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Abstract: Urban forests are vitally important for sustainable urban development and the well-being
of urban residents. However, there is, as yet, no country-level urban forest spatial dataset of sufficient
quality for the scientific management of, and correlative studies on, urban forests in China. At present,
China attaches great importance to the construction of urban forests, and it is necessary to map a
high-resolution and high-accuracy dataset of urban forests in China. The open-access Sentinel images
and the Google Earth Engine platform provide a significant opportunity for the realization of this
work. This study used eight bands (B2–B8, B11) and three indices of Sentinel-2 in 2016 to map the
urban forests of China using the Random Forest machine learning algorithms at the pixel scale with the
support of Google Earth Engine (GEE). The 7317 sample points for training and testing were collected
from field visits and very high resolution images from Google Earth. The overall accuracy, producer’s
accuracy of urban forest, and user’s accuracy of urban forest assessed by independent validation
samples in this study were 92.30%, 92.27%, and 92.18%, respectively. In 2016, the percentage of urban
forest cover was 19.2%. Nearly half of the cities had an urban forest cover between 10% and 20%,
and the average percentage of large cities whose urban populations were over 5 million was 24.8%.
Cities with less than half of the average were mainly distributed in northern and western parts of
China, which should be focused on in urban greening planning.
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1. Introduction

Between 1980 and 2018, the proportion of China’s urban population increased from 19.4% to
59.6% [1,2], the rapidity of which has led to many urban problems, such as reduced biodiversity within
cities [3], deterioration of air quality [4], and the heat island effect [5]. Against this background, urban
forests have attracted widespread attention from the government and academic scholars because of
their important ecological functions [6], such as in mitigating biodiversity loss [7,8], absorbing air
pollutants [9,10], and reducing the urban heat island effect [11,12]. In addition, due to their shading,
leisure, and entertainment functions, urban forests are closely related to the well-being of urban
residents [6,13,14]. Urban forests are defined as all woodlands, groups of trees, and individual trees
located in urban areas, including forests, trees in parks, gardens, commercial areas, and dwelling
districts, and street trees, according to the Food and Agriculture Organization (FAO) [15].

It has raised concerns about protecting and increasing the urban forests around the world:
The theme of the International Day of Forests in 2018 was “Forests and Sustainable Cities” [6]. In China,
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the government launched the evaluation of a “National Forest City” in 2004 [16] and put forward
the requirements for the percentages of urban forest cover (more than 30% in Northern cities and
40% in Southern cities) [17]; in addition, the China Urban Forest Forum is held every year. However,
there is an insufficient understanding of urban forest cover across the country, due to a lack of
high-resolution spatial data on urban forests. This has presented difficulties in formulating policies
related to urban forests.

Much effort has been made in measuring urban forest cover; for example, field surveys [18],
remote sensing [19–22], and drone shooting [23] have all been used to gain information on urban forest
cover. Among them, remote sensing is efficient and useful in mapping forested urban areas for large
scale-maps: Canetti et al. [21] used RapidEye and Satellite for observation of Earth (SPOT 5) images to
quantify multi-temporal urban forest cover in Araucaria (a city in Brazil), based on the support vector
machine algorithms; Chen et al. [24] drew the urban green space in the neighborhoods of five Chinese
megacities using Google Earth images with the spatial resolution of 0.26 m; Fan et al. [22] quantified
the tree canopy of Cook County in the United States, using multispectral images with the spatial
resolution of 1 m from the National Agriculture Imagery Program and Light Detecting and Ranging
data. However, these explorations mainly focus on a single city, and there are, at present, no data on
Chinese urban forest cover with a high spatial resolution at the national scale. The production of such
maps is therefore imperative. It does, however, raise four main problems, which should be considered.
The first is to identify the urban areas across China using a uniform definition; at present, there is
no unified concept as to what constitutes an urban area [25]. Urban areas can be defined as urban
places, urbanized areas, or metropolitan areas. It is very important to select an appropriate standard to
extract national urban areas so that different cities can be compared. The second problem relates to
the requirement for high resolution images when detecting land cover within urban areas. The third
is appropriate image selection, which should ensure optimal national images with minimal cloud
cover [26], because cloudy and rainy weather conditions result in difficulties in obtaining acceptable
images, especially in southern regions. The fourth is to establish a good enough classifier for urban
forest extraction.

To address the first problem, there are two methods: The first, is to extract urban areas using an
appropriate threshold of nighttime lighting images [27], and the second, is to extract urban central
regions based on points of interest (POIs) [28]. However, urban areas are often overe-stimated, because
of the overflow effect of nighttime light, and the urban forest cover in urban residents’ living spaces
cannot be detected. As a result, this study used the urban areas, extracted from POIs by Song et al. [28],
which possess dense human and socioeconomic activity. For the second one, data from the Sentinel-2A
satellite launched on 23 June 2015 can be used; the satellite increased the spatial resolution of freely
available remote sensing images to 10 m [29], and permitted the detection of land cover within China’s
urban areas. Finally, the Google Earth Engine (GEE, https://earthengine.google.com) was used to
confront the third and fourth problems. GEE is a high-performance cloud computing platform with a
convenient, fast image selection process and large computing power [30], providing different classifiers.
Therefore, the parameters and bands selection of the model can be timely adjusted, according to the
calculation results. Several studies have used GEE to produce long-time series or large-scale land cover
maps. Using GEE, Huang [31] mapped major land cover dynamics in Beijing in 1985–2015, Liu [26]
extracted global urban land for the period 1990–2010, Wang [32] tracked the annual changes of coastal
tidal flats in China with Landsat images, and Chen [33] produced a mangrove forest map of China in
2015 with Sentinel-1A images. The emergence of the GEE platform makes it possible to quickly and
efficiently map urban forest data across China [34].

The objectives of this study are to: (1) Identify urban forests using Sentinel-2 images and GEE and
evaluate its accuracy, and (2) assess the spatial distribution of urban forests across China.

https://earthengine.google.com
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2. Materials and Methods

2.1. Study Area

The study was conducted in China’s urban areas (expect Hong Kong, Macau, and Taiwan) in
2016, extracted by Song (Figure 1). According to Song, the urban areas in this study are defined as
real, and closely connected urban regions, with dense populations and active human activities [28].
Song used POIs [35], which are accurate locations of urban infrastructure, such as schools, hospitals,
hotels, and the industry. He set a POI density of over 50 points/km2 as the threshold of the boundary of
the urban area to capture the regions with human and socio-economic activity. Figure 1 shows China’s
urban areas mainly distributed in the eastern and southern regions, and the total area in 2016 was
73,200 km2. There were 31 provincial-level regions and 334 prefecture-level divisions in Mainland
China in 2016.
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Figure 1. Boundaries of China’s urban area in 2016, with a partial, enlarged view in Beijing, Shanghai,
Guangzhou, Xi’an, and Wuhan and the presentation of three zones.

In this study, the entire country has been divided into three zones, zones A, B, and C, according
to their respective amounts of precipitation (various weather conditions across China affect image
selection). Different colors in Figure 1 present the divisions of zones A, B, and C. Zone A is the northern
part of China, located between the isohyet of 400 mm and 800 mm; zone B is in the south of the
isohyet of 800 mm; and zone C comprises the northwestern part and Qinghai-Tibet Plateau, where the
precipitation was below the isohyet of 400 mm in 2016. Their average daily precipitation in growing
season (from April to September) were respectively, 2.6 mm, 7.5 mm, and 1.1 mm, and the average
daily temperature were 10.4 ◦C, 19.3 ◦C, and 10.1 ◦C [36], respectively. These three zones are different
in, not only natural conditions, but also urban development. There were 32,400 km2 of urban area
in 2016 in zone A, with 204.7 million in the urban population. Zone B had the largest urban area of
35,900 km2, and an urban population of 243.7 million. Zone Chad had an urban area of 4900 km2 and
only an urban population of 28.7 million [37], which were far lower than zone A and B.
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2.2. Data

2.2.1. Sentinel-2 Images and Preprocessing

Sentinel-2 is a wide-swath, high resolution, and multi-spectral imaging mission, covering latitude
56◦ south to 84◦ north, with a revisit period of 10 days at the equator with one satellite, and five days
with two satellites since 2017 and 2–3 days, at mid-latitudes. The Level 1C dataset has been processed
with radiometric and geometric corrections, including orthogonal rectification and spatial registration
on a global reference system, with sub-pixel accuracy [29], and is available from the Google Earth
Engine (GEE) image collection. Evidently, China’s regional climate conditions vary greatly due to its
large geographical area. At the time of the growing season of trees in the northern regions, we selected
Sentinel-2 Level 1C images, from 1 April 2016 to 31 September 2016 for zones A and C. However,
the images from 1 April 2016 to 31 September 2017 were selected for zone B, because it was difficult to
meet the quality requirements for the images because of the abundant rainfall and clouds during April
and October. An atmospheric correction (quality band (QA60) from Sentinel-2 in GEE) was applied to
mask the clouds and to select optimal images with minimal cloud cover.

2.2.2. Sample Points for Training and Validation

Training and validation data were collected from two sources: Ground data from field visits and
very high-resolution (VHR) images from Google Earth (GE).

A total of 75 ground sample points for urban forests were collected in May, including forests,
trees in schools, dwelling districts, commercial areas and parks, trees around rivers, street trees, trees
around houses: Sample points, covering all kinds of urban trees, based on the definition of urban
forests. The field photos (Figure 2) were taken to show the different kinds of ground samples for urban
forests, with the locations (the latitude and longitude) recorded for the validation; all these samples
had a distance of at least one kilometer from one another to avoid spatial auto-correlation [34].
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A number of sample points (7242) from VHR images were obtained in GE, covering 3554 samples
of all kinds of urban forests, as in Figure 3a, and 3688 samples of non-urban forests were obtained,
as in Figure 3b (including buildings, roads, water, grassland, bare land, and cropland). These sample
points were evenly distributed across all the urban areas of China, the number being able to stabilize
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the classification accuracy by verification. For some areas, which had no high-quality images in GE,
from 1 April to 31 September 2016, we selected the unchanged areas as sample points, based on a
comparison of the two years before, and after, 2016 to ensure a robust spatial distribution and quality
of sample points.
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Then, 70% of the VHR sample points were used to gather knowledge and train the classifier in
GEE, and 30% of the VHR sample points and all the ground sample points were used as validation
data to test the classification results and provide the overall accuracy (OA), producer’s accuracy (PA),
user’s accuracy (UA), and the Kappa coefficient. A Kappa value, that is higher than 0.8, represents
strong agreement between the classification result and the reference distribution [38].

2.3. Urban Forest Mapping Classifier

Based on the bands of Sentinel-2 images, we used the Random Forest (RF) algorithm as a classifier
to extract urban forests on the GEE platform, with the indexes of the Normalized Difference Vegetation
Index (NDVI), the Normalized Difference Water Index (NDWI), and the Normalized Difference Built-up
Index (NDBI) as supplementary information for classification. The process is shown in Figure 4,
comprising the following steps:

1. We used the city boundaries of China in 2016 to extract urban area images from Sentinel-2 images,
in order to select and train sample points within urban areas for higher accuracy and lower
external impact.

2. We used an RF classifier to gather knowledge based on training data. The RF classifier is conducive
to mapping land cover by mitigating the influence of data noise and overfitting [31,39,40]. It is
a non-parametric machine learning method, used to construct multiple random decision trees,
each of them possessing several nodes to divide the input pixels into different classes until each
node represents every class [41,42]. Comparing the RF classifier with other classifiers, such as
“maximum likelihood and single decision trees,” the RF can process higher data dimensions and
attain a higher accuracy [34]. Furthermore, it has several tuning parameters, which can affect
the efficiency and accuracy of the classification. In this study, these parameters were set by trial
and error (Table 1), and by considering accuracy and computing efficiency. As seen in Figure 5,
the PA for urban forests and OA increased significantly as the number of decision trees added
was below 50; the overall trend of UA for urban forests generally decreased. We also considered
the computational efficiency, choosing 40 as the optimum number.

3. Suitable bands of Sentinel-2 images were selected to train the RF classifier. In this study, the data
input into the RF model included Sentinel bands (B2-B8, B11), NDVI, NDWI, and NDBI [26].
These bands and band combinations achieved the highest accuracy, when compared with other
combinations (Table 2). For example, the OA based on these bands (B2-B8, B11) can increase
0.2%, compared with all bands of Sentinel-2 with 10 and 20 m resolution. Among them, NDVI is
a vegetation index, that monitors the condition of vegetation [43]; NDWI is sensitive to water
bodies [44]; and NDBI can help to extract built-up features [45]. They have been widely used to
identify specific classes and as Supplementary Materials for extracting urban forests in this study.
The NDVI, NDWI, and NDBI of the Sentinel images were calculated using the Sentinel bands
according to the following equations:

NDVI =
NIRband8 −REDband4

NIRband8 + REDband4
, (1)

NDWI =
Greenband3 −NIRband8

Greenband3 + NIRband8
, (2)

NDBI =
SWIRband11 −NIRband8

SWIRband11 + NIRband8
, (3)

4. The established RF model was trained to map the urban forest distribution in China and assess
the classification accuracy. Based on the above steps, we divided the study area into two types:
Urban forest and non-urban forest. The validation data were then used to calculate a confusion
matrix and access the OA, PA, and UA. Moreover, the classification results could be assessed by
visual inspection at the same time. In training and testing, we started with a small number of
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sample points, and with an increase in the number of sample points, we assessed the accuracy of
these two classification. We then visually evaluated the classification results with reference to the
VHR images, randomly, until the results became highly accurate [34].
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Table 1. The parameter values of the random forest (RF) classifier.

Parameter Name Value

Number of decision trees 40
Number of variables per split Square root of the number of variables

Minimum size of a terminal node 1
Fraction of input to bag per tree 0.5

Out-of-bag mode False

Table 2. Overall accuracy for urban forest mapping by RF classifiers using different bands and indices.

Bands Indices Overall Accuracy

B2-B8, B11 NDVI, NDWI, NDBI 92.30%
B2-B7 NDVI, NDWI, NDBI 92.24%

B2-B8, B8A, B11-B12(all bands) NDVI, NDWI, NDBI 92.09%
B2-B8, B11 NDVI, NDWI 92.09%
B2-B8, B11 NDVI, NDBI 92.09%
B2-B8, B11 NDVI 92.04%
B2-B8, B11 NDWI, NDBI 91.99%

B2-B4 NDVI, NDWI, NDBI 91.99%
B2-B8, B11 - 91.93%

B2-B8, B8A, B11-B12(all bands) - 91.79%
B2-B8, B8A NDVI, NDWI, NDBI 91.79%
B2-B8, B11 NDWI 91.59%
B2-B8, B11 NDBI 91.54%

B2-B8 NDVI, NDWI, NDBI 91.54%
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3. Results

3.1. Accuracy Assessment

The classification results showed high accuracy when tested by the validation data (Table 3).
For China as a whole, the PA of urban forest was 92.27% (errors with omission = 7.73%), the UA
of urban forest was 92.18% (errors with commission = 7.82%), the OA was 92.30%, and the kappa
coefficient was 0.85. The accuracy reflected in these figures is evidence that this dataset of urban forests
in China is highly reliable. As Figure 6 shows, the visual assessment of the results are also fairly good
when compared with the VHR images in GE. The built-up land, water, roads, and grassland can be
easily separated from urban forest.

Table 3. Accuracy assessment of the 10 m urban forest map for China in 2016.

Urban Forest Non-Urban Forest

PA 92.27% 92.33%
Omission Error 7.73% 7.67%

UA 92.18% 92.41%
Commission Error 7.82% 7.69%

OA 92.30%
Kappa coefficient 0.85
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Regarding the three zones in China, zone A has the highest overall accuracy (94.22%), and zone C
has the lowest (OA = 87.40%), as shown in Table 4.

Table 4. Accuracies of three zones in China.

Reference Data

Urban Forest Non-Urban Forest Producer’s Accuracy

Zone A

Map data
Urban forest 403 18 95.72%
Non-urban

forest 39 526 93.10%

User’s accuracy 91.18% 96.69%
Overall

accuracy 94.22%

Zone B

Map data
Urban forest 480 53 90.06%
Non-urban

forest 39 458 92.15%

User’s accuracy 92.49% 89.63%
Overall

accuracy 91.07%

Zone C

Map data
Urban forest 96 11 89.72%
Non-urban

forest 5 15 75.00%

User’s accuracy 95.05% 57.70%
Overall

accuracy 87.40%

3.2. The Distribution of China’s Urban Forests in 2016

The total urban forest area in China in 2016 was 0.17 million km2, and urban forest cover was
19.2% (Figure 7). For the three zones in China (the spatial division was presented in Figure 1), the urban
forest cover in zone A was 16.0%; zone B had the highest urban forest cover at 23.0%; and zone C had
the lowest at 8.5%. Zone A and C are both below the national average level. The proportion of cities
that have an urban forest cover below 10% is about 60% in Zone C, which is much higher than those in
zone A (28.9%) and zone B (4.2%). Almost 85% of cities in zone B have the urban forest cover between
10% and 30%. Furthermore, the per capita urban forest area in zone C in 2016 was 10.3 m2, which was
approximately one third of that in zone A (34.9 m2), and about one quarter of that in zone B (39.1 m2).
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At the province scale, the top five provinces of urban forest cover were Chongqing, Sichuan,
Zhejiang, Jiangsu, and Shanghai, of which the urban forest cover percentages were 33.4%, 28.2%, 26.6%,
25.2%, and 24.4%, respectively; the percentage of Inner Mongolia was the lowest (5.0%, Figure 8).
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At the prefecture-level city scale, considering the average China’s urban forest cover (19.2%) and
the requirements of urban forest cover for National Forest City (more than 30% in Northern cities
and 40% in Southern cities), we used 10.0%, 20.0%, 30.0%, and 40.0% as the class interval to show the
spatial distribution of urban forest cover in prefecture-level cities (Figure 9). Nearly half of the cities
had urban forest cover between 10.0% and 20.0%; only four northern cities had more than 30.0% of
urban forest cover, and only two southern cities had more than 40.0%. The cities with less than half of
the average were mainly distributed in the northern and western parts. Furthermore, regarding the
large cities, whose urban populations were over 5 million, the average percentage of urban forest cover
was 24.8%, from 9.7% (Tianjin) to 33.4% (Chongqing).
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4. Discussion

4.1. Reliability of Urban Forest Mapping in GEE

This study demonstrated the feasibility of mapping urban forests in China, using Sentinel-2
images and the GEE platform. Compared with previous urban forest mapping of individual cities,
this study attempted to extract the distribution of urban forests at a 10 m resolution at the country
scale. The accuracies (PA, UA, and OA) were sufficiently high (above 0.9), due to open access to
high-resolution images, the convenient use of the GEE platform, and the use of efficient machine
learning algorithms.

4.1.1. Data

Datasets used in many previous studies on urban forests, in individual cities, were of a very high
resolution: Satellite for observation of Earth (SPOT) images with 10 m/2.5 m resolution [46], QuickBird
images with a 0.61 m resolution [47], SPOT-5 images with 5 m resolution [21], and multispectral
images with 1 m resolution [22]. However, these data were not open access, resulting in the high
cost of mapping at the country scale. Regarding larger scales, greenspaces in Fuller and Gaston [20]
were extracted from free Landsat images with 30 m resolution. However, these proved too coarse for
classification within urban areas as the land use types in cities were very fragmented, which may have
resulted in omission and commission errors. Consequently, open access to Sentinel-2 images, with a
10 m resolution, contributed significantly to mapping urban forest at the country scale.

4.1.2. GEE Platform

Data which can be directly invoked and powerful cloud computing on the GEE platform both offer
the greatest support for this study. In the process of traditional classification at a large scale, the biggest
challenge is the amount of time spent in retrieving, selecting, downloading, and pretreating satellite
images. For this study, 5482 Sentinel images were used, and considering the bandwidths’ limitations,
the preliminary collection and pre-processing of data would have taken at least three months without
GEE. However, this work was completed in less than one minute using GEE. We can compare the
classification result with the VHR images in GEE, and detect the omission and commission errors.
Then, the adjustments to the sample points and algorithms can be quickly made, meaning that the
former, necessarily protracted period for exporting and transforming formats for comparison, is no
longer required [34].

4.1.3. Efficient Machine Algorithms

GEE provides an RF classifier that assigns pixels to a class. The band selected in this study
achieved the highest classification accuracy. Furthermore, along with eight bands (B2–B8, B11), we
also added three indices (NDVI, NDWI and NDBI) from Sentinel-2 as the input data, which helped to
distinguish between urban forests and non-urban forests, because the vegetation, water, and built-up
areas are the key elements within urban areas. As the results showed, the addition of these indices
increased the PA of urban forests and OA by 0.85%, and 0.37%, respectively, even though the UA of
urban forests decreased by 0.02%.

4.2. Uncertainties and Limitations

Even though the OA of this study has achieved up to 92.30%, there are also some limitations. GEE
did not ingest images with atmospheric correction when we executed our classification. Moreover,
it was difficult to perform the atmospheric correction in the GEE platform because of difficulties
in parameter acquisition [31,40,48]. Therefore, the top-of-atmosphere (TOA) reflectance data, from
Sentinel-2, was directly used to extract urban forest cover in this study, which may affect the results to
some extent.
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The most common mis-classification is between buildings and urban forests. In the majority
of Chinese cities, the trees between rows of buildings are very important components of urban
forests. However, because of the fragmentation of classes in urban areas, some small trees, which
are surrounded by buildings, may be omitted, while some buildings surrounded by lush trees can
be mis-judged as urban forests. These errors may gradually decrease with the increase of image
resolution in the future. According to our confusion matrix, the proportion of non-urban forest
wrongly judged as urban forest is 7.67% and the proportion of urban forest, wrongly detected as
non-urban forest, is similarly 7.73%. These almost-equal error rates may mitigate the impact of the
above mis-classification on the area calculation.

Similarly, some grasslands in the middle of some large woodlands were often directly classified
as whole forests, which over-estimated the area of urban forests. In the future, vegetation height
information from lidar, and backscattering characteristics from radar [31], may be integrated to improve
classification accuracy and obtain more information about urban forests.

Furthermore, we examined the classification results using the 75 ground data (Figure 2), in order
to gain misclassification information, and found that eight of them presented errors, mainly for the
ground data of individual tree around house and street, low canopy cover in commercial areas and
schools. Forests, trees in parks, cluster trees in schools, and roadside showed low mis-classifications.
It should be noted that, even though we used Sentinel-2 images with a 10 m resolution to identify the
inner city classes of China as clear as possible, for some small canopy covers and new individual trees,
the 10 m resolution is still too coarse to identify them clearly. Therefore, this dataset was to fill the
gap in urban forest cover across China, and was more suitable for macro-analysis at the national level.
For individual cities, images with higher resolution should be used to obtain more accurate information.

For accuracy at the zone scale, zone 3 has the lowest accuracy, because in this zone, the urban
areas were very small (see Figure 1), and urban forest cover accounted for only 3.2% of the country’s
total, leading to the collection of only a small number of acceptable sample points.

4.3. Suggestions for Urban Forest Construction in China

A clear understanding of urban forest cover in China is conducive to the scientific management
and construction of urban forests. The spatial distribution of urban forest cover in China varies greatly
from 0.01% to 40.1%. For cities with high urban forest cover, like Zigong (in Sichuan province), the main
tasks at present are to effectively deal with illegal damage caused to, and the occupation of, urban
forests, as well as formulate policies for urban greening protection and management, and to prevent
the destruction of existing urban forests. Cities with low urban forest cover should attach importance
to urban forest construction, to use urban forest cover as an indicator of urban construction in the
formulation of urban planning. Figure 6 shows that the spatial differences of urban forests distribution
within Beijing are very clear, being concentrated in the north of urban area. Therefore, governments
should conduct extensive research before formulating urban greening plans to grasp the number and
spatial distribution of urban forests, within a city, in order to increase the number of urban trees in
areas with poor cover.

Detecting the influential factors for the spatial differences of urban forest cover is vitally important
for effectively increasing urban forests. However, it is a relatively complex problem, according to
previous studies [19,20,49,50], which should be further explored in future research.

Until 2018, there were 165 cities, which had been granted “National Forest City” status. This
study selected the prefecture-level cities from these cities, and found that their average percentage
of urban forest cover was only 19.3%, while that of the cities without this status was only 14.6%.
Importantly, these percentages are much lower than the standards of 30% and 40% for the northern,
and southern cities, respectively; only four northern cities and two southern cities achieved the
standards, highlighting that greater effort is needed to build the ideal forest city.
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5. Conclusions

This study presented a map of urban forest distribution in China with 10 m resolution, based on
Sentinel-2 images, sampling datasets, an RF model, and the GEE platform. The UA and PA values
of urban forests were, respectively, 92.18%, and 92.27%, and the OA value 92.30%. This study also
demonstrated that the GEE platform has significant advantages, regarding large-scale data processing.

By analyzing this dataset, total urban forest area in China was estimated at about 0.17 million km2

in 2016, and urban forest cover 19.2%. At the province scale, the highest percentage of urban forest
cover was 33.4% (Chongqing), and the lowest was 5.0% (Inner Mongolia). At the prefecture-level city
scale, nearly half of the cities had achieved 10.0–20.0%. With respect to the large cities with urban
populations over 5 million, the average percentage of urban forest cover was 24.8%, much more than
the national average. Furthermore, the average percentage of urban forest cover in the National
Forest City was 19.3%, less than the standards of 30% and 40% for the northern, and southern cities
respectively, and only four northern cities and two southern cities achieved this standard, indicating
that greater effort is needed to build the ideal forest city.

The reliable dataset of this study provides the basis for the identification of forest cities and for
urban forest planning in China, and it can also be used to compare the spatial distribution of urban
forests in China with the data from other countries.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/9/729/s1.
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assessment; (4) Download link of urban forest cover dataset.

Author Contributions: Conceptualization, Q.D. and M.T.; Methodology, Q.D., M.T., Y.G., X.W., and L.X.; Software,
Y.G.; Validation, Q.D. and Y.G.; Formal Analysis, Q.D. and M.T.; Investigation, Q.D. and Y.G.; Resources,
M.T.; Writing—Original Draft Preparation, Q.D.; Writing—Review and Editing, Q.D., M.T., X.W., and L.X.;
Supervision, M.T.

Funding: This research was funded by National Natural Science Foundation of China, grant number 41771116.

Acknowledgments: Many thanks to anonymous reviewers for providing valuable opinion on revising the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yang, X.J. China’s Rapid Urbanization. Science 2013, 342, 310. [CrossRef] [PubMed]
2. National-Bureau-of-Statistics-of-China. Statistical Communiqué on the 2018 National Economic and Social

Development. Available online: http://www.stats.gov.cn/tjsj/zxfb/201902/t20190228_1651265.html (accessed
on 12 May 2019).

3. Xu, X.; Xie, Y.; Qi, K.; Luo, Z.; Wang, X. Detecting the response of bird communities and biodiversity to
habitat loss and fragmentation due to urbanization. Sci. Total Environ. 2018, 624, 1561–1576. [CrossRef]
[PubMed]

4. Zhou, C.S.; Chen, J.; Wang, S.J. Examining the effects of socioeconomic development on fine particulate
matter (PM2.5) in China’s cities using spatial regression and the geographical detector technique. Sci. Total
Environ. 2018, 619, 436–445. [CrossRef] [PubMed]

5. Peng, J.; Ma, J.; Liu, Q.; Liu, Y.; Hu, Y.; Li, Y.; Yue, Y. Spatial-temporal change of land surface temperature
across 285 cities in China: An urban-rural contrast perspective. Sci. Total Environ. 2018, 635, 487–497.
[CrossRef] [PubMed]

6. Endreny, T.A. Strategically growing the urban forest will improve our world. Nat. Commun. 2018, 9, 1160.
[CrossRef] [PubMed]

7. Alvey, A.A. Promoting and preserving biodiversity in the urban forest. Urban For. Urban Green. 2006, 5,
195–201. [CrossRef]

8. Michołap, P.; Sikora, A.; Kelm, M. Variability of bumblebee communities (Apidae, Bombini) in urban green
areas. Urban Ecosyst. 2017, 20, 1339–1345. [CrossRef]

http://www.mdpi.com/1999-4907/10/9/729/s1
http://dx.doi.org/10.1126/science.342.6156.310-a
http://www.ncbi.nlm.nih.gov/pubmed/24136949
http://www.stats.gov.cn/tjsj/zxfb/201902/t20190228_1651265.html
http://dx.doi.org/10.1016/j.scitotenv.2017.12.143
http://www.ncbi.nlm.nih.gov/pubmed/29929265
http://dx.doi.org/10.1016/j.scitotenv.2017.11.124
http://www.ncbi.nlm.nih.gov/pubmed/29156264
http://dx.doi.org/10.1016/j.scitotenv.2018.04.105
http://www.ncbi.nlm.nih.gov/pubmed/29677674
http://dx.doi.org/10.1038/s41467-018-03622-0
http://www.ncbi.nlm.nih.gov/pubmed/29563541
http://dx.doi.org/10.1016/j.ufug.2006.09.003
http://dx.doi.org/10.1007/s11252-017-0686-x


Forests 2019, 10, 729 14 of 15

9. Nowak, D.J.; Hirabayashi, S.; Doyle, M.; McGovern, M.; Pasher, J. Air pollution removal by urban forests in
Canada and its effect on air quality and human health. Urban For. Urban Green. 2018, 29, 40–48. [CrossRef]

10. Yang, J.; McBride, J.; Zhou, J.; Sun, Z. The urban forest in Beijing and its role in air pollution reduction.
Urban For. Urban Green. 2005, 3, 65–78. [CrossRef]

11. Armson, D.; Stringer, P.; Ennos, A. The effect of tree shade and grass on surface and globe temperatures in an
urban area. Urban For. Urban Green. 2012, 11, 245–255. [CrossRef]

12. Greene, C.S.; Millward, A.A. Getting closure: The role of urban forest canopy density in moderating summer
surface temperatures in a large city. Urban Ecosyst. 2017, 20, 141–156. [CrossRef]

13. Annerstedt, M.; Östergren, P.-O.; Björk, J.; Grahn, P.; Skärbäck, E.; Währborg, P. Green qualities in the
neighbourhood and mental health—Results from a longitudinal cohort study in Southern Sweden. BMC Public
Health 2012, 12, 337. [CrossRef] [PubMed]

14. Nesbitt, L.; Hotte, N.; Barron, S.; Cowan, J.; Sheppard, S.R. The social and economic value of cultural
ecosystem services provided by urban forests in North America: A review and suggestions for future
research. Urban For. Urban Green. 2017, 25, 103–111. [CrossRef]

15. Salbitano, F.; Borelli, S.; Conigliaro, M.; Chen, Y. Guidelines on Urban and Peri-Urban Forestry; FAO Forestry
Paper No. 178; FAO: Rome, Italy, 2016.

16. FAO. COFO Side Event on “Urban Forests for Sustainable Cities”; FAO: Rome, Italy, 2016.
17. Bureau, S.F. Evaluation Indicators for National Forest City. Journey Chin. Urban For. 2007, 5, 7–8. (In Chinese)
18. CTLA. Guide for Plant Appraisal, 9th ed.; Council of Tree and Landscape Appraiser: Champaign, IL, USA, 2000.
19. Nowak, D.J.; Rowntree, R.A.; McPherson, E.; Sisinni, S.M.; Kerkmann, E.R.; Stevens, J.C. Measuring and

analyzing urban tree cover. Landsc. Urban Plan. 1996, 36, 49–57. [CrossRef]
20. Fuller, R.A.; Gaston, K.J. The scaling of green space coverage in European cities. Biol. Lett. 2009, 5, 352–355.

[CrossRef]
21. Canetti, A.; Garrastazu, M.C.; De Mattos, P.P.; Braz, E.M.; Netto, S.P. Understanding multi-temporal urban

forest cover using high resolution images. Urban For. Urban Green. 2018, 29, 106–112. [CrossRef]
22. Fan, C.; Johnston, M.; Darling, L.; Scott, L.; Liao, F.H. Land use and socio-economic determinants of urban

forest structure and diversity. Landsc. Urban Plan. 2019, 181, 10–21. [CrossRef]
23. Kulhavy, D.L.; Unger, D.R.; Hung, I.-K.; Zhang, Y. Comparison of AR.Drone Quadricopter Video and the

Visual CTLA Method for Urban Tree Hazard Rating. J. For. 2016, 114, 517–523. [CrossRef]
24. Chen, M.; Dai, F.; Yang, B.; Zhu, S. Effects of neighborhood green space on PM2.5 mitigation: Evidence from

five megacities in China. Build. Environ. 2019, 156, 33–45. [CrossRef]
25. Zhou, Y.; Shi, Y. Towards establishing the conpect of physical urban area in China. Acta Geogr. Sin. 1995, 50,

289–301. (In Chinese)
26. Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of

global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ.
2018, 209, 227–239. [CrossRef]

27. Tan, M.H. An Intensity Gradient/Vegetation Fractional Coverage Approach to Mapping Urban Areas From
DMSP/OLS Nighttime Light Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 95–103. [CrossRef]

28. Song, Y.; Long, Y.; Wu, P.; Wang, X. Are all cities with similar urban form or not? Redefining cities with
ubiquitous points of interest and evaluating them with indicators at city and block levels in China. Int. J.
Geogr. Inf. Sci. 2018, 1–30. [CrossRef]

29. ESA. Sentinel-2 User Handbook, ESA Standard Document ed.; European Space Agency: Paris, France, 2015.
30. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine:

Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]
31. Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al.

Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens.
Environ. 2017, 202, 166–176. [CrossRef]

32. Wang, X.; Xiao, X.; Zou, Z.; Chen, B.; Ma, J.; Dong, J.; Doughty, R.B.; Zhong, Q.; Qin, Y.; Dai, S.; et al. Tracking
annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with
Google Earth Engine. Remote Sens. Environ. 2018, 110987. [CrossRef]

33. Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z.; et al. A mangrove
forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth
Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [CrossRef]

http://dx.doi.org/10.1016/j.ufug.2017.10.019
http://dx.doi.org/10.1016/j.ufug.2004.09.001
http://dx.doi.org/10.1016/j.ufug.2012.05.002
http://dx.doi.org/10.1007/s11252-016-0586-5
http://dx.doi.org/10.1186/1471-2458-12-337
http://www.ncbi.nlm.nih.gov/pubmed/22568888
http://dx.doi.org/10.1016/j.ufug.2017.05.005
http://dx.doi.org/10.1016/S0169-2046(96)00324-6
http://dx.doi.org/10.1098/rsbl.2009.0010
http://dx.doi.org/10.1016/j.ufug.2017.10.020
http://dx.doi.org/10.1016/j.landurbplan.2018.09.012
http://dx.doi.org/10.5849/jof.15-005
http://dx.doi.org/10.1016/j.buildenv.2019.03.007
http://dx.doi.org/10.1016/j.rse.2018.02.055
http://dx.doi.org/10.1109/JSTARS.2016.2566682
http://dx.doi.org/10.1080/13658816.2018.1511793
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.1016/j.rse.2017.02.021
http://dx.doi.org/10.1016/j.rse.2018.11.030
http://dx.doi.org/10.1016/j.isprsjprs.2017.07.011


Forests 2019, 10, 729 15 of 15

34. Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A.
A 30-m landsat-derived cropland extent product of Australia and China using random forest machine
learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens.
2018, 144, 325–340. [CrossRef]

35. Jin, X.; Long, Y.; Sun, W.; Lu, Y.; Yang, X.; Tang, J. Evaluating cities’ vitality and identifying ghost cities in
China with emerging geographical data. Cities 2017, 63, 98–109. [CrossRef]

36. China Meteorological Data Sharing Service System. Available online: http://data.cma.cn/data/cdcdetail/
dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html (accessed on 24 August 2019).

37. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. 2016 China Urban
Construction Statistical Yearbook. Available online: http://www.mohurd.gov.cn/xytj/tjzljsxytjgb/ (accessed
on 6 August 2019).

38. Congalton, R.G. Accuracy Assessment: A Critical Component of Land Cover Mapping. In Gap Analysis:
A Landscape Approach to Biodiversity Planning, Bethesda; Scott, J.M., Tear, T.H., Davis, F., Eds.; American Society
for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 1996; pp. 119–131.

39. Amani, M.; Mahdavi, S.; Afshar, M.; Brisco, B.; Huang, W.; Mirzadeh, S.M.J.; White, L.; Banks, S.;
Montgomery, J.; Hopkinson, C. Canadian Wetland Inventory using Google Earth Engine: The First Map and
Preliminary Results. Remote Sens. 2019, 11, 842. [CrossRef]

40. Tian, F.; Wu, B.; Zeng, H.; Zhang, X.; Xu, J. Efficient Identification of Corn Cultivation Area with Multitemporal
Synthetic Aperture Radar and Optical Images in the Google Earth Engine Cloud Platform. Remote Sens. 2019,
11, 629. [CrossRef]

41. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
42. Belgiu, M.; Drăgut, , L. Random forest in remote sensing: A review of applications and future directions.

ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [CrossRef]
43. Chen, J.M.; Cihlar, J. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens.

Environ. 1996, 55, 153–162. [CrossRef]
44. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water

features. Int. J. Remote Sens. 1996, 17, 1425–1432. [CrossRef]
45. Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas

from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [CrossRef]
46. Zhao, Q.; Zheng, G.Q.; Huang, Q.H. Urban forest remote sensing investigation based on neural network

model technology in the main city of Nanjing. Geogr. Res. 2006, 25, 468–476. (In Chinese)
47. Liu, C.; Li, X. Carbon storage and sequestration by urban forests in Shenyang, China. Urban For. Urban Green.

2012, 11, 121–128. [CrossRef]
48. Sun, Z.; Xu, R.; Du, W.; Wang, L.; Lu, D. High-Resolution Urban Land Mapping in China from Sentinel 1A/2

Imagery Based on Google Earth Engine. Remote Sens. 2019, 11, 752. [CrossRef]
49. Chen, W.Y.; Wang, D.T. Urban forest development in China: Natural endowment or socioeconomic product?

Cities 2013, 35, 62–68. [CrossRef]
50. Watkins, S.L.; Gerrish, E. The relationship between urban forests and race: A meta-analysis. J. Environ.

Manag. 2018, 209, 152–168. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.isprsjprs.2018.07.017
http://dx.doi.org/10.1016/j.cities.2017.01.002
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html
http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_DAY_V3.0.html
http://www.mohurd.gov.cn/xytj/tjzljsxytjgb/
http://dx.doi.org/10.3390/rs11070842
http://dx.doi.org/10.3390/rs11060629
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.1016/0034-4257(95)00195-6
http://dx.doi.org/10.1080/01431169608948714
http://dx.doi.org/10.1080/01431160304987
http://dx.doi.org/10.1016/j.ufug.2011.03.002
http://dx.doi.org/10.3390/rs11070752
http://dx.doi.org/10.1016/j.cities.2013.06.011
http://dx.doi.org/10.1016/j.jenvman.2017.12.021
http://www.ncbi.nlm.nih.gov/pubmed/29289843
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Sentinel-2 Images and Preprocessing 
	Sample Points for Training and Validation 

	Urban Forest Mapping Classifier 

	Results 
	Accuracy Assessment 
	The Distribution of China’s Urban Forests in 2016 

	Discussion 
	Reliability of Urban Forest Mapping in GEE 
	Data 
	GEE Platform 
	Efficient Machine Algorithms 

	Uncertainties and Limitations 
	Suggestions for Urban Forest Construction in China 

	Conclusions 
	References

