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Abstract: At the treeline in the Central European Alps, adverse climate conditions impair tree
growth and cause krummholz formation of Swiss stone pine (Pinus cembra L.). Multi-stemmed trees
(tree clusters) are frequently found in the treeline ecotone and are generally thought to originate
from seed caches (multiple genets) of the European nutcracker (N. caryocatactes) or due to repeated
damage of the leader shoot by browsing or mechanical stress (single genet). Additionally, lack of
apical control can lead to upward bending of lateral branches, which may obscure single-genet origin
if the lower branching points are overgrown by vegetation and the humus layer. The multi-stemmed
growth form may serve as a means of protection against extreme environmental stress during winter,
especially at wind-exposed sites, because leeward shoots are protected from, e.g., ice particle abrasion
and winter desiccation. The aims of this study therefore were to analyze in an extensive field survey:
(i) whether weak apical control may serve as a protection against winter stress; and (ii) to what extent
the multi-stemmed growth form of P. cembra in the krummholz zone is originating from a single genet
or multiple genets. To accomplish this, the growth habit of P. cembra saplings was determined in areas
showing extensive needle damage caused by winter stress. Multi-stemmed saplings were assigned to
single and multiple genets based on determination of existing branching points below the soil surface.
The findings revealed that upward bending of lateral branches could protect saplings against winter
stress factors, and, although multi-stemmed P. cembra trees were primarily found to originate from
multiple genets (most likely seed caches), about 38% of tree clusters originated from upward bending
of (partially) buried branches. The results suggest that weak apical control of P. cembra in the sapling
stage might be an adaptation to increase survival rate under severe climate conditions prevailing
above treeline during winter.
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1. Introduction

The alpine treeline is a conspicuous climate-driven ecological boundary, which designates the
upper elevational limit of tree growth [1–3]. There is extensive evidence that at high altitude cold
temperatures during the growing season, which directly limit cell division and differentiation in
meristematic tissues (“carbon-sink-limitation hypothesis”), are a major cause of treeline formation [4–7].
Above the treeline, adverse climatic conditions (e.g., frost drought, wind abrasion, and late frosts)
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frequently occur such that height growth of trees is strongly suppressed and tree stature is dominated
by stunted multi-stemmed architecture (krummholz).

Swiss stone pine (Pinus cembra L.) is a key species forming the alpine treeline in the Central
European Alps [8], which is reached at about 2400 m–2500 m above sea level (a.s.l.) under natural
conditions, i.e., without human interference [3]. The heavy wingless seeds of P. cembra are almost
exclusively dispersed by the European nutcracker (Nucifraga caryocatactes L.). At sheltered sites,
krummholz forms of this species may be found up to ca. 2800 m a.s.l. (see [9]). Three growth forms
of P. cembra can be distinguished: (1) single-trunk; (2) single genet multi-trunk caused by repeated
damage of the leader shoot; and (3) multi-genet tree cluster attributable to multiple germination
of seed caches [10]. The latter two forms are morphologically similar and generally thought to be
distinguishable only by genetic analysis [11]. Although several coniferous tree species, e.g., spruces,
firs, and larches, are able to form clonal tree groups by layering, i.e., formation of adventitious roots on
buried lateral branches [12–14], cluster formation by vegetative sprouting has not been reported to
occur in P. cembra [2,3]. Most pine species have a dominant main stem and distinct lateral branches
which grow shorter and more horizontal than the vertical leader shoot [15], i.e., strong apical control is
exerted by the leader shoot. Lack of apical (hormonal) control, e.g., due to mechanical or biotic damage
of the leader, leads to upward bending of branches [16]. Shoot architecture of P. cembra is generally
characterized by a vertical main trunk and upward bending of lateral branches.

This study aimed to increase our understanding of tree adaptation to extreme environmental
conditions prevailing in the treeline ecotone. There are no reports on the influence of apical control on
resistance against environmental stress in the treeline ecotone. Therefore, in an extensive field survey,
we evaluated whether weak apical control may protect P. cembra against winter stress (frost desiccation,
and snow mold). Furthermore, determining a morphological feature that consistently distinguishes
single genet multi-trunk trees from multi-genet tree clusters originating from seed caches was a second
aim of this study.

2. Materials and Methods

The study area is situated in the treeline ecotone on Mt. Patscherkofel (2246 m a.s.l.; 47◦12′ 33′′

N; 11◦27′40′′ E), which is located in the Central European Alps in western Austria. Mean annual
temperature and precipitation (1967–2015) at the top of Mt. Patscherkofel are 0.2 ◦C and 883 mm
with minimum in winter (December–February: 139 mm), respectively. The geology is dominated by
gneisses and shist. Three sites (based on information gathered in Table 1) were selected on a ridge
facing W to WNW (slope 15◦–20◦) above the current treeline at ca. 2100 m–2150 m a.s.l. Selected sites
are frequently exposed to extreme winds (foehn), frequently reaching >100 km/h. Exposed mineral
soil is common and dominating plants (Loiseleuria procumbens (L.) Desv., Calluna vulgaris (L.) Hull.,
Juncus trifidus L. and lichens, e.g., Thamnolia vermicularis (Sw.) Ach.ex Schaer and Alectoria ochroleuca
(Hoffm.) A. Massal) are known to be resistant against wind, frost and winter desiccation [8].

Table 1. Number of P. cembra individuals at a wind-exposed ridge above treeline belonging to single-
or multi-stemmed growth form. Multi-stemmed growth form is divided into multi-genet individuals
developing from seed caches, and single-genet individuals, which developed upright growing lower
branches. Percentages are given in parenthesis. For multi-stemmed growth form the mean number of
shoots ± standard deviation per site are given. Significant differences (p < 0.05) in the mean values of
the three plots (± SD) between single- and multi-stemmed and between multi-genet and single genet,
respectively, are marked in bold and italics.

Single Stemmed Multi-Stemmed

site n n shoots (mean ± SD) Multi-genet Single genet

1 31 11 (35) 20 (65) 2.9 ± 1.3 9 (45) 11 (55)
2 30 6 (20) 24 (80) 3.5 ± 1.6 20 (83) 4 (17)
3 31 9 (29) 22 (71) 2.6 ± 0.6 13 (59) 9 (41)

Mean 9 ± 3 (28 ± 8) 22 ± 2 (72 ± 8) 3.0 ± 0.5 14 ± 6 (62 ± 19) 8 ± 5 (38 ± 19)
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The study was conducted on P. cembra, which is the dominant and widespread conifer along the
treeline ecotone. European larch (Larix decidua Mill.) is scattered at some locations. The importance
of apical control in P. cembra saplings as a mean to protect against winter stress was studied at wind
exposed ridges and depressions with a long duration of snow cover showing pronounced needle
damage after winter. In each of the three sites, one 100 m2 plot was established where all P. cembra
saplings (single stemmed and clusters, i.e., multi-stemmed trunks) without any visible damage to the
leader shoot were counted. Multi-stemmed trunks were assigned to single and two or more genets
by digging out all leaders until able to be traced back to the main stem and determining whether
below the soil surface upward bending of lateral branches (i.e., single genet) or vertical leader shoots
originating from seed caches (i.e., multi-genets) occurred.

Differences in the overall mean number between single stemmed and multi-stemmed P. cembra
individuals were analyzed by one-way analysis of variance (ANOVA). One-way ANOVA was also
used to test for differences between multi-genet and single genet saplings. A probability level of
p < 0.05 was considered as statistically significant. Statistical analyses were made with the SPSS 16
software package for windows (SPSS, Inc., Chicago, IL, USA).

3. Results

Stem height and diameter of selected saplings (n = 92) were 39.2 ± 22.4 cm and 1.9 ± 1.2 cm,
respectively, and annual shoot growth amounted to 4.4 ± 1.4 cm (mean values ± standard deviation).
These growth variables were not significantly different among single-stemmed and multi-stemmed
saplings. A potentially protective function of weak apical control in P. cembra against severe winter
drought is depicted in Figures 1 and 2. Several examples of upward bending lower branches with
connection to the main stem below the soil surface, whose vertical growing lateral branches are
obscured by the humus layer and intensively growing dwarf-shrubs (L. procumbens, C. vulgaris),
are depicted in Figure 3.
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Above the treeline, the number of single stemmed P. cembra individuals (9 ± 3) was significantly
lower (p = 0.02) when compared to the number (22 ± 2) of multi-stemmed P. cembra saplings,
which corresponds to 28 ± 8% and 72 ± 8% single- and multi-stemmed P. cembra saplings, respectively
(Table 1). The multi-stemmed growth form originates from 14 ± 6 (62 ± 19%) seed caches from multiple
genet individuals and 8 ± 5 (38 ± 19%) seed caches from upright growing branches, i.e., single genet
individuals (Table 1), which however was not statistically significant (p = 0.19). Upward-bending
branches of a P. cembra sapling growing in a depression with long-lasting snow cover and frequent
occurrence of snow mold is shown in Figure 4.
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tips with undamaged green needles (right).

4. Discussion

4.1. Multi-Stemmed Growth Form

Multi-stemmed trunks of P. cembra are frequently occurring in the alpine treeline ecotone [11,17,18].
This growth form is frequently reported to result from seed caches [11,19] or damage of the leader
shoot caused by browsing or mechanical disturbance (e.g., winter desiccation, wind abrasion, frost,
and avalanche [2,20]). In the case of destroyed apical meristems, apical control is lost and lateral
branches bend upwards and form vertical shoots [16]. Here, we report that, in about 38% of
multi-stemmed P. cembra saplings, lower branches at the base of the stem tend to grow upright without
any visible damage to the leader. Hence, weak apical control may exist in P. cembra at the sapling stage,
which can be explained by the competitive-sink hypothesis developed in [21]. This hypothesis states
that branches compete with the subjacent stem for branch-produced carbohydrates, i.e., when the
subjacent stem sink for carbohydrates is small, as is to be expected at the sapling stage, the branch is
largely released from apical control and develops vertical growth.

At wind-exposed ridges, tree cluster formation favors growth of dwarf-shrubs (especially
L. procumbens and C. vulgaris) by locally trapped litter and wind-blown organic and soil particles,
which may increase nutrient content and water storage capacity of the soil [2]. Because the branching
point close to the soil surface may be overgrown by vegetation and development of a humus layer,
the origin from a single genet can be obscured. By carefully removing vegetation and the humus layer,
multi-stemmed trunks of saplings and small trees can unequivocally be allocated to lateral branches of
a main stem (single genet) or genetic different individuals (multi genet) originating from seed caches.
Multi-stemmed trunks merge with time, which survive and grow better than single-stemmed trees,
most likely due to better structural stability against wind [11,22,23]. Upright branches will ultimately
merge with increasing tree age and radial growth, forming multi-stemmed trees, which—without genetic
analysis—can mistakenly be assigned to originate from multi genet seed caches.

Analyzing the genetic diversity in multi-stemmed P. cembra, the authors of [11,23] found that
7 out of 22 and 1 out of 4 P. cembra tree clusters, i.e., 30% and 25%, respectively, were single genet
multi-stemmed trees. Their findings are quite similar to our morphological approach, which was
based on determination of the branching pattern below the soil surface. Hence, the assumption of
a genetically controlled delay in dormancy release from varying stem diameter in multi-stemmed
clusters may be false, because multi-genet shoots can be hidden by upright growing branches belonging
to the same single genet tree individual.
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4.2. Protective Function of Cluster Formation and Weak Apical Control During Tree Establishment

In the alpine treeline ecotone, natural regeneration of P. cembra is concentrated on locally higher
terrain, such as ridges, shoulders and rock buttresses where wind exposure is high, snow depth
is low, snow cover duration is short and there is sparse vegetation. Tree seedling establishment is
controlled by micro-relief and/or shelter from low stature alpine vegetation, e.g., dwarf shrubs [24,25].
Once seedlings emerge from the ground vegetation and are exposed to the convective conditions of the
atmosphere, wind effects on exposed ridges are important for tree survival during winter [3,12,17].
Damage of needles and buds is common at wind-exposed sites with little snow cover due to injuries
from abrasive blowing snow, ice and mineral particles (for review see [26]), which reduces cuticle
resistance leading to winter desiccation. Winter desiccation results from gradual water loss through
transpiration, which cannot be compensated due to deep and long-lasting soil frost at snow-free
ridges [27–29]. Saplings growing in clusters or single genet trees with multi-stemmed trunks caused
by weak apical control create a wind-barrier effect that reduces mechanical damage at the sheltered
leeward side especially during winter. This is corroborated by the finding that afforestation of P. cembra
in groups in the subalpine zone yielded greater success than planting solitary trees ([30]; for a review,
see [31]). Tree groups produce a snowdrift at their leeward side, which prevents deep soil frost and
provides soil moisture at the beginning of the growing season [19]. On the other hand, weak apical
control is also favorable for tree establishment in snow-rich concave topography and leeward slopes.
Here, lower branches are less likely to be at risk for occurrence of snow mold under a long-lasting
snow cover, if lower branches grow upright in the early sapling stage. Age- and/or size-related
changes in apical control are to be expected, however, as a tree faces different challenges to survival
with increasing tree age and/or size (cf. [32]). Hence, findings of this study suggest that upward
bending of basal branches, i.e., a weak apical control in the sapling stage, might be an adaptation
to extreme environmental conditions prevailing in the alpine treeline ecotone in cool temperate and
boreal mountains, especially during winter. Our interpretation is corroborated by strong apical control
found in co-occurring European larch (L. decidua [33]), which, due to its deciduous behavior, is less
prone to winter drought and snow mold.

5. Conclusions

The results of this field survey suggest that cluster formation due to weak apical control of lateral
branches at the stem base might be an adaptation to extreme environmental conditions prevailing
above treeline within the study area. About one third of multi-stemmed P. cembra clusters in the
krummholz zone belonged to a single genet. Multi-stemmed trees serve as protection against winter
stress factors (snow and ice particle abrasion, and winter desiccation), have a better structural stability
against wind and possibly improve resource acquisition due to trapping of litter and wind-blown soil.
However, as this study was carried out within the inner Alpine dry zone of the Central European Alps,
where the local climate is strongly influenced by southern “Foehn” type winds [34], further research
needs to clarify the above demonstrated growth patterns of P. cembra saplings at sites differing in
environmental conditions, especially winter stress.
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