that resource
availability is a major determinant of understory vegetation abundance and diversity [4,22,80].

5. Conclusions

Our study demonstrated that the abundance, diversity, and composition of understory vegetation
differed across a stand age gradient of poplar plantations. The soil properties varied significantly with
the stand age and influenced the understory abundance, diversity, and composition. The negative
direct effects of the stand age and the negative indirect effects of the stand age via soil factors on the
understory vegetation suggest that the development of the overstory reduces the resource available
for the understory vegetation in the fast-growing poplar plantations. Our work may contribute to
an improved elucidation of the changes in the abundance, diversity, and composition of understory
vegetation in forest plantations. To fully elucidate the ecosystem functionality of understory vegetation
in plantations, as this study was concentrated on but one experimental setup, there is a need to examine
the patterns of understory abundance, diversity, and composition in multiple and more expansive
spatial contexts.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/9/764/s1,
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