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Abstract: Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is the most commonly grown
afforestation species in subtropical China. It is essential that we understand the response of
radial tree growth to climate factors, yet most experiments have been conducted based on total
annual growth and not on monthly dynamics, which alone can detail the influence of climatic factors.
In this study, we aimed to: (i) construct a monthly growth model and compare the growth rate of
different social statuses of trees, and (ii) determine the response of radial increments of different
social statuses to climate factors. The radial growth was monitored monthly during four years using
manual band dendrometers (MBD). The data were fitted using the Gompertz function. Within-stand
differences in the social status of Chinese firs resulted in growing period and growth rate length
variations. The radial growth began in March, and suppressed trees—especially groups of AS1 and
BS1 (suppressed trees of classes I in sites A and B)—stopped in September, whereas dominant and
intermediate trees were delayed and stopped in November. The periodic monthly increment curve
showed double peaks, and the maximum growth rate occurred in April and August. The peak
values were affected by social status, which showed that dominant trees had the greatest radial
growth rates. S-shaped Gompertz meant that monthly increment models were successfully fitted
to our data, which explained more than 98% of the variation in increment data and passed the
uncertainty test. Temperature and precipitation had a significant influence on radial growth, and the
correlation between radial growth and air temperature was the highest. Our results also revealed that
temperatures explain the double-peak features of Chinese fir. The limiting factors of radial growth
changed with the seasons and were mainly affected by temperature and precipitation, which should
be considered in predicting the response of tree growth to climate change.

Keywords: climate change; double peaks; Gompertz model; manual band dendrometer; radial
growth; subtropical area

1. Introduction

There is an expectation that many species will be affected by climate change in the 21st century [1].
As the largest component of the terrestrial biosphere, the forest ecosystem plays a key role in the
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soil–plant–atmosphere continuum [2]. Tree growth is not only related to the trees’ own biological
characteristics, such as species and social status [3–6], but also affected by topographic and climate
factors [7–11]. Thus, it is necessary to investigate tree growth and its response to climate change for
protecting forests and the ecosystem, which provides benefits to society [12,13].

Alterations in the width of tree rings are known to encode important climate factors, such as air
temperature and precipitation. To discover the details, seasonal radial growth patterns are needed
in different forest ecosystems [14]. Information on the high resolution (short timescale) tree-stem
increments may be lost using the dendrochronology method, it is thus necessary to introduce monitoring
methods to explore the dynamic variation of monthly radial growth. The dynamic variation in tree
diameter can change over periods of time ranging from hours to years, which provides an important
basis for characterizing multiple aspects of tree performance and forest–microclimate interactions [6].
Based on seasonal variation, trees can reveal some important events in the process of radial growth,
such as when tree growth began or stopped [15].

In temperate and boreal forests, cumulative radial growth was observed as an S-shaped curve,
and there were some variations among tree species [16–18]. As a result, non-linear and parametric
curve-fitting provisions were widely used to understand diverse ecological and evolutionary trends [19].
When using a non-linear growth curve model, the inflection point indicated the maximum rate of tree
growth [20]. On the curve of the Gompertz model, the position of the inflection point appears early.
Hence, it is suitable for fitting growth trends of fast-growing species. In a previous study, the S-shaped
Gompertz model was used to estimate daily growth rates and relative periods of differentiation
growth phases [16]. The Gompertz model has been applied to a large range of studies relating to the
seasonal radial stem dynamic of different species of trees, such as continental and oceanic temperate
forests [5,18], Mediterranean forests [21,22], alpine forests [23,24], and boreal tree species [16,25,26].

The subtropical area of South China is considered to be an important region for biodiversity and a
great nature reserve for endemic plant species. However, it is considered an important vulnerable zone
of climate change [27]. In subtropical regions, tree radial growth studies are considered main hot-spot
research for understanding the climate–growth relationship [28]. Chinese fir (Cunninghamia lanceolata
(Lamb.) Hook.) is a fast-growing dominant conifer tree species in subtropical China [29,30]. Due to
the high quality of timber, this species plays an important role in terms of timber supply—multiple
forest by-products for human society. In addition, Chinese fir promotes environmental protection
and maintains balance in the forest ecosystem [31–33]. This fast-growing tree is able to survive
in an environment with abundant annual precipitation and warm temperature [34]. For growth
study in a subtropical region, radial growth of tree research is fundamental for understanding the
climate–growth relationship, which can directly show the response of tree growth to climate change [28].
However, studies on the relationship between growth and climate factors have been mostly focused on
inter-annual changes. The dynamics of monthly radial growth are still poorly understood.

In this study, the monthly radial increment data of Chinese fir were monitored for four years using a
manual band dendrometer (MBD), and were modelled using the Gompertz function, to comprehensively
understand the impacts of climate on tree growth by combining traditional climatic data, such as
temperature, precipitation, and relative humidity. Our objectives were: (i) to construct a monthly
growth model and compare the growth rate of different social statuses of trees, and (ii) to determine
the response of radial increment to climate factors. The main hypotheses were: (i) the period and rate
of radial growth change according to social status within the stand, and (ii) the sensitivity of radial
growth to air temperature is higher than that to precipitation and relative humidity.

2. Materials and Methods

2.1. Study Area

The study site was the Huitong National Field Station for Scientific Observation and Research of
Chinese Fir Plantation Ecosystem (109◦35′—109◦36′ E, 26◦46′—26◦48′ N) in Hunan province, China. In
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this region, the elevation ranges from 270 m to 400 m above sea level, and the area experiences a typical
subtropical monsoon climate which is characterized by mild winters and hot summers, and the rainy
season occurs from May to October. The whole year’s growth period is more than 300 days, which
is conducive to the growth of Chinese fir. Long-term records (1951–2018) from the meteorological
station in Huitong (26◦47′ N, 109◦38′ E, 308 m a.s.l.) showed that the average annual precipitation was
1337 mm. May and June are the wettest months, and December is the driest month. The annual mean
temperature is 16.6 ◦C (Figure 1). The soil type is mountain loessial soil, its texture is between light
soil and medium clay soil, and the main layer’s thickness is over 80 cm. The pH is ~4.86. The soil is
identical on both sites. The plant vegetation surrounding the station is a typical subtropical evergreen
broad-leaved species. There are only a few shrubs and herbs under the forest. The representative
undergrowth vegetation is mainly composed of Maesa japonica (Thunb.) Moritzi., Woodwardia japonica
(L. f.) Sm., and Dicranopteris linearis (Burm.) Underw. [35].
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Two plots were clear cut, burned, and artificially planted in 1988, and second generation of Chinese 

fir plantations were established. In spring 1996, site A was reforested for the low survival rate, and 
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trees in sites A and B were 22 and 30 years in 2018, respectively. As our experimental forest, there 
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Figure 1. Monthly precipitation (P), monthly mean (Tmean), average of maximum (Tmax), and
minimum (Tmin) temperatures (◦C) of Huitong from 1951 to 2014 (a), from 2015 to 2018 (b), and
from January 2015 to December 2018 (c), recorded at our ecological research station in Huitong,
Hunan province.

2.2. Sample Plot Selection

We selected two sample plots (20 m × 30 m) from the station as our study sites (site A and B).
Two plots were clear cut, burned, and artificially planted in 1988, and second generation of Chinese fir
plantations were established. In spring 1996, site A was reforested for the low survival rate, and site
B remained undisturbed. As a result, the ages of sample trees were different in the two sites, trees
in sites A and B were 22 and 30 years in 2018, respectively. As our experimental forest, there was no
human disturbance.

2.3. Tree Increment Data

In January 2015, we measured the diameter at breast height (DBH), tree height, crown width,
and spatial position of each tree in the sample plot. At the same time, we also investigated the basic
information of the sample plots. In addition, we selected 162 well-grown Chinese firs and installed
MBDs at breast height (Figure 2). The specific installation methods and working principles followed
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Vitas [36]. We used a vernier caliper to measure the slot length of each MBD within 0.01 mm accuracy
on the first day of every month.
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Figure 2. Manual band dendrometer (MBD) installed at breast diameter of Chinese fir.

2.4. Climate Data

The climate factors of air monthly mean, maximum and minimum temperatures (◦C), relative
humidity (RH, %), and monthly precipitation (P, mm) were considerable or were used in this study.
The 20 m height meteorological observation tower was set up in the sample plot. There is probe for
measuring hourly air temperature and relative humidity (HMP45C-L, Campbell Scientific, Inc., Logan,
UT, USA) at a height of 2 m above the crown. The siphon rainfall recorder was used for continuous
recording of atmospheric rainfall. To harmonize the time resolution between MBD and climate data,
the daily climate data were processed into monthly averages or sums of climate data.

2.5. Data Analysis

2.5.1. Sample Grouping

Each sample tree was grouped according to the site and basal area of breast height. According to
the order of diameter classes and the average growth rate in these four years, the sample trees were
divided into five diameter classes with the same basal area. Classes I and II were suppressed trees,
which included groups AS1, AS2, BS1, and BS2; class III was intermediate trees including AI1 and BI1;
classes IV and V were dominant trees, including AD1, AD2, BD1, and BD2. Information regarding the
10 groups’ sampling trees in two sites are shown in Table 1.

Table 1. Information of observed sample trees and monitoring sites.

Site Groups Number Age
(years)

Slope
(◦)

Slope
Aspect

Average
DBH

Max
DBH

Min
DBH Variance

A AS1 22 22 25 Northeast 15.32 18.93 12.50 4.96
A AS2 20 22 25 Northeast 18.10 23.23 14.26 4.72
A AI1 17 22 25 Northeast 21.73 23.98 19.21 1.61
A AD1 14 22 25 Northeast 23.56 25.87 20.05 1.84
A AD2 9 22 25 Northeast 25.63 26.72 24.26 0.74
B BS1 23 30 27 Northeast 17.12 19.85 13.55 2.37
B BS2 20 30 27 Northeast 20.63 22.64 17.22 2.72
B BI1 16 30 27 Northeast 24.11 26.99 19.72 2.73
B BD1 12 30 27 Northeast 26.85 33.40 25.40 4.63
B BD2 9 30 27 Northeast 29.39 36.49 26.50 8.69

DBH: diameter at breast height; AS1: suppressed trees of classes I in site A; AS2: suppressed trees of classes II in site
A; AI1: intermediate trees of classes III in site A; AD1: dominant trees of classes IV in site A; AD2: dominant trees
of classes V in site A; BS1: suppressed trees of classes I in site B; BS2: suppressed trees of classes II in site B; BI1:
intermediate trees of classes III in site B; BD1: dominant trees of classes IV in site B; BD2: dominant trees of classes V
in site B.
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2.5.2. Growth Pattern and Rate

The slot increment was translated into units of DBH for further analyses. The slot length measured
with vernier calipers was linear distance instead of arc distance, so we wrote a program code to
eliminate error and to calculate the monthly DBH increment. The monthly growth rate was calculated
using the following equation:

µt =
g(t) − g(t−1)

t− t−1
(1)

where t is the day of the year (DOY), t−1 is the sampling date before t, and g(t) and g(t−1) are the radial
increments at times t and t−1, respectively.

2.5.3. Growth Curves Modelling

The radial growth was fitted using a non-linear Gompertz model estimation from the ‘grofit’
packet in R 3.5.2 software [37] according to the following formula:

y(t) = Ae−e[ µe
A (λ−t)+1] (2)

where y is the monthly cumulative radial increment (µm), t is the day of year (DOY), A is the upper
asymptote (µm), fixed according to the maximum growth, µ is maximum growth rate, and λ is lag
phase. Based on a model-based fit and a model-free spline fit, we used two different methods to fit
a given growth curve [38]. In order to extract parameters from different social statuses, each group
was fitted with Gompertz model and smoothing spline. The extracted growth parameters (A, µ, and
λ) from trees were analysed by two-way analysis of variance (ANOVA) to compare the differences
between sites and groups and inter-annual differences between 2015 and 2018. Uncertainty analysis of
model fitting was also considered.

2.5.4. Relationship between Climate and Radial Growth

The stepwise regression and Pearson correlation coefficients were calculated to quantify the
relationship between climate factors and the monthly radial growth. Analysis of covariance (ANCOVA)
was used to compare the effects of climate factors on radial increment over four years and among
different social statuses. Moreover, the regression between climatic factors and monthly radial
increment was established. All statistical analyses were conducted using R software (3.5.2), and all
differences were significant at p < 0.05.

3. Results

3.1. Monthly Radial Growth

In both sites, the monthly pattern of stem radial variations showed double-peak curves during
the tree-growing period, although there were differences in growth patterns among different diameter
classes (Figure 3). With a change of social status, the bigger the diameter class, the more obvious the
bimodal pattern, especially in dominant trees. The radial growth of dominant and intermediate trees
began in March and stopped in November, whereas suppressed trees, especially groups AS1 and BS1,
stopped in September. The radial growth rate progressively increased in April, followed by a marked
decrease or plateau in June and July, and then a sharp increase in August. It started to stabilize in
November. The growth in April was obviously higher than that in August. However, there were some
differences in the maximum growth rates in different diameter classes, and the peak values of radial
growth rates of dominant trees were higher than that of suppressed trees.
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Figure 3. Average month radial growth increment of the five groups of trees at site A (a) and site B (b).

3.2. Growth Curves’ Modelling

Gompertz models explained more than 98% of the variation in monthly radial increment data
(Figure 4), indicating that the model was suitable for radial growth of Chinese fir. The means’ monthly
increment curves exhibited an S shape across a whole year. The mean monthly increment of dominant
trees in site A was larger than that in site B, whereas the growth of suppressed trees in site A was
smaller than that in site B. The difference of maximum increment among the social status of 22-year-old
trees was larger than that of 30-year-old trees. During 2015–2018, the trees’ annual radial increment in
2018 was smaller than in other years.

The fitting parameters were exported, λ changed greatly, while A and µ changed slightly, the
maximum values of A and µ both appeared in 2016 in a four-year comparison, and the minimum
values of parameters (A, µ and λ) appeared in 2018 (Table 2). Across the two sites, A and µ increased
with the increasing tree diameter class. In addition, two-way ANOVA analysis showed that A and
µ of different diameter classes had significant difference in both site, and A and λwere significantly
different in inter-annual variation (p < 0.001) (Table 3).

Table 2. Mean and standard deviation (SD) of radial growth and shape parameters for the radial
growth of Chinese fir.

Items
A µ λ

Mean SD Mean SD Mean SD

Year 2015 4.901 0.140 0.025 0.001 97.627 4.180
2016 4.959 0.146 0.026 0.002 87.183 4.957
2017 4.470 0.168 0.025 0.002 82.967 6.833
2018 3.592 0.161 0.021 0.002 81.016 8.784

Group AS1 1.027 0.015 0.006 0.000 88.612 2.964
AS2 3.743 0.095 0.021 0.001 82.675 4.627
AI1 4.791 0.134 0.025 0.001 85.232 4.763
AD1 6.572 0.174 0.034 0.002 86.121 4.400
AD2 7.893 0.255 0.040 0.002 90.275 4.953
BS1 1.175 0.030 0.007 0.000 76.824 5.201
BS2 3.161 0.076 0.018 0.001 84.360 4.521
BI1 4.391 0.125 0.024 0.001 84.708 5.021
BS1 5.009 0.143 0.027 0.002 86.255 4.818
BS2 7.194 0.186 0.038 0.002 89.684 4.162

A: maximum growth; µ: maximum growth rate; and λ: lag time of growth.
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(f–j) considering the tree groups in site B, and (k–n) considering the studied years. Note: DOY means
day of the year.
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Table 3. Two-way analysis of variance (ANOVA) of the effects of tree group and the inter-annual
differences of the growth and parameters A, µ, and λ.

Factors Site A
A µ λ

F p F p F p

Year 9.472 0.002 ** 1.339 0.308 19.989 <0.001 ***
Group 416.193 <0.001 *** 201.847 <0.001 *** 0.009 0.926

Year × Group 2.908 0.078 1.030 0.414 0.774 0.531

Factors Site B
A µ λ

F p F p F p

Year 7.298 0.005 ** 4.241 0.029 * 6.371 0.008 **
Group 351.113 <0.001 *** 234.306 <0.001 *** 9.730 0.009 **

Year × Group 4.452 0.025 * 2.316 0.128 2.402 0.119

A: maximum growth; µ: maximum growth rate; and λ: lag time of growth. * p < 0.05; ** p < 0.01; *** p < 0.001.

3.3. Radial Increment Responses of Climate Factors

Stepwise regression analysis demonstrated that temperature had a significant effect on stem
growth throughout the whole growing season (Table 4). In the optimal regression equation, all
regression equations were significant (p < 0.001). Climate factor of the monthly average for minimum
temperature was excluded in sites A and B. For the residual test, the residuals vs fitted graph was
random distribution, and the points in the normal Q–Q graph basically fell on a straight line, indicating
that the residual obeys normal distribution. Therefore, the significance test of stepwise regression
showed that the selected independent variables had a significant effect on stem increment, and the
constructed regression equation was optimal.

Table 4. Stepwise regression of radial growth and climate factors in different groups.

Intercept Tmean P Tmax Tmin RH

AS1 −1.0648 * −0.0263 0.0003 ** 0.0303 - 0.0101 *
AS2 −3.0882 * −0.1251 * 0.0010 * 0.1416 * - 0.0274
AI1 −3.0692 −0.1256 0.0012 * 0.1480 * - 0.0265
AD1 −3.5633 −0.1499 0.0015 ** 0.1832 * - 0.0296
AD2 −0.4898 *** - 0.0020 *** 0.0430 *** - -

BS1 −1.1378 −0.0478 * 0.0003 * 0.0506 * - 0.0107
BS2 −3.0093 * −0.1305 * 0.0008 * 0.1422 ** - 0.0274 *
BI1 −3.5720 * −0.1618 * 0.0010 * 0.1796 ** - 0.0318
BD1 −3.6035 −0.1371 0.0011 * 0.1601 * - 0.0324
BD2 −3.5852 −0.1415 0.0017 ** 0.1762 * - 0.0304

Tmean: monthly mean temperature; P: monthly precipitation; Tmax: monthly average of maximum temperature;
Tmin: monthly average of minimum temperature; and RH: relative humidity. * p < 0.05; ** p < 0.01; *** p < 0.001.

The correlation analysis showed that radial growth was significantly correlated with air
temperature and precipitation (p < 0.001) (Figure 5). The correlation between radial growth of
tree and air temperatures was the highest, and dominant trees had more sensitivity to air temperature
(Ra5

2 = 0.74, p < 0.001; Rb5
2 = 0.76, p < 0.001). Monthly average of maximum temperature greatly affected

radial growth, and the correlation increased with the increasing of diameter classes. Furthermore, stem
growth was also significantly affected by precipitation (p < 0.001), and weakly responded to relative
humidity. There was no significant difference in the response of stem variation to climate factors
between the two sites. No obvious differences between monthly average of maximum, minimum,
and mean temperatures on the radial growth of Chinese fir were observed, therefore, the effect of
mean temperature was only discussed in this paper. In spring, autumn, and winter, the correlation
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coefficient between temperature and radial growth is positive, but in summer, the relationship is
negative (Figure 6). The ANCOVA result showed significant interaction between groups and climate
factors (p < 0.001), suggesting that temperature and precipitation differentially regulate the radial
growth of dominant and suppressed trees (Table 5).
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Figure 5. Correlations between radial growth and climate factors in two sites. Tmean is monthly
mean temperatures, Tmax is monthly average of maximum temperature, Tmin is monthly average of
minimum temperature, and P is precipitation.
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Figure 6. Correlation coefficients between seasonal temperatures (Tmean), precipitations (P), and radial
growth of group AD2 at site A (a) and BS1 at site B (b).

Table 5. Analysis of covariance (ANCOVA) of climatic factors on radial growth.

Items
Site A Site B

F p F p

Temperature 186.92 <0.001 *** 182.44 <0.001 ***
Group 27.38 <0.001 *** 26.22 <0.001 ***

Temperature × Group 12.41 <0.001 *** 12.24 <0.001 ***

Precipitation 120.72 <0.001 *** 113.99 <0.001 ***
Group 21.99 <0.001 *** 20.98 <0.001 ***

Precipitation × Group 5.99 <0.001 *** 6.27 <0.001 ***

*** p < 0.001.

With an increase in temperature (Figure 7a,b) and precipitation (Figure 7c,d), monthly growth
increased rapidly. The regression line’s slope between radial growth and relative humidity was smaller
(Figure 7e,f). Compared to the precipitation (R2 = 0.261 in site A and R2 = 0.252 in site B) and relative
humidity (R2 = 0.045 in site A and R2 = 0.015 in site B), the radial growth of Chinese fir was more
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sensitive to temperature (R2 = 0.324 in site A and R2 = 0.322 in site B). It was found that the correlation
coefficient between sample tree radial increment and climate factors were higher at site A than at site B.
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4. Discussion

4.1. Influence of Trees’ Social Status on Radial Growth

Our research shows differences in the growth period and monthly increment of different social
statuses (Figure 3). Confirming our first hypothesis, evidence indicated that the growing season of
dominant trees was longer, whereas that of suppressed trees was shorter, especially groups of AS1
and BS1, and periodic monthly increments of dominant trees were higher than other trees. There is a
deterministic relationship between niche overlap and inter-species competition, which may influence
tree growth of different social statuses [39]. Tree species with a large DBH usually have bigger canopies
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and are able to obtain more water, nutrients, and sunlight when competing with small-sized trees,
leading to higher growth rate and periodic monthly increments. The intra-annual dynamic growth of
trees was affected by social status (dominant or suppressed), leading to varying responses of trees to
environmental conditions [5].

Previous research indicated a strong relationship between the beginning, end, and duration of
cambial activity and the status of a tree, the periodicity of cambial activity lasting longer for dominant
trees [5,21,40]. This research on conifer species was consistent with the present findings that the
growing period of suppressed trees was shorter than that of dominant trees. Such a difference in
growth periodicity should lead to many other important differences in life form, function, and the
adaptability of trees. Therefore, the climate–growth relationship for dominant trees and suppressed
trees was different [5]. For the specific activities of cambium and detailed information of xylem
formation, especially accurate timing and duration of cambium activity, in the growing period of
Chinese fir, further studies at the cellular level are needed.

4.2. Effects of Climate Factors on the Double-Peaks Pattern

Temperature is a primary factor affecting the radial growth of trees in boreal, sub-alpine, and
temperate forests [18,41,42]. In subtropical areas, we found that the effect of air temperature on stem
growth was generally higher than that of precipitation (Figures 5 and 7), confirming the assumption
that the radial increment of Chinese fir is more sensitive to temperature. It has been demonstrated that
when the critical temperature is reached, the production of coniferous xylem cells tends to reactivate
in cold temperatures [43]. There are two reasons for rapid radial growth in plants with increased
temperature [44]. Firstly, with the increasing temperature, the ability of tree leaves to photosynthesize
and carbon fixate is increased [45]. Secondly, increasing the temperature also enhances the activity of
enzymes related to photosynthesis in leaves, thus improving the photosynthetic ability of leaves and
further promoting stem radial growth [46].

The dynamics of stem radial growth is limited by the double climatic stress of cold winters and hot
summers in subtropical regions. In subtropical regions, summer climate is the key factor for tree radial
increment [28]. The climate of China’s subtropical region is characterized by East Asian monsoon,
which is mild in winter and hot in summer. Suppression of summer growth seems to be a strategy
for coping with harsh environmental conditions during summer drought [47]. The growth rate of
Chinese fir decreased in the summer (June and July), showing a bimodal growth pattern (Figure 3).
Temperatures in the spring promoted the radial growth of plants, whereas high temperatures in the
summer inhibited the growth rate (Figure 6). High temperatures in the summer significantly affected
the transpiration of vegetation and the osmotic adjustment of energy metabolism and respiration.
Therefore, the photosynthetic rate of vegetation changes and the radial increment rate of vegetation
become slower or can even be inhibited. Strong transpiration increased trunk shrinkage during daytime
under conditions of high temperature and low rainfall, which inhibit the radial growth of trees [48].

On a growth period time resolution, we found the variation of growth limiting factors from
temperature in the spring and early summer to precipitation in summer and autumn. This seasonal
variation of growth limiting factors of coniferous and deciduous species has been widely observed in
temperate and subtropical forests in the summer [47,49]. Climate factors mainly influence moisture
availability to trees, thereby affecting their stem radial growth [50]. After early June, large amounts of
precipitation significantly increased soil moisture, which indirectly alleviated water deficit in the trunk,
thus reducing the negative water potentials that favour radial growth [50–52]. Therefore, the effect of
water on stem growth exceeded that of temperature. These mechanisms explain why limiting growth
factors switched in summer.

4.3. Model Curves for Radial Growth

The annual radial growth of Chinese fir was suitable for the Gompertz model, and the coefficient
of determination (CD) of the function reached 0.98 (Figure 4). Considering the uncertainty of the
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model, the coefficient of variation (CV) of three parameters (A, µ, and λ) simulated by Gompertz’s
function were appropriate (CV < 0.11). Camarero et al. [4] noted that the Gompertz model function was
not appropriate for adapting to the bimodal growth model in the Mediterranean continental climate.
Nevertheless, a unified S-shaped Gompertz growth model for Chinese fir was successfully constructed
in our research. In subtropical areas, the radial growth of Pinus taiwanensis Hayata was fitted to the
Gompertz model, which was a bimodal stem radial growing pattern with two peaks [48]. Michelot
et al. [18] also successfully constructed an extended Gompertz function of the double-peaks’ growth
curves of Quercus petraea (Matt.) Liebl. in lowland temperate forests. In subtropical regions, a previous
study of Cinnamomum kanehirae hayata in subtropical climate successfully fitted the Gompertz model
for radial growth [14].

In 2018, the radial cumulative increment was the lowest, because the precipitation in June was
less and air temperature was higher. However, the climatic factors during the study period were not
extreme, nor were the research cycles too short to reveal any climate trend, and there was no obvious
effect on the radial growth of trees [14].

5. Conclusions

In this study, the stem radial increments of Chinese fir in subtropical China were monitored with
MBDs over four years. We found that the periodic monthly increment curve in a year was a double
peak, and the maximum growth rate occurred in April and August. The different social statuses have
different radial growth periods, dominant and intermediate trees began in March and stopped in
November, whereas suppressed trees of class I began in March and stopped in September. Gompertz
models were constructed in our study, and the fitting values of mean monthly increment were basically
consistent with the observed values. The sensitivity of radial growth in Chinese fir to temperature
was higher than sensitivity to precipitation and relative humidity. The influence of climate factors
on tree radial growth shows seasonal variation. In the future, detailed studies on cambial phenology
and wood formation of Chinese fir are needed to further elucidate the response mechanism of radial
growth to subtropical environmental constraints.
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