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Abstract: Currently, forest biomass estimation methods at the regional scale have attracted the
greatest attention from researchers, and the development of stand biomass models has become
popular a trend. In this study, a total of 5074 measurements on 1053 permanent sample plots were
obtained in the Eastern Da Xing’an Mountains, and three additive systems of stand biomass equations
were developed. The first additive system (M-1) used stand variables as the predictors (i.e., stand
basal area and average height), the second additive system (M-2) utilized stand volume as the sole
predictor, and the third additive system (M-3) included both stand volume and biomass expansion
and conversion factors (BCEFs) as the predictors. The coefficients of the three model systems were
estimated with nonlinear seemingly unrelated regression (NSUR), while the heteroscedasticity of the
model residuals was solved with the weight function. The jackknifing technique was used on the
residuals, and several statistics were used to assess the prediction performance of each model. We
comprehensively evaluated four stand biomass estimation methods (i.e., M-1, M-2, M-3 and a constant
BCEF (M-4)). Here, we showed that the (1) three additive systems of stand biomass equations showed
good model fitting and prediction performance, (2) M-3 significantly improved the model fitting and
performance and provided the most accurate predictions for most stand biomass components, and (3)
the ranking of the four stand biomass estimation methods followed the order of M-3 > M-2 > M-4 >

M-1. Our results demonstrated these additive stand biomass models could be used to estimate the
stand aboveground and belowground biomass for the major forest types in the Eastern Da Xing’an
Mountains, although the most appropriate method depends on the available data and forest type.

Keywords: forest inventory; stand biomass; additive equations; nonlinear seemingly unrelated regression

1. Introduction

Among the studies on global climate change and the carbon cycle, research on the quantity,
distribution, and dynamics of forest carbon stocks is popular and remains a high priority for predicting
the growth and yield of forests [1–3]. Since the carbon concentrations in a tree or stand components are
relatively constant (approximately 50%), most studies focus on forest biomass estimations rather than
carbon storage estimations. Thus, the calculation of accurate forest biomass estimations has become
one of the most crucial steps for successfully implementing the Reducing Emissions from Deforestation
and Forest Degradation (REDD+) project as well as for the conservation and enhancement of forest
carbon stocks and the sustainable management of forests. These initiatives provide a framework that
benefits developing countries by rewarding them financially to reduce carbon emissions [4,5]. To date,
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different countries have used various methods for their national-scale carbon assessments, which differ
in the degree of accuracy and the amount of field inventory [6–10].

Forest stand biomass can be estimated at either the tree or stand level. At the tree level, the most
commonly used method is the allometric equation, which estimates tree biomass using simple tree
variables, such as the tree diameter at breast height (D) and/or tree height (H) [11–14]. Tree allometric
equations require inventories that have high cost and time requirements, although they yield high
accuracies for estimating tree biomass. The sum of the biomasses of individual trees provides the
biomass for a plot or stand. Alternatively, the stand biomass can be estimated using either stand
biomass models or biomass expansion and conversion factors (BCEFs), which represent the ratio of the
stand biomass to stand volume. Historically, most biomass studies in the literature have focused on tree
biomass models, while efforts related to stand biomass models have been limited or lacking [6,7,9,10,15].
For the stand biomass estimations, some researchers believe that the use of stand biomass models can
more easily estimate the stand biomass and prevent having to address complex error propagation
procedures at different spatial scales [6,7].

In recent years, with the rapid accumulation of forest biomass data throughout the world,
researchers have attempted to improve forest biomass estimations and proposed various stand biomass
estimation methods [7,10,16–18]. Studies have shown that stand biomass is closely related to some
easily measured stand variables, such as the quadratic mean diameter, average height, and basal area
of the stand [7,8,19]. In addition, the total and individual components of stand biomass have a strong
correlation with stand volume, which has been used as a predictor in stand biomass models [20–22].
Recent methodology guidelines from the IPCC [23] provided a set of species-specific default values for
BCEFs. It is well known that using a constant BCEF to quantify stand biomass produces certain biases
or errors because BCEFs vary depending on the growth conditions and stand development stage,
such as the stand age, stand size and stand density [15,16,21]. Studies have noted that BCEFs are not
constant, and linear models have been established between stand biomass and volume [20,24,25]. Other
researchers constructed nonlinear models (e.g., hyperbolic functions, reciprocal equations, and power
functions) to express the relationships between stand biomass and BCEFs [7,10,15–17,26]. Overall,
using stand biomass models with stand volume as the sole predictor or expanding the stand volume
with an available BCEF is a relatively simple method for estimating stand biomass [7]. However, few
comparative evaluations have been performed for different stand biomass estimation methods in the
literature, especially for predicting stand biomass across a large geographic region.

When more than one biomass component is found in the same sample plot, the stand biomass
equation is used to fit the total and component biomass data simultaneously, which explains the
inherent correlations among the biomasses of the stand components in the same sample plot [6,12,13].
Consequently, the sum of stand biomass predictions from the component biomass models and the total
biomass model are the same. To achieve the additivity of stand biomass equations, various parameter
estimation methods and model specifications are used in linear and nonlinear models [11,12,27–29].
Among these methods of parameter estimation, nonlinear seemingly unrelated regression (NSUR) and
seemingly unrelated regression (SUR) are the most widely used. An advantage of SUR and NSUR
is the low variance of the total stand biomass model because of their own predictor variables and
weighting function account for heteroscedasticity, which makes SUR and NSUR popular methods for
parameter estimation in nonlinear and linear stand biomass equations [11–14,30]. Although several
researchers have proposed the inclusion of additivity, it has often been ignored in some stand biomass
models [8,10].

Additionally, similar to tree biomass models, stand biomass models commonly show
heteroscedastic model residuals. To overcome the heteroscedasticity of the stand biomass model
residuals, logarithmic transformation or a weighted regression should be performed before the
construction of each carbon model [12,13]. To acquire an ideal result from logarithmic regression,
a correction is necessary after the antilog transformation, i.e., the predicted values are multiplied
by a correction factor [31,32]. However, when determining the total and component equations
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of stand biomass, after applying the correction factor to the logarithmic equations of the additive
system, realizing additivity is difficult [32]. Thus, the weighted regression successfully overcomes the
heteroscedasticity of the total and component biomass model residuals in an additive system [12,13].

Asia is one of three primary locations of temperate mixed forests worldwide (i.e., northeastern
North America, Europe, and eastern Asia), and they are mainly distributed in the forest regions
of northeastern China. Chinese temperate forests are widely distributed in the Eastern Da Xing’an
Mountains. These temperate forests play a crucial role in the Chinese national carbon budget and
climatic system. Unfortunately, the forest resource inventory data in this region have not been fully
utilized, and only limited stand biomass models are available. Thus, the objectives of this study
were to (1) develop three alternative additive systems of stand biomass equations (i.e., stand biomass
models using stand variables (M-1), stand biomass models using stand volume (M-2), and stand
biomass models using both stand volume and BCEF (M-3)) for estimating the stand biomass of major
forest types (including white birch forest, larch forest, poplar-birch forest, deciduous broadleaf mixed
forest, coniferous and broadleaf mixed forest, and coniferous mixed forest) in the Eastern Da Xing’an
Mountains, Northeast China, (2) use the jackknife method to validate the performance of those stand
biomass models, and (3) evaluate the predictive ability of four alternative methods (i.e., M-1, M-2, M-3,
and constant BCEF (M-4)) to estimate the total and component biomasses in each forest stand.

2. Materials and Methods

2.1. Study Area and Data

The Eastern Da Xing’an Mountains in Northeast China are defined as in our previous study [14],
and they cover an area of 83,517 km2 (Figure 1). The terrain, soil, and climate of the region were
described in Dong et al. [14] and, thus, are not detailed here. According to the classification standard
of forest types in the Eastern Da Xing’an Mountains, the forest types in this study were mainly divided
as follows: white birch forest, larch forest, poplar-birch forest, deciduous broadleaf mixed forest,
coniferous and broadleaf mixed forest, and coniferous mixed forest. Among these forest types, white
birch forest and larch forest have the largest proportions of the forest area and stand volume in the
Eastern Da Xing’an Mountains, occupying 37.44% and 32.93% of the forest area and 41.42% and 28.56%
of the forest volume, respectively.
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Figure 1. Geographical location of the study area in the Eastern Da Xing’an Mountains, Northeast China.

Our stand biomass data were collected from 1,053 permanent sample plots in the National Forest
Continuous Inventory (NFCI) for the region. Most of the initially established plots were remeasured
approximately four times (1990–2010, 5-year intervals), providing a total of 5074 measurements (Table 1).
Those permanent sample plots were located throughout the species distributions across the Eastern Da
Xing’an Mountains (Figure 1), which were set at the cross points of the kilometer networks (8 × 8 km).
The sample plots were square with a size of 600 m2. The diameter at breast height (D) of the tree for
each sample plot was measured at D ≥ 5 cm by the diameter tape. The average tree height in each
sample plot was measured using a Blume-Leiss hypsometer.



Forests 2019, 10, 715 4 of 20

Table 1. Summary statistics of stand variables and biomass components for the six forest types in the
Eastern Da Xing’an Mountains, Northeast China.

Forest Types Measurements Statistics Dq Ha G V N Wr Ws Wb Wf

White birch forest 963

Min 5.3 5.0 0.5 1.7 200.0 0.49 1.12 0.10 0.05
Max 23.2 24.0 30.8 226.0 3533.0 52.49 137.80 29.84 5.57

Mean 11.1 11.9 11.5 68.6 1226.7 15.18 40.51 7.58 1.76
SD 3.3 3.4 6.5 43.4 684.0 9.46 25.38 5.38 1.10

Larch forest 1749

Min 6.0 5.0 0.6 2.3 200.0 0.46 1.36 0.16 0.09
Max 36.7 32.0 39.6 340.0 3950.0 96.33 203.40 30.86 6.35

Mean 13.9 14.0 15.6 107.6 1130.9 25.91 62.86 7.74 2.10
SD 4.1 4.1 7.5 57.7 662.4 15.66 35.79 4.78 1.06

Poplar-birch forest 293

Min 5.3 5.1 0.7 2.6 200.0 0.47 1.66 0.12 0.05
Max 24.1 23.2 36.2 288.2 3433.3 57.59 168.53 31.49 5.48

Mean 12.1 13.1 16.9 111.9 1543.8 19.25 62.36 10.20 2.24
SD 3.8 4.1 7.5 58.8 712.4 10.54 32.25 6.55 1.16

Deciduous broadleaf
mixed forest

501

Min 5.4 5.0 0.8 3.2 200.0 0.83 1.95 0.20 0.08
Max 27.0 23.1 37.3 298.8 3150.0 59.91 175.93 45.44 5.72

Mean 12.7 11.1 14.0 78.5 1207.7 18.65 54.41 13.18 2.31
SD 4.0 3.6 6.4 43.5 603.4 9.78 28.67 9.45 1.19

Coniferous and
broadleaf mixed

forest
1263

Min 6.9 5.0 1.0 4.5 217.0 0.88 2.40 0.29 0.13
Max 27.0 32.3 36.5 291.6 3350.0 60.32 170.78 27.78 6.70

Mean 12.8 12.8 16.1 106.0 1365.2 24.10 62.41 9.90 2.37
SD 3.0 3.5 6.6 47.8 683.5 11.36 28.65 5.13 1.04

Coniferous mixed
forest

305

Min 6.3 5.4 1.2 10.3 200.0 0.55 1.90 0.30 0.18
Max 33.1 23.6 33.3 288.8 3933.0 69.77 158.62 22.14 8.50

Mean 14.1 13.7 17.2 123.2 1219.7 21.92 64.87 8.99 3.47
SD 4.4 3.9 6.8 56.8 601.3 11.62 32.40 4.29 1.57

where Dq represents the quadratic mean diameter, Ha represents the average tree height, G represents the stand
basal area per hectare, V represents the stand volume, N represents the number of trees per hectare, Wr represents
the stand root biomass, Ws represents the stand stem biomass, Wb represents the stand branch biomass, and Wf
represents the stand foliage biomass.

In the NFCI, the specific calculation methods for the stand variables are as follows: (1) the average
tree height (Ha) of the stand was the average height of 3–5 standard trees for dominant species in a

plot, (2) the quadratic mean diameter (Dq) of the stand was calculated using the formula
√∑

D2
i /n,

(3) the stand basal area per hectare (G) was the accumulation of all individual tree basal areas, (4) the
number of trees per hectare (N) was the ratio of the number of trees in a plot to the plot area, and (5)
the individual tree volume was calculated by the volume equation based on the D for only the Eastern
Da Xing’an Mountains (because the tree height was not measured in the NFCI), and the accumulation
of all individual tree volumes for each sample plot was the stand volume (V).

We previously developed species-specific tree biomass allometric equations with only tree D as
the predictor for the tree total and component biomass (i.e., the stand total biomass (Wt), the stand
root biomass (Wr), the stand stem biomass (Ws), the stand branch biomass (Wb), and the stand foliage
biomass (W f )) [12,32,33], and they were applied to each tree within the permanent sample plots. The
stand biomass (Mg·ha−1) was determined on an area basis for each sample plot. Thus, the descriptive
statistics of the stand biomass components (i.e., root, stem, branch, and foliage) and stand variables
(i.e., Dq, Ha, G, V, and N) were summarized for each forest type, as shown in Table 1.

2.2. Stand Biomass Estimation Models

In this study, three alternative models for stand biomass estimation were proposed: (1) the stand
variables were the predictors for estimating the stand total and component biomasses (namely, Method
1 or M-1), (2) the stand volume was the sole predictor for estimating the stand total and component
biomasses (namely, Method 2 or M-2), and (3) both stand volume and appropriate biomass conversion
and expansion factors (BCEFs) were used to estimate the stand total and component biomasses (namely,
Method 3 or M-3). For the above three methods, the additive systems of biomass equations that
consider the inherent correlations among the biomasses of the stand components in the same sample
plot were defined to predict the stand total and component biomasses for each of the major forest types.
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2.2.1. Stand Biomass Models with Stand Variables (M-1)

The stand total and component biomasses (i.e., root, stem, branch, and foliage) were regressed on
the stand variables using the following power function:

Wi = eβi0Xβi1
1 Xβi2

2 . . .X
βi j

j + εi (1)

where Wi represents the stand total biomass and the biomass of each component (i = branch (b), foliage
(f ), root (r), stem (s), and total (t)) at the stand level (Mg ha−1), Xj represents the stand variables (j = 1,
. . . , k), such as the stand basal area (G) and average height (Ha), βi j represents the parameters estimated
by the model; and εi is the additive error term of the model.

A visual inspection of the stand component biomass data indicated that the stand component
biomass could be well expressed by G and Ha. Therefore, the equation Wi = eβi0Gβi1Ha

βi2 was used to
estimate the stand total and component biomasses for each of the major forest types.

According to the description by Parresol [28], the additive system of five equations with
cross-equation error correlations for the stand total, root, stem, branch, and foliage biomass are
listed as follows: 

Wr = eβr0Gβr1Ha
βr2 + εr

Ws = eβs0Gβs1Ha
βs2 + εs

Wb = eβb0Gβb1Ha
βb2 + εb

W f = eβ f 0Gβ f 1Ha
β f 2 + ε f

Wt = Wr + Ws + Wb + W f + εt

(2)

where Wr, Ws, Wb, W f , and Wt represent the root, stem, branch, foliage, and total stand biomass
(Mg ha−1), respectively.

2.2.2. Stand Biomass Models with Stand Volume (M-2)

The primary results indicated that there was a strong correlation between stand biomass and
stand volume (V) [20–22]. Thus, the equation Wi = eβi0Vβi1 can be used to calculate the stand total and
component biomasses for each of the major forest types. The additive system of five equations was
specified as follows: 

Wr = eβr0Vβr1 + εr

Ws = eβs0Vβs1 + εs

Wb = eβb0Vβb1 + εb
W f = eβ f 0Vβ f 1 + ε f

Wt = Wr + Ws + Wb + W f + εt

(3)

The symbols used in the additive system are the same as in Equations (2).

2.2.3. Stand Biomass Models with Both Stand Volume and BCEFs (M-3)

In this study, the stand biomass estimation was also calculated using BCEFs, which are commonly
defined as follows:

BCEFi =
Wi
V

(4)

where Wi represents the stand total biomass and the biomass of each component (i = branch (b), foliage
(f ), root (r), stem (s), and total (t)) at the stand level (Mg ha−1); and V represents the stand volume.

We attempted to elaborate multiple regression models for stand biomass and BCEF using the
stand variables. The adjusted coefficient of determination (R2

a), root mean squared error (RMSE), and
AIC revealed that models with one or two predictors were the best choices. For this reason, we decided
to present only the following models (Equations (5)–(7)), which allowed for the computation of stand
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biomass and BCEF using available stand variables. To evaluate the relationships between BCEF and
stand variables, we used the following model types:

BCEFi = fi
(
X j

)
= βi0X

βi j

j + εi (5)

BCEFi = fi
(
X j

)
= X j/

(
βi0 + βi jX j

)
+ εi (6)

BCEFi = fi
(
X j

)
= βi0 + βi j/X j + εi (7)

where Xj represents the stand variable (j=1, . . . , k), such as Ha, Dq, and others. fi
(
X j

)
is the equation

of BCEFi, βi j represents the parameters estimated by the model; and εi is the additive error term of
the model

Our results showed that the BCEF model types for each biomass component varied for different
forest types (as listed in Table 5). In general, the additive system of five equations was specified as
follows: 

Wr = fr
(
X j

)
V + εr

Ws = fs
(
X j

)
V + εs

Wb = fb
(
X j

)
V + εb

W f = f f
(
X j

)
V + ε f

Wt = Wr + Ws + Wb + W f + εt

(8)

The symbols used in the system are the same as in the above equations.
Due to the heteroscedasticity in the model residuals shown by the stand biomass data, a weighting

function was defined and applied for each stand biomass model. Following previous applications
for modeling residual heteroscedasticity, the variances, or the squares of residuals (ε2), in the ith
observation were functionally related to other predictor variables, such as ε2

i = σ2(xi)
p, where xi is

the stand variable and εi is the unweighted model residual. Hence, we chose 1/(xi)
p as the weight

function. In this study, 1/Gp for M-1 and 1/Vp for M-2 and M-3 were chosen as the weight functions,
and p was confirmed based on each stand biomass model. In the computations, the weight function
for heteroscedasticity 1/Gp and 1/Vp was multiplied and programmed using the PROC MODEL

procedure in SAS by specifying resid.Wi = resid.Wi/
√

1/(xi)
p [12,13,34,35].

The above three additive systems of stand biomass in Equations (2), (3) and (8) fit the data of each
forest type with NSUR under the SAS/ETS model [35].

2.3. Model Evaluation and Validation

The three additive systems (Equations (2), (3), and (8)) suit the entire data set and were tested
with the jackknife technique, in which all the observations except one (sample size N-1) were used to
construct the stand biomass equation, and the dependent variable for the excluded observation was
predicted with the fitted model. The five statistics of each system equation based on the jackknifing
technique were used to evaluate the fitting performance (adjusted coefficient of determination (R2

a) and
root mean square error (RMSE)) and the predictive performance (mean prediction error (MPE), mean
absolute error (MAE), and mean absolute percent error (MAE%)) of each stand biomass prediction
equation. The mathematical expressions of the four statistics are as follows:

R2
a = 1−

∑N
i=1 (Wi − Ŵi)

2∑N
i=1 (Wi −W)

2

(
N − 1
N − p

)
(9)

RMSE =

√∑N
i=1 (Wi − Ŵi)

2

N − p
(10)
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MPE =

∑N
i=1

(
Wi − Ŵi,−i

)
N

(11)

MAE =

∑N
i=1

∣∣∣Wi − Ŵi,−i
∣∣∣

N
(12)

MAE% =

∑N
i=1

∣∣∣Wi − Ŵi,−i/Ŵi,−i
∣∣∣

N
(13)

where Wi is the value of the ith observed stand biomass; Ŵi is the ith stand biomass prediction from

the model fit to all the data (sample size N),
−

W is the average value of the stand biomass, Ŵi,−i is the
prediction of the ith observation of the model fitted using N-1 observations excluding the usage of the
ith observation; and p is the total number of model parameters.

2.4. Evaluation of Several Stand Biomass Estimation Methods

In this study, once the stand biomass estimate was calculated for each component, the component
estimates were summed to produce the total stand biomass estimate. We used the following four
methods to calculate the stand biomass of each tree component: (1) stand biomass models with the
stand variables as the predictors (M-1), (2) stand biomass models with the stand volume as the sole
predictor (M-2), (3) stand biomass models with stand volume and BCEF as the predictors (M-3), and (4)
a constant BCEF (M-4), in which a constant BCEF value for each component for major forest types was
applied to calculate the stand biomass of each component by Equations (4), and the total estimated
stand biomass was the sum of the component estimates. The constant BCEF values of each component
are listed for the major forest types in Table 2.

Table 2. Constant (average value) and standard deviation (SD) of biomass expansion and conversion
factors (BCEFs) at the stand level (Mg·m−3) for the six forest types in the Eastern Da Xing’an Mountains,
Northeast China.

Forest Types Statistics BCEFr BCEFs BCEFb BCEFf

White birch forest
Constant 0.2255 0.5944 0.1056 0.0257

SD 0.0214 0.0552 0.0346 0.0039

Larch forest
Constant 0.2338 0.5754 0.0699 0.0205

SD 0.0290 0.0409 0.0126 0.0041

Poplar-birch forest Constant 0.1725 0.5651 0.0856 0.0202
SD 0.0327 0.0529 0.0324 0.0040

Deciduous broadleaf mixed forest
Constant 0.2438 0.6994 0.1639 0.0305

SD 0.0512 0.1269 0.0865 0.0076

Coniferous and broadleaf mixed forest
Constant 0.2265 0.5872 0.0926 0.0229

SD 0.0269 0.0462 0.0260 0.0040

Coniferous mixed forest
Constant 0.1775 0.5152 0.0731 0.0299

SD 0.0410 0.0621 0.0130 0.0097

An analysis of variance was used to test the differences between the four methods (treatment) for
estimating stand biomass with the sample plots as the blocks. Furthermore, a percentage difference
(MPD%) was defined to quantify the biases in the four methods used to estimate stand biomass.

MPD% =

∑N
i=1

∣∣∣∣Wi−Ŵi
Wi

∣∣∣∣
N

× 100 (14)

where Wi is the value of ith observed stand biomass, Ŵi is the ith stand biomass predicted by the four
methods, and N is the sample size.
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3. Results

3.1. Model Fitting for Stand Biomass Models

The coefficient estimates, standard errors (SEs), and goodness-oF-fit statistics (R2
a and RMSE) of

M-1 (Equations (2)) are shown for the six forest types in Table 3. The results indicated that most of the
biomass equations in M-1 fit the stand biomass data well, with R2

a > 0.70 and RMSE < 20.0 Mg·ha−1.
The model fit the stand total and stem biomass data the best, while relatively small Ra

2 values were
observed in the branch and foliage equations (Table 3).

We fit the M-2 (Equations (3)) for the six forest types. The results indicated that V had a good
correlation with stand biomass. The stand total and stem biomass equations had larger R2

a and smaller
RMSE values than the stand foliage and branch biomass equations (Table 4). Compared with M-1, the
M-2 for most forest types had large R2

a and small RMSE values, e.g., the stand stem biomass equation
of coniferous mixed forest presented a 12.6% increase in R2

a and a 44.9% decrease in RMSE. When the
biomass equation had the sole predictor variable V, the majority of stand biomass equations in M-2
had large R2

a and small RMSE values (Table 4).
The constant values of BCEFr, BCEFs, BCEFb and BCEFf are listed for the six forest types in Table 2.

There were some variations among the BCEFi values across those forest types, which explained why
the BCEF values were considered stand dependent. We analyzed the relationship between the BCEF
and stand variables. The results indicated that depending on the forest type and biomass component,
the predictor variables Dq and Ha best interpreted the variations in BCEF. It was evident that the
BCEF model types for each component were different for the different forest types (Table 5). Based on
the BCEF models, we fitted the third additive systems using both stand volume (V) and BCEF (M-3,
Equations (8)). For most forest types, the proportion of variation interpreted by the additive system
with V and BCEF was analogous to that interpreted by the additive systems including stand variables,
such as G and Ha or stand volume only (Tables 4–6).
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Table 3. Model coefficient estimates, standard errors (SEs), model fitting statistics, and weight functions for the additive system of stand biomass equations using
stand variables (namely, M-1) for the six forest types in the Eastern Da Xing’an Mountains, Northeast China.

Forest Types Components Equations βi0 βi1 βi2 Ra
2 RMSE Weight Function

Estimate SE Estimate SE Estimate SE

White birch forest

Root Wr = eβr0 Gβr1 Ha
βr2 −0.3681 0.0211 1.0134 0.0038 0.2417 0.0107 0.9670 1.7191 G2.3111

Stem Ws = eβs0 Gβs1 Ha
βs2 0.3658 0.0243 1.0138 0.0047 0.3378 0.0118 0.9720 4.2478 G1.8435

Branch Wb = eβb0 Gβb1 Ha
βb2 −2.5802 0.0755 0.9553 0.0143 0.8883 0.0333 0.8398 2.1523 G1.3376

Foliage W f = eβ f 0 Gβ f 1 Ha
β f 2 −3.0214 0.0379 0.9788 0.0075 0.4702 0.0173 0.9443 0.2592 G1.2728

Total Wt = Wr +Ws +Wb +W f - - - - - - 0.9644 7.7291 G1.7861

Larch forest

Root Wr = eβr0 Gβr1 Ha
βr2 −0.9170 0.0387 1.0639 0.0075 0.4644 0.0166 0.8827 5.3645 G2.4562

Stem Ws = eβs0 Gβs1 Ha
βs2 0.2552 0.0290 1.0538 0.0057 0.3689 0.0124 0.9254 9.7728 G2.3102

Branch Wb = eβb0 Gβb1 Ha
βb2 −1.8547 0.0417 1.1227 0.0073 0.3007 0.0197 0.8412 1.9034 G2.8988

Foliage W f = eβ f 0 Gβ f 1 Ha
β f 2 −1.9338 0.0270 1.0276 0.0059 −0.0552 0.0114 0.9498 0.2383 G1.5773

Total Wt = Wr +Ws +Wb +W f - - - - - - 0.9175 16.3387 G2.3770

Poplar−birch forest

Root Wr = eβr0 Gβr1 Ha
βr2 −0.6818 0.0709 1.0891 0.0145 0.2072 0.0361 0.8644 3.8810 G1.9913

Stem Ws = eβs0 Gβs1 Ha
βs2 0.3915 0.0357 1.0531 0.0072 0.2872 0.0179 0.9645 6.0795 G1.9630

Branch Wb = eβb0 Gβb1 Ha
βb2 −2.2658 0.1651 1.0131 0.0442 0.6504 0.0669 0.7546 3.2449 G1.2065

Foliage W f = eβ f 0 Gβ f 1 Ha
β f 2 −2.6787 0.0948 0.9712 0.0274 0.2830 0.0385 0.8820 0.3969 G0.7684

Total Wt = Wr +Ws +Wb +W f - - - - - - 0.9376 12.4215 G1.5947

Deciduous broadleaf
mixed forest

Root Wr = eβr0 Gβr1 Ha
βr2 −0.0292 0.0457 1.1270 0.0111 −0.0225 0.0211 0.9011 3.0743 G2.0893

Stem Ws = eβs0 Gβs1 Ha
βs2 0.7085 0.0336 1.1494 0.0084 0.0885 0.0151 0.9375 7.1641 G1.9423

Branch Wb = eβb0 Gβb1 Ha
βb2 −1.0325 0.1065 1.4481 0.0260 −0.1398 0.0511 0.5196 6.5472 G1.7915

Foliage W f = eβ f 0 Gβ f 1 Ha
β f 2 −2.0889 0.0478 1.1408 0.0119 −0.0519 0.0225 0.8434 0.4704 G1.5845

Total Wt = Wr +Ws +Wb +W f - - - - - - 0.8838 16.2834 G1.9621

Coniferous and
broadleaf mixed forest

Root Wr = eβr0 Gβr1 Ha
βr2 −0.2980 0.0460 1.0499 0.0097 0.2189 0.0179 0.8520 4.3714 G1.9153

Stem Ws = eβs0 Gβs1 Ha
βs2 0.6282 0.0341 1.0590 0.0071 0.2181 0.0132 0.9244 7.8758 G1.9069

Branch Wb = eβb0 Gβb1 Ha
βb2 −1.6087 0.0614 1.0813 0.0122 0.3442 0.0237 0.7140 2.7444 G1.4223

Foliage W f = eβ f 0 Gβ f 1 Ha
β f 2 −2.3012 0.0329 1.0264 0.0067 0.1207 0.0129 0.8902 0.3458 G1.4523

Total Wt = Wr +Ws +Wb +W f - - - - - - 0.9097 13.6576 G1.8568

Coniferous mixed forest

Root Wr = eβr0 Gβr1 Ha
βr2 −0.2841 0.1084 1.1484 0.0233 0.0343 0.0520 0.6721 6.6523 G2.8070

Stem Ws = eβs0 Gβs1 Ha
βs2 0.3872 0.0814 1.1543 0.0196 0.1862 0.0363 0.8468 12.6796 G2.1331

Branch Wb = eβb0 Gβb1 Ha
βb2 −1.3594 0.0849 1.0907 0.0209 0.1701 0.0373 0.8421 1.7045 G2.0005

Foliage W f = eβ f 0 Gβ f 1 Ha
β f 2 −1.7837 0.1034 0.8950 0.0262 0.1876 0.0434 0.7893 0.7194 G1.2489

Total Wt = Wr +Ws +Wb +W f - - - - - - 0.8420 19.2912 G2.3796
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Table 4. Model coefficient estimates, standard errors (SEs), model fitting statistics, and weight functions for the additive system of stand biomass equations using
stand volume (namely, M-2) for the six forest types in the Eastern Da Xing’an Mountains, Northeast China.

Forest Types Components Equations βi0 βi1 Ra
2 RMSE Weight Function

Estimate SE Estimate SE

White birch forest

Root Wr = eβr0 Vβr1 −1.3278 0.0140 0.9580 0.0033 0.9799 1.3392 V1.5306

Stem Ws = eβs0 Vβs1 −0.4863 0.0118 0.9893 0.0026 0.9849 3.1148 V1.1589

Branch Wb = eβb0 Vβb1 −2.7349 0.0371 1.1142 0.0083 0.8192 2.2864 V1.2267

Foliage W f = eβ f 0 Vβ f 1 −3.6432 0.0193 0.9928 0.0044 0.9444 0.259 V1.0907

Total Wt = Wr + Ws + Wb + W f - - - - 0.9783 6.0348 V1.3182

Larch forest

Root Wr = eβr0 Vβr1 −1.7833 0.0146 1.0742 0.0032 0.9486 3.5507 V1.9175

Stem Ws = eβs0 Vβs1 −0.7210 0.0091 1.0381 0.0020 0.9797 5.0940 V1.8483

Branch Wb = eβb0 Vβb1 −3.0835 0.0216 1.0941 0.0048 0.8776 1.6705 V2.3133

Foliage W f = eβ f 0 Vβ f 1 −3.3961 0.0277 0.8887 0.0060 0.8796 0.3691 V1.4197

Total Wt = Wr + Ws + Wb + W f - - - - 0.9741 9.1558 V1.9543

Poplar-birch forest

Root Wr = eβr0 Vβr1 −1.7307 0.0645 0.9913 0.0135 0.8870 3.5422 V1.5588

Stem Ws = eβs0 Vβs1 −0.4645 0.0216 0.9738 0.0046 0.9647 6.0568 V1.5025

Branch Wb = eβb0 Vβb1 −3.4476 0.1073 1.2090 0.0221 0.7181 3.4773 V1.5094

Foliage W f = eβ f 0 Vβ f 1 −3.7540 0.0539 0.9639 0.0111 0.8568 0.4373 V0.9094

Total Wt = Wr + Ws + Wb + W f - - - - 0.9414 12.0418 V1.5480

Deciduous broadleaf
mixed forest

Root Wr = eβr0 Vβr1 −1.2042 0.0318 0.9457 0.0077 0.7794 4.5912 V1.4114

Stem Ws = eβs0 Vβs1 −0.2496 0.0423 0.9723 0.0096 0.8465 11.2301 V1.1079

Branch Wb = eβb0 Vβb1 −1.9774 0.1601 1.0408 0.0354 0.3156 7.8146 V1.0047

Foliage W f = eβ f 0 Vβ f 1 −2.9984 0.0658 0.8809 0.0149 0.6615 0.6916 V0.9736

Total Wt = Wr + Ws + Wb + W f - - - - 0.752 23.7878 V1.0922

Coniferous and broadleaf
mixed forest

Root Wr = eβr0 Vβr1 −1.5946 0.0124 1.0234 0.0029 0.9072 3.4624 V1.9507

Stem Ws = eβs0 Vβs1 −0.5931 0.0107 1.0129 0.0024 0.9668 5.2164 V1.7036

Branch Wb = eβb0 Vβb1 −2.4238 0.0725 1.0102 0.0152 0.7265 2.6839 V1.2166

Foliage W f = eβ f 0 Vβ f 1 −3.2728 0.0504 0.8894 0.0105 0.8447 0.4113 V0.8493

Total Wt = Wr + Ws + Wb + W f - - - - 0.9512 10.0404 V1.3309

Coniferous mixed forest

Root Wr = eβr0 Vβr1 −1.9686 0.0854 1.0505 0.0184 0.7036 6.324 V2.0523

Stem Ws = eβs0 Vβs1 −1.1586 0.0463 1.1051 0.0097 0.9535 6.9835 V1.9406

Branch Wb = eβb0 Vβb1 −2.5850 0.0885 0.9942 0.0178 0.8994 1.3603 V1.0203

Foliage W f = eβ f 0 Vβ f 1 −2.3607 0.0899 0.7545 0.0187 0.7225 0.8256 V0.8568

Total Wt = Wr + Ws + Wb + W f - - - - 0.9294 12.8935 V1.8315
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Table 5. Model coefficient estimates, standard errors (SEs), model fitting statistics, and weight functions for the additive system of stand biomass equations using
stand volume and BCEF (namely, M-3) for the six forest types in the Eastern Da Xing’an Mountains, Northeast China.

Forest Types Components Equations βi0 βi1 βi2 Ra
2 RMSE Weight Function

Estimate SE Estimate SE Estimate SE

White birch forest

Root Wr = Ha/(βr0 + βr1Ha)V −3.8705 0.3870 4.8137 0.0377 0.9806 1.3183 V1.7159

Stem Ws = βs0Dq
βs1 Ha

βs2 V 0.5195 0.0098 0.1354 0.0079 −0.0803 0.0078 0.9866 2.9346 V1.3715

Branch Wb = βb0Dq
βb1 Ha

βb2 V 0.0179 0.0008 0.9309 0.0239 −0.1979 0.0219 0.8945 1.7465 V2.1459

Foliage W f = β f 0Dq
β f 1 V 0.0160 0.0005 0.1952 0.0133 - - 0.9476 0.2515 V1.7707

Total Wt = Wr +Ws +Wb +W f - - - - - - 0.9825 5.4113 V1.5780

Larch forest

Root Wr = Dq/
(
βr0 + βr1Dq

)
V 13.8235 0.4135 3.2953 0.0314 - - 0.9573 3.2350 V2.2507

Stem Ws = βs0Dq
βs1 Ha

βs2 V 0.4419 0.0052 0.1069 0.0049 −0.0086 0.0025 0.9816 4.8573 V2.2398

Branch Wb = Dq/
(
βb0 + βb1Dq

)
V 22.8657 2.2582 12.5955 0.1868 - - 0.8729 1.7027 V2.2522

Foliage W f = Dq/
(
β f 0 + β f 1Dq

)
V -289.2900 4.4326 71.4847 0.4036 - - 0.9232 0.2948 V1.2022

Total Wt = Wr +Ws +Wb +W f - - - - - - 0.9743 9.1126 V2.2993

Poplar-birch forest

Root Wr = βr0Dq
βr1 Ha

βr2 V 0.2137 0.0161 0.2494 0.0509 −0.3270 0.0509 0.8884 3.5205 V1.7272

Stem Ws = βs0Dq
βs1 Ha

βs2 V 0.6663 0.0208 0.0725 0.0239 −0.1369 0.0237 0.9618 6.2994 V1.4822

Branch Wb = βb0Dq
βb1 Ha

βb2 V 0.0173 0.0021 1.1033 0.0680 −0.4538 0.0693 0.8114 2.8447 V2.1804

Foliage W f = β f 0Dq
β f 1 Ha

β f 2 V 0.0196 0.0017 0.3182 0.0539 −0.3008 0.0533 0.8575 0.4361 V1.5919

Total Wt = Wr +Ws +Wb +W f - - - - - - 0.9451 11.6543 V1.8216

Deciduous broadleaf
mixed forest

Root Wr = βr0Dq
βr1 Ha

βr2 V 0.2863 0.0116 0.3425 0.0183 −0.4423 0.0194 0.8800 3.3866 V1.7508

Stem Ws = βs0Dq
βs1 Ha

βs2 V 0.5869 0.0167 0.3837 0.0134 −0.3406 0.0146 0.9247 7.8648 V2.0869

Branch Wb = βb0Dq
βb1 Ha

βb2 V 0.0296 0.0028 1.2145 0.0328 −0.5961 0.0410 0.6560 5.5406 V1.9637

Foliage W f = β f 0Dq
β f 1 Ha

β f 2 V 0.0328 0.0017 0.4190 0.0228 −0.4854 0.0256 0.7798 0.5578 V2.0743

Total Wt = Wr +Ws +Wb +W f - - - - - - 0.8783 16.6652 V2.2717

Coniferous and
broadleaf mixed forest

Root Wr = βr0Dq
βr1 Ha

βr2 V 0.1808 0.0058 0.1817 0.0176 −0.0930 0.0153 0.9119 3.3740 V2.3133

Stem Ws = βs0Dq
βs1 Ha

βs2 V 0.4878 0.0085 0.1637 0.0097 −0.0915 0.0084 0.9711 4.8728 V1.9186

Branch Wb = βb0Dq
βb1 Ha

βb2 V 0.0280 0.0014 0.7682 0.0258 −0.3026 0.0243 0.7655 2.4851 V2.1090

Foliage W f = Ha/
(
β f 0 + β f 1Ha

)
V −66.2815 7.3367 49.8705 0.6624 - - 0.8360 0.4227 V1.6276

Total Wt = Wr +Ws +Wb +W f - - - - - - 0.9575 9.3737 V2.1261

Coniferous mixed forest

Root Wr = Dq/
(
βr0 + βr1Dq

)
V −0.9311 2.9416 5.7384 0.2412 - - 0.7110 6.2451 V2.2076

Stem Ws = Dq/
(
βs0 + βs1Dq

)
V 4.3149 0.4804 1.6180 0.0360 - - 0.9492 7.3040 V1.9316

Branch Wb = βb0Dq
βb1 Ha

βb2 V 0.0589 0.0042 0.1876 0.0316 −0.1121 0.0321 0.9015 1.3461 V1.2137

Foliage W f = βb0Ha
βb1 V 0.0455 0.0053 −0.1797 0.0443 - - 0.6828 0.8826 V1.1395

Total Wt = Wr +Ws +Wb +W f - - - - - - 0.9282 13.0000 V2.2442



Forests 2019, 10, 715 12 of 20

Table 6. Comparison of the four estimation methods of stand biomass of the six forest types in the Eastern Da Xing’an Mountains, Northeast China.

Forest Types Source of Variation
Root Biomass Stem Biomass Branch Biomass Foliage Biomass Total Biomass

F-Value p-Value F-Value p-Value F-Value p-Value F-Value p-Value F-Value p-Value

White birch forest
Block (Plot) 641.65 < 0.0001 593.86 < 0.0001 84.73 < 0.0001 406.9 < 0.0001 503.58 < 0.0001

Treatment (4 Methods) 48.64 < 0.0001 15.15 < 0.0001 16.81 < 0.0001 25.62 < 0.0001 12.33 < 0.0001

Larch forest
Block (Plot) 245.83 < 0.0001 326.91 < 0.0001 268.58 < 0.0001 142.58 < 0.0001 312.42 < 0.0001

Treatment (4 Methods) 99.07 < 0.0001 44.82 < 0.0001 110.01 < 0.0001 123.24 < 0.0001 70.36 < 0.0001

Poplar-birch forest Block (Plot) 245.88 < 0.0001 306.33 < 0.0001 66.16 < 0.0001 221.05 < 0.0001 273.76 < 0.0001
Treatment (4 Methods) 2.84 0.0369 7.34 0.0001 10.87 < 0.0001 8.83 < 0.0001 3.04 0.0284

Deciduous broadleaf
mixed forest

Block (Plot) 92.43 < 0.0001 124.58 < 0.0001 32.7 < 0.0001 77.67 < 0.0001 94.89 < 0.0001
Treatment (4 Methods) 16.26 < 0.0001 6.36 < 0.0001 6.76 0.0003 22.48 < 0.0001 6.94 < 0.0001

Coniferous and
broadleaf mixed forest

Block (Plot) 269.22 < 0.0001 277.81 < 0.0001 99.47 < 0.0001 239.67 < 0.0001 255.41 < 0.0001
Treatment (4 Methods) 269.22 0.4381 0.13 0.9425 1.87 0.1329 59.34 < 0.0001 0.1 0.9572

Coniferous mixed forest
Block (Plot) 139.22 < 0.0001 132.51 < 0.0001 134.67 < 0.0001 83.76 < 0.0001 140.9 < 0.0001

Treatment (4 Methods) 2.21 0.0859 6.64 0.0002 1.26 0.2864 30.48 < 0.0001 3.4 0.0173
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3.2. Model Validation for Stand Biomass Models

The model validation statistics (Equations (9)–(13)) for M-1, M-2, and M-3 were computed. For
most stand biomass models, the MPE was close to 0, the MAE was relatively small (< 20 Mg·ha−1), the
MAE% was less than 30%, and M-2 and M-3 seemed preferable to M-1. For the stand total biomass,
relatively small model prediction errors were reported for three of the systems in all forest types, except
deciduous broadleaf mixed forest, and M-3 and M-2 seemed to be better than M-1, which was also
found for the stand stem biomass (Figure 2). On the other hand, the stand biomass equations for root,
branch, and foliage had less accurate predictions than the total and stem models, especially the branch
biomass models.

Forests 2019, 10, 715 15 of 22 

 

3.2. Model Validation for Stand Biomass Models 

The model validation statistics (Equations (9)–(13)) for M-1, M-2, and M-3 were computed. For 
most stand biomass models, the MPE was close to 0, the MAE was relatively small (< 20 Mg·ha−1), the 
MAE% was less than 30%, and M-2 and M-3 seemed preferable to M-1. For the stand total biomass, 
relatively small model prediction errors were reported for three of the systems in all forest types, 
except deciduous broadleaf mixed forest, and M-3 and M-2 seemed to be better than M-1, which was 
also found for the stand stem biomass (Figure 2). On the other hand, the stand biomass equations for 
root, branch, and foliage had less accurate predictions than the total and stem models, especially the 
branch biomass models. 

 
Figure 2. Mean prediction error (MPE), mean absolute error (MAE) and mean absolute percent error 
(MAE%) among the total and component biomasses for each forest type. WBF, LF, PBF, DBMF, CBMF 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

RB SB BB FB TB

WBF M-1 M-2 M-3

0.0

5.0

10.0

15.0

20.0

25.0

30.0

RB SB BB FB TB

LF

0.0

5.0

10.0

15.0

20.0

25.0

30.0

RB SB BB FB TB

PBF

0.0

10.0

20.0

30.0

40.0

50.0

RB SB BB FB TB

DBMF

0.0

5.0

10.0

15.0

20.0

25.0

30.0

RB SB BB FB TB

CBMF

0.0

5.0

10.0

15.0

20.0

25.0

30.0

RB SB BB FB TB

CMF

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

RB SB BB FB TB

A
M-1 M-2 M-3

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

RB SB BB FB TB

B

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

RB SB BB FB TB

C

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

RB SB BB FB TB

D

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

RB SB BB FB TB

E

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

RB SB BB FB TB

F

0.0

5.0

10.0

15.0

20.0

RB SB BB FB TB

B

0.0

5.0

10.0

15.0

20.0

RB SB BB FB TB

C

0.0

5.0

10.0

15.0

20.0

RB SB BB FB TB

D

0.0

5.0

10.0

15.0

20.0

RB SB BB FB TB

E

0.0

5.0

10.0

15.0

20.0

RB SB BB FB TB

F

M
ea

n 
pr

ed
ict

io
n 

er
ro

r 

M
ea

n 
ab

so
lu

te
 e

rr
or

 

M
ea

n 
ab

so
lu

te
 p

er
ce

nt
 e

rr
or

 (%
) 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

RB SB BB FB TB

WBF M-1 M-2 M-3

-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

RB SB BB FB TB

LF

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

RB SB BB FB TB

PBF

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

RB SB BB FB TB

DBMF

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

RB SB BB FB TB

CBMF

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

RB SB BB FB TB

CMF

0.0

5.0

10.0

15.0

20.0

RB SB BB FB TB

LF

0.0

5.0

10.0

15.0

20.0

RB SB BB FB TB

PBF

0.0

5.0

10.0

15.0

20.0

RB SB BB FB TB

DBMF

0.0

5.0

10.0

15.0

20.0

RB SB BB FB TB

CBMF

0.0

5.0

10.0

15.0

20.0

RB SB BB FB TB

CMF

M
ea

n 
pr

ed
ict

io
n 

er
ro

r 

M
ea

n 
ab

so
lu

te
 e

rr
or

 

0.0

5.0

10.0

15.0

20.0

RB SB BB FB TB

WBF M-1 M-2 M-3

Figure 2. Mean prediction error (MPE), mean absolute error (MAE) and mean absolute percent error
(MAE%) among the total and component biomasses for each forest type. WBF, LF, PBF, DBMF, CBMF
and CMF stand for white birch forest, larch forest, poplar-birch forest, deciduous broadleaf mixed
forest, coniferous and broadleaf mixed forest and coniferous mixed forest, respectively. TB, RB, SB, BB
and FB represent the total, root, stem, branch, and foliage biomass, respectively.
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To quantify the contributions of the variations in the observed stand biomass to the model
predictions, the residual and approximate confidence bands of the observed data containing
approximately 90% of the average curve were derived for all additive systems of stand biomass
equations. The specific methods used to calculate the approximate confidence band were detailed in
Bi et al. [36]. Since the relative proportion of stand stem biomass was large for the six forest types,
Figure 3 shows only the observed stand total and stem biomasses for the six forest types plotted against
their predicted values from M-1, M-2 and M-3. The incorporation of V and BCEF as the predictors in
M-3 led to slightly narrower confidence bands for the stand biomass than in M-1 (with G and Ha as the
predictors). In general, M-3 predicted the stand total biomass and all components very well for the six
forest types.
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3.3. Comparison of Methods for Estimating Stand Biomass

The analysis of variance was performed to compare the performance of the four estimation
methods (i.e., M-1, M-2, M-3, and M-4) in estimating stand biomass, where the four methods were the
treatment, and the sample plots served as the blocks (Table 6). The results showed that there were
remarkable differences in the stand total and component biomasses among the four methods for white
birch forest, larch forest, poplar-birch forest, and deciduous broadleaf mixed forest (Table 6), although
significant differences were not observed between the four methods for the stand total, root, stem, and
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branch biomass models of coniferous and broadleaf mixed forest or for the stand root and branch
biomass models of coniferous mixed forest (Table 6).

Furthermore, the percentage difference (MPD%) between the stand total biomass and component
biomasses estimated by the four methods was calculated (Figure 4). The results showed that the MPD%
between the stand total biomass and components in M-3 was small. However, the MPD% of M-1 was
slightly larger than that of the other three methods in all forest types except deciduous broadleaf mixed
forest. The overall ranking based on MPD% obeyed the following order: M-3 > M-2 > M-4 > M-1.
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Figure 4. The mean percentage differences of the four methods used to estimate stand biomass for
each forest type. WBF, LF, PBF, DBMF, CBMF and CMF stand for white birch forest, larch forest,
poplar-birch forest, deciduous broadleaf mixed forest, coniferous and broadleaf mixed forest and
coniferous mixed forest, respectively. TB, RB, SB, BB and FB represent the total, root, stem, branch and
foliage biomass, respectively.

4. Discussion

Stand total and component biomasses are frequently estimated using stand variables, which
are usually easy to obtain via field investigations. In recent studies on stand biomass estimations,
typical allometric equations based on the power-law model are often applied to increase the prediction
accuracy of stand biomass [6–8,16]. In our M-1 model system, the stand basal area G was a significant



Forests 2019, 10, 715 16 of 20

and important predictor for the stand total and component biomasses of the six forest types, which
confirmed its role in previous studies [6,7]. The estimated coefficients of the stand basal area were
positive, indicating that the stand biomass increased as the stand basal area increased. However, for
the same stand basal area, large variations occurred among the stand total and component biomasses.
Therefore, to improve the prediction accuracy of the stand biomass models, other stand variables
should be considered. Previous studies have verified that the dominant height of the stand was the
second most important stand variable because it reflected the site quality [7,19]. Unfortunately, the
stand dominant height was not available in our data from the permanent sample plots of the NFCI.
Instead, we used the average stand height Ha, which was statistically significant for most stand root,
stem, branch, and foliage biomass models. As a result, we strongly suggest that future studies on stand
biomass consider and investigate the effects of the stand average height or dominant height in the
stand biomass models. Other stand variables, such as stand density and stand age, were also included
in some stand component biomass equations, and they were commonly considered to represent the
competition within a stand and the stage of stand development [6]. The effects of stand density and
stand age on some biomass components, such as stem or foliage, are statistically significant and widely
recognized, which is likely due to their impacts on branching characteristics and biomass partitioning
among the tree components [6,37]. However, the six forest types in this study were natural forests
in the Eastern Da Xing’an Mountains. Therefore, they were not good choices for estimating stand
biomass. In addition, information on silvicultural practices, such as thinning and tending, was not
available, which may affect stand biomass accumulation and allocation and result in biased stand
biomass estimations [38].

Many studies indicate that there is a strong correlation between stand biomass and stand
volume [20–22]. For most forest types, a linear relationship between stand biomass and stand volume
is obviously insufficient and controversial. Thus, many researchers have used nonlinear models to
describe the relationship and improve model fitting [7,15–17,24]. As expected, BCEF was not constant
over stand development in different forest types (Table 2). Thus, using constant BCEF values would
provide biased estimations of stand biomass. In this study, Equations (5) and (6) were used to model
the BCEF variations, which is consistent with the methods used in other studies in the literature. In
addition, some studies used stand age as a predictor for modeling BCEF [15,39–41]. Although the
stand age was unavailable in this study, the stand variables (e.g., Ha and Dq) used in our model systems
were indirect surrogates for stand development to a certain extent.

Parresol [28] noted that the aggregation approach is the standard method for ensuring the
additivity of estimates of stand total and component biomasses. In Parresol’s method, a nonlinear
model is assigned to each of the stand biomass components before aggregating the biomasses of these
stand components into the stand total biomass. Notably, if the same predictor variables are used for
modeling all stand biomass components, and the same weights are chosen for heteroscedasticity in
the model residuals, NSUR will produce singular covariance matrices that do not guarantee a unique
solution. Thus, when the same or different predictor variables are considered, the heteroscedasticity of
the model residuals should be overcome by different sets of weights, and NSUR is a feasible parameter
estimation method [12,42]. The aggregative models in this study were estimated using a weighted
NSUR with different weight functions to explain the inherent correlations among the stand component
biomasses in the same sample plot [11–13,27,28]. Unfortunately, some nonadditive stand biomass
models are still published because of the use of the ordinary least-squares regression (OLS) estimation
method [8,10].

We evaluated different methods for quantifying stand biomass, and the results were nonconclusive.
The results indicated that, except for deciduous broadleaf mixed forest, M-3 performed better than
other models, especially for stand total and stem biomass. The reason for this finding may be that
there is a close relationship between stand volume and stem biomass, and a higher proportion of stem
biomass is included in the total biomass [7,43]. If the stand volume is not available, M-1 will be an
effective method to accurately estimate the stand total and component biomasses. For the deciduous
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broadleaf mixed forest, the stand biomass models with stand variables (M-1) were generally less
biased than those obtained from the stand biomass models with stand volume (M-2) or stand volume
and BCEF (M-3). The poor performance of the latter two additive models may be the result of the
biases after modeling BCEF by using the stand variables. Many studies have shown that using a
constant BCEF to quantify stand biomass introduces certain biases or errors in stand biomass or carbon
estimations so that the development of BCEF models is recommended when the data are available [16].
Generally, BCEFs vary depending on the growth conditions and stand development stage expressed
by the age and size of the stand [10,15–17,41]. Thus, it is easy to understand that M-4 exhibited a worse
prediction accuracy than M-2 and M-3. In general, both M-2 and M-3 are stand biomass estimations
method based on stand volume, which is essentially different from M-1 [44–46]. Overall, the use of
M-1, M-2, and M-3 in conjunction with stand growth and yield models would be useful for the growth
predictions of the six forest types in response to changes in stand conditions and is appropriate for
sustainable forest ecosystem management studies.

To date, few studies have developed individual tree biomass equations for the major forest species
in the Eastern Da Xing’an Mountains, Northeast China [14]. However, the data required to apply these
equations are not always available. In addition, some growth models for the six forest types in the
region were previously developed at Northeast Forestry University, China, which mainly calculated
the stand variables, such as G and V. For the stand biomass estimations, the use of stand variables can
likely avoid the need to address complex error propagation procedures for stand biomass estimations at
different spatial scales [7]. Although estimating the stand biomass using stand variables may produce
some differences in the tree-based biomass estimation, the differences seem acceptable at the forest or
stand level for a large geographic region. Thus, the stand biomass models using stand variables (e.g.,
G, V, Ha, and Dq) would be useful, convenient, and efficient.

5. Conclusions

Our study provided a comprehensive overview of the methods used to estimate the aboveground
and belowground stand biomass of the six major forest types in the eastern Da Xing’an Mountains,
Northeast China. Three additive systems of stand biomass equations were developed and evaluated:
the stand biomass models using stand variables (M-1), the stand biomass models using stand volume
(M-2), and the stand biomass models using both stand volume and BCEF (M-3). In these three model
systems, the inherent correlation between stand total biomass and component biomass was constrained
by applying NSUR for the model parameter estimation. We also comprehensively evaluated four stand
biomass estimation methods (i.e., the three additive systems and constant BCEF (M-4)). The results
indicated that the model fitting and validation of M-3, which included both stand volume and BCEF,
were better than those of M-1 and M-2. Overall, the four methods showed good accuracy in estimating
stand total and component biomasses for the six major forest types in the region. However, the choice
of methods depends on the available data. If the stand volume is not known, then the stand biomass
can be estimated using stand variables, such as G and Ha. However, caution should be used when
predicting stand total and component biomasses outside the data range used in this study.
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