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Abstract: Research Highlights: In this study, the Generally Recognised as Safe (GRAS) compounds were
applied in order to study mould-fungi growth on dried Scots pine sapwood. Background and Objectives:
The transition to the use of more sustainable wood-material may be possible by applying GRAS
compounds that can control and prevent contamination by primary colonising mould fungi. Materials
and Methods: Kiln-dried sawn timber was treated with three different GRAS compounds, and different
fungal inoculation methods applied in order to investigate differences in the development of fungal
communities. Results: Substances based on potassium silicate significantly reduced fungal growth
and mould contamination on the studied wood surfaces. By combining wood-surface treatments
with GRAS compounds, fungal-area size as predictors and mould grade as response, a partial least
squares (PLS) model that makes it possible to predict mould grade on wood surfaces was developed.
The PLS model is a key component in the development of a smart grading-systems equipped by
e.g. high-speed digital cameras for the early detection of fungal attack on wood surfaces in different
applications. However, the measurements based on chemical characterisation should be the next
step to take in order significantly to enhance the model and increase the range of robust applications.
In the current study, a multivariate model describing the influence of each fungal-covering area on
mould grade was presented for the first time.

Keywords: bacteria; potassium silicate; N-Alkylbensyldimethylammonium chloride; wood; fungi;
mould area; PLS modeling

1. Introduction

The negative load of fossil- and petrol-based biocidal substances on the environment and the
reduction of volatile organic compounds (VOCs) emitted while using solvent-based coatings, require
the introduction of new concepts for wood-surface treatment for outdoor and indoor applications [1,2].
A significant problem when wood is used and the moisture level is high, e.g. in outdoor conditions,
is biodegradation caused primarily by fungi which have a unique nutrient-sensing mechanism [3]
which makes the task of wood protection difficult. Environmental processes that affect the wood in
outdoor use result in aesthetic concerns and increased maintenance costs [4]. Fungal bio-aerosols
accumulating on outdoor building-material surfaces may also have a significant impact on indoor
biological contamination, especially under sub-arctic conditions [5].

Toxigenic moulds, particularly ascomycetes, are ordinary food and indoor inhabitants associated
with everyday human activity and they may present a health risk to humans. For example, information
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from public health monitoring programs related to secondary metabolites of toxigenic moulds known
as mycotoxins has raised concern about health aspects [6]. Urinary multi-biomarker analysis among
adults in Sweden revealed that “common and concurrent exposure to more than one toxin was found
in 69% of the studied population” [7]. Nowadays, mycotoxin studies face many masked mycotoxins,
and the analytical methods are quite complex due to the polydiversity of compounds’ properties.
When modern regulations require “minimal fungi” levels and at the same time environmentally
friendly solutions for bio-based materials such as wood and other related products.

Wood in the living tree is a durable material with an active defence mechanism including
extractives enrichment [8–11]. The processing of a log to sawn timber was initially developed to
meet the need for a cheap and easily available building material, and the sawmill drying procedure
was aimed to lower the sawn-timber moisture content to reduce the board weight and the risk of
fungal attack. Already during felling, the initial immunity of the tree starts to decrease, and the wood
resistance is reduced during the further processing of the tree for use in wood-based products. Previous
studies have shown, for example, that industrial wood drying leads to the migration of hydrophilic
and hydrophobic substances towards the wood surface, resulting in the creation of a nutrient gradient
in the sawn timber [8,9]. Despite the enrichment of extractives, the accessibility of the wood surface
to mould attack may be greater after industrial kiln drying than in e.g. sawn timber seasoned in the
open air [10]. The enormous biodiversity and short life cycles of fungi also emphasises other issues
involved in wood protection. The application of traditional copper-based wood preservatives has led
to the adaptation of fungi to these compounds and the appearance of copper-tolerant rot fungi [9].
Colonising mould fungi such as Aspergillus sp. and Penicillium sp. can early grow and sporulate on a
copper-impregnated wood surface, but the fungi gave different growth-patterns [12]. These differences
are addressed in the present study.

Those fungi that are most economically significant and deleterious, related to food spoilage,
mycotoxin production and bio-deterioration head the list of fungi under observation by the authorities.
Attention has been paid to Paecilomyces spp. for several years due to its feared negative impact on
the human body. In the present study, these fungal species (all the fungi were from the same order
Eurotiales and all cosmopolitans [13]) were selected for the study because of their dominance in the
simultaneous tests and because it was planned to model the growth of the selected fungi and to
develop a method to predict fungal growth after surface treatments with Generally Recognised as Safe
(GRAS) compounds.

The standard fungal test uses the mould grade index in the assessment of the treatment and most
of the models for the prediction of fungal and mould growth on wooden surfaces are based on moist
conditions. There is, however, no reliable information about the interactions between mould fungi on
wooden surfaces under different test conditions. In a previous study [12], the mould-area index was
introduced for the assessment of mould growth on wooden surfaces, but more information about the
influence of Ascomycete genera on wood degradation is required in order to better understand the
biological phenomenon.

The concept of GRAS compounds used by the Food and Drug Administration (FDA) in the USA
has been said by qualified experts to guarantee the use of adequately safe substances. This could be a
“green alternative” to be applied as a wood-surface treatment to prevent biological attack by harmful
microorganisms [14,15]. The GRAS database includes more than 370 active GRAS substances that can
be applied in a “smart way” for wood protection without any threat to humans or the environment.
For example, a study of post-harvest treatment of fruits to prevent microbiological disease successfully
reported an effective control of fungal growth [16]. GRAS compounds can be grouped by their action:
biocontrol agents, natural antimicrobials, decontaminating agents and physical barriers [16].

This study has investigated the efficiency of treatments using selected GRAS compounds of
organic and inorganic origin to restrict mould-fungi growth on wood surfaces of industrial kiln-dried
Scots pine sapwood. The primary objective was to establish criteria for modelling and predicting
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mould growth for those fungi and surface treatments using two inoculation methods and moisture
changes during the test by applying selected ascomycete fungal cultures.

2. Materials and Methods

2.1. Preparation of Wood Specimens

Five Scots pine (Pinus sylvestris L.) sideboards with cross-sectional dimensions of 30 × 200 mm and
a length of 4 m were randomly selected from a sawmill production in northern Sweden (Martinsons
sawmill, Kroksjön, N 64◦ 42.3113′, E 20◦ 54.4597′). The trees from which the boards originated were
winter felled, i.e. the temperature was considerably below 0 ◦C, and the boards were deeply frozen
until they reached the kiln-drying stage. The boards were single-stacked and dried in a progressive
kiln at a wet-bulb temperature of 52 ◦C and a maximum dry-bulb temperature of 67 ◦C. Ten clear wood
specimens, i.e. free from defects and knots, with dimensions of 30 × 50 × 100 mm, were taken from each
board so that they contained only sapwood, which was verified by a heartwood reagent containing
sodium nitrite and sulfanilic acid. Two of these specimens were used for density and moisture content
(MC) determinations, according to EN 13183-1 [17], the other eight were used for mould tests and were
coded according to the GRAS treatment applied before the mould test (Table 1). The mean MC of the
boards after kiln-drying was 15.5% ± 0.4%, and the mean density at this MC was 548 ± 12 kg/m3.

Table 1. Coding of specimens and description of the Generally Recognised as Safe (GRAS) treatments
used in the study.

Code Active Substance for Surface Treatment Original Concentration Concentration Used

R Reference

B Bacteria Bacillus amyloliquefaciens
(trade company ABITEP, Germany) 25 bln spores/mL 1%

S Silicon, potassium, natural parts of plants
and water (trade company SIOO, Sweden)

1st potassium silicate ca. 32%
2nd polymerizable

alkoxylane
100%

G N-Alkylbensyldimethylammonium chloride
(trade company JAPE, Sweden that) 80 g/L 20%

It was five board in total A, B, C, D and E. The coding was used accordingly (see Figure 1).
The eight specimens from each board for the mould test were divided into two groups: set#1 for direct,
and set#2 for indirect inoculation method (Figure 1). The surfaces used for the fungal and mould tests
were either the tangential surfaces in the direction of bark-side of the log (bark-side specimens) or
the opposite tangential surface in the direction of the pith (pith-side specimens). All specimens were
sterilised in steam before the GRAS treatment.

In the case of treatments B and G, the stock solution of the GRAS compound at the original
concentration was diluted with water whereas, for treatment S, it was used as delivered. Treatments B
and G were deposited by spraying evenly on the bark-side and pith-side surfaces of each specimen
by using an airbrush with the consumption of 0.20–0.25 L/m2. Treatment S was used as follows:
a first treatment was sprayed evenly on the bark-side and pith-side surfaces of each specimen using
an airbrush with a consumption rate of 6–8 L/m2, and the boards were allowed to dry for 2 hours.
A second treatment with GRAS was applied in the same way but with a consumption of 10–12 L/m2,
and allowed to dry for 4 hours, than a third coating with first GRAS was applied to all surfaces of the
specimens with a consumption of 8–2.12 L/m2, and dried.
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methods was related to the differences in processes of wood colonisation of fungi from the same 
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Figure 1. The preparation of specimens from each of the five sideboards, and an example of labelling
according to one of the boards: the first letter indicates the board from which the specimens were
cut (A), the second letter indicates the GRAS treatment (see Table 1), and the third letter indicates the
inoculation method: D indicates direct inoculation, and I indicates indirect inoculation.

2.2. Mould Test

For the direct inoculation method, a mixture of spore suspension (ca. 106–107 spores/mL) from
Aspergillus niger van Tieghem, Penicillium commune Thom, C., and Paecilomyces variotii Bainier (Culture
collection, Division of Wood Science and Engineering, Luleå University of Technology) was sprayed
onto the bark- and pith-side surfaces of each specimen in an amount of 0.4 mL using an airbrush
attached to a mini-compressor with a pressure regulator giving a working pressure of 2 bar, and the
samples were hung-up in plastic twines in a closed plastic container with a base area of 40 × 42 cm2,
and a height of 60 cm with a bath containing one litre of water at the bottom to maintain a high humidity.

For the indirect inoculation method, the samples were hung-up in the same way as in the direct
incubation method. Five Petri dishes of each mould species Aspergillus niger van Tieghem, Penicillium
commune Thom, C., and Paecilomyces variotii Bainier were randomly placed the hanging specimens
at the bottom of the box (Figure 2). All the sub-cultures of fungi were incubated at 24 ± 2 ◦C until
good sporulation was achieved after seven days of growth. The choice of fungi was related to the
dominant fungal species detected in simultaneous internal laboratory tests of Scots pine sapwood.
A detailed description of the inoculation methods can be found in [12]. The choice of the two inoculation
methods was related to the differences in processes of wood colonisation of fungi from the same order
of Eurotiales.

The containers were placed in a climate chamber, and were incubated in darkness at a temperature
of 25 ± 2 ◦C and a relative humidity (RH) of 95%–100% for the first three days, and at 25 ± 2 ◦C and
90% ± 3% RH for a further 25 days. The temperature and RH in the climate chamber were recorded
by a logger, type AAC-2 (Intab, Sweden). The higher RH for the first three days was to give a better
wetting of the samples, and to promote a faster spore germination. Before the test, the containers and
the climate chamber were washed with 99% ethanol solution and then with 5% hydrogen peroxide
solution in order to achieve an aseptic environment.
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Figure 2. Containers for the mould tests with hanging specimens, and Petri dishes of each mould
species (right).

2.3. Mould Assessment

The grade scale used in the mould-growth assessment is presented in Table 2. The scale was
modified compared to that published in standard EN 16492:2014 [18] by adding grade 4 for 51%–80%,
and grade 5 for more than 80% mould growth. Examples of mould growth on wood surfaces
representing the six mould grades 0–5 are shown in Figure 3.

Table 2. Grades for assessment of mould growth on wood surfaces.

Grade Description

0 No visable mould growth

1 Initial fungal growth consisting of scattered hyphae on the surface: less than 5% of the
studied surface is covered by mould

2 Still scattered growth, but more apparent than in 1. Conidiophores may have started to
develop: 6% to 20% mould growth

3 Patchily distributed, massive growth, and hyphae with developed conidiophores:
21% to 50% growth

4 Heavy growth over the entire surface: 51% to 80% mould growth
5 Very heavy growth: more than 80% mould growth
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After 28 days, the incubated specimens were removed from the climate chamber and weighed.
The mould growth on the wood surfaces was evaluated by visual inspection and graded by two
persons. The mould growth was graded by person A by the naked eyes in a laboratory environment,
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whereas person B graded the growth from images at 1×magnification where the ImageJ software [19]
was used for the detection of mould growth. The individual mould species detected on the wood
surfaces were identified with the optical microscope to classify the morphological characteristics of
each fungus.

After assessment of mould growth, the specimens were dried in an oven at a temperature of
103 ◦C for 24 hours to determine the MC. The coefficient of variation (CV in %) was used to describe the
scatter of the data around the mean value. The variables used for the univariate and the multivariate
analysis (MVA) are described in Table 3.

The data set for statistical analysis represented in the Table S1. Univariate statistical analysis
(descriptive statistics, analysis of variance (ANOVA) and post hoc tests for analysis of variance) was
performed in IBM SPSS Statistics 20.0 (Armonk, NY, USA). Principal component analysis (PCA),
soft independent modelling by class analogy (SIMCA) and partial least squares discriminant analysis
(PLS-DA) were applied for a global overview, pattern recognition and display of relationships between
variables. Partial least squares regression (PLS) was used to model how the GRAS treatments influenced
the mould growth on the Scots pine sapwood surfaces. The multivariate analysis (MVA) was performed
in SIMCA 14.0 (Umetrics, Umeå, Sweden).

Table 3. Description of the variables used in the univariate and multivariate analysis.

Variable Range

Boards A, B, C, D, E 1–5

Method of inoculation 1-indirect
0-direct

GRAS treatment

1-R
2-B
3-S
4-G

Surface 0-bark side
1-pith side

Mould grade 0–5

Density 548 ± 12 kg/m3

The initial moisture content of the board before the fungal test 15.5% ± 0.4%

Moisture content increase 12.1% ± 1.5%

Area covered by fungus Aspergillus niger 0–87.3%

Area covered by fungus Penicillium commune 0–91.9%

Area covered by fungus Paecilomyces variotii 0–80.9%

3. Results

The local moisture content (MC) of a wood surface is one of the most important factors affecting
mould-fungi spore germination, colony development and sporulation, and further spreading over
the environment [13]. Table 4 shows variation in the MC between treatments of wood surfaces and
inoculation methods. The one-way ANOVA test for the indirect method of inoculation showed no
difference between treatments (B, S, G and reference R, see Table 1) regarding MC changes during the
test, but direct spraying of spore suspension resulted in a significantly lower variable MC increase for
treatment with bacteria B compared to reference material R.

Multiple comparisons using Tukey´s range test [20] was performed to analyse the influence of the
different treatments on mould growth, i.e. within the inoculation-method groups, between methods
of inoculation, and on bark-side and pith-side surfaces (see Tables S2 and S3). The corresponding
p-values are presented in Table S2 in the supplemented material. It was not possible to show any
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influence of the type of treatments within the indirect inoculation group, but there were differences
between the treatments within the direct inoculation group.

There were only slight differences in MC between the different treatments after the mould test.
There was no significant difference in the MC increase between the methods of inoculation for

groups R, B, and S, but the MC increase differed between inoculation methods for group G (Table S3 in
the supplementary material).

Table 4. The moisture content (MC) of specimens after 30 days fungal test, and the percentage increase
from the initial MC (Mean + standard deviation (SD)).

GRAS
Treatment MC after the Test (%) MC Increase during the Test (%)

Indirect Fungal-Inoculation Method

R 27.3 ± 0.8 11.8 ± 1.2
B 28.0 ± 2.8 12.5 ± 2.6
S 27.7 ± 0.8 11.8 ± 1.0
G 28.9 ± 2.2 13.4 ± 2.0

Average 27.4 ± 1.2 11.8 ± 1.0

Direct Fungal-Inoculation Method

R 27.8 ± 1.1 12.3 ± 0.8
B 26.4 ± 1.0 * 10.9 ± 0.8 *
S 28.1 ± 1.0 12.6 ± 0.8
G 27.0 ± 1.0 11.5 ± 0.7

Average 27.9 ± 1.9 12.4 ± 1.9

* significant difference between GRAS treatments according to one way ANOVA, p < 0.05.

The variance of the fungal area and mould grade on different GRAS-treated wooden surfaces
is shown in Table 5. The most effective GRAS treatment preventing mould growth was the SIOO
treatment (Group S) in both the indirect and direct inoculation methods with average mould grades of
1.9 and 1.8, respectively.

The mould area was smallest for Aspergillus niger in the indirect inoculation method, but in general
it was smallest for Paecilomyces variotii (Table 5). The G treatment gave a mould area for indirect
inoculation with Aspergillus sp. greater than that with the other treatments and for the reference sample,
but the variation (CV) was quite high. Univariate analysis performed to statistically access differences
between the treatments showed little influence of the GRAS treatment on mould area.

Tukey test was used to obtain differences in mould area between the treatments within the
inoculation methods. Analysis of the indirect method of inoculation revealed no influence of B treatment
on the Aspergillus niger fungal area and the R group differed only from the G group (p = 0.008).
There were clear similarities in the GRAS treatments, where groups S, R and B were similar with regard
to the area of Aspergillus sp. but differed from G (p = 0.001). For the Penicillium commune fungal area,
it can be concluded that the samples can be divided into two groups by their similarities (Table 5).
The first group contains the R and B groups and the second the S and G groups. With the Paecilomyces
variotii species the R group differed from the S group but was similar to the B and G groups and the S
group was found to be distinct from R and B groups but similar to the G group.

Mould growth was characterised by the mould grade index, which does not relate directly to
the mould type but includes the intensity of growth (see Figure 3). Wood surfaces treated with SIOO
(group S) had the lowest mould grade index. The R group was similar to the B group, but differed
from the S and G groups, but the S and G groups differed from each other and other treatments (R, B)
also (see Table 5).
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Table 5. The fungal area and mould grade on different GRAS treated surfaces, %.

GRAS
Treatment

Fungal Area of Aspergillus niger Fungal Area of Penicillium commune Fungal Area of Paecylomyces variotti Mould
GradeMean Range (SE) CV, % Mean Range (SE) CV, % Mean Range (SE) CV, %

Indirect Fungal Inoculation

R
Bark side
Pith side

4.8
4.0
5.6

1.0–14.1 (1.6)
1.0–12.0 (2.1)
1.3–14.1 (2.6)

105
117
104

71.0
71.8
70.2

59.0–84.5
(2.9)

59.0–81.0
(4.1)

59.2–84.5
(4.8)

13
13
15

19.3
18.4
20.2

10.6–36.00
(2.9)

12.0–36.00
(4.6)

10.6–31.5
(4.0)

47
55
44

5.0
5.0
5.0

B
Bark side
Pith side

10.8
3.0

18.7

1.4–72.8 (6.9)
2.0–4.0 (0.5)

1.4–72.8
(13.6)

204
33

163

74.1
82.2
66.1

30.0–92.0
(5.9)

72.0–92.0
(3.9)

30.0–89.2
(10.3)

25
11
35

19.2
16.4
22.1

12.0–33.2
(2.0)

12.0–25.0
(2.3)

15.7–33.2
(3.1)

33
30
31

5.0
5.0
5.0

S
Bark side
Pith side

0.1
0

0.2

0–0.5 (0.1)
0–0.4 (0.1)
0–0.5 (0.1)

140
143
141

16.1
17.2
15.0

0–45.0 (4.9)
5.0–33.0 (6.3)
0–45.0 (8.3)

97
82

125

0.9
0.8
0.9

0–4.5 (0.5)
0–3.0 (0.6)
0–4.5 (3.1)

199
179
222

1.9
2.2
1.6

G
Bark side
Pith side

30.3
36.2
24.5

2.0–81.0 (7.7)
2.0–81.0

(14.9)
4.5–5.3 (5.3)

80
92
48

19.8
20.0
19.5

0–50.2 (5.5)
0–48.0 (8.4)

5.4–50.2 (8.1)

88
95
93

16.1
22.6
9.7

1.0–81.0 (7.4)
1.0–81.0

(14.8)
4.5–19.9 (2.8)

144
144
65

4.1
4.4
3.8

Average permethod 11.5 45.2 13.9 4.0

* SE standard error.
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The direct method of inoculation showed significant differences between the treatments (Table 6).
According to the Tukey criteria, the fungal areas of Aspergillus niger in the R, B, G groups were similar,
but they differed from the S group. With Penicillium commune fungi, the R group differed only from G
group. The B and S groups were similar to other treatments. The Paecilomyces variotii fungal area for
group R was similar to that of group B but different for groups S and G. Groups S and G were similar
to group B, but differed from group R. Group B was similar to all the groups. With regard to mould
grade, the R, B, and G groups were similar, but differences were observed only for the S group. Thus,
treatment with SIOO was most effective in preventing the growth of mould under the conditions used
in this study.

It was expected that while drying, the nutrients, especially in the direction of the bark-side of
the board, migrate towards the surfaces making the surface more attractive for mould growth [6].
This was not, however, clearly seen in the data, but direct inoculation of Aspergillus sp. let to a
distinct colonisation on the bark side. This means that this fungus had a considerable influence on
its metabolism of sugars. With indirect inoculation, other factors could be more influential. The S
treatment has a significant influence on hindering the spreading of Aspergillus sp. fungus on both
sides of the specimen. The S-treatment consisted of application of alkaline silicate followed by a
silicon-containing aqueous-emulsion, which is thought to seal the wood surface, making it more
difficult for fungi to penetrate the wood and access nutrients.

Regarding the influence of the bark/pith side surface index on mould growth, the highest growth was
expected where the highest nutrient contents are found, usually on the bark-side surface. However,
with Paecilomyces sp. directly inoculated, less mould growth was found on the bark side of the sapwood
after R, B and G treatment, but not after S treatment although this seemed to be the most efficient
treatment to hinder fungal growth (Table 6). Such a pattern was indicated for the S treatment which
gave the lowest mould development for both methods of inoculation.

The pattern of fungal development on the bark side for R groups of both methods showed
no significant difference in mould grade for areas colonised by Aspergillus sp. The fungal areas of
Penicillium sp., Paecilomyces sp. for the bark- and pith side of sapwood surface differed significantly
(p = 0.002, 0.005, and 0.031, respectively) with different methods of inoculation. Interestingly, the
comparison of fungal areas in the R group between the inoculation methods revealed a significant
difference for Aspergillus sp. and Penicillium sp. (p = 0.022 and 0.035), but not for Paecilomyces sp.

The B group mould-grade indices for bark/pith-side surfaces were not significantly different from
each other, and showed the highest mould grade value, and the areas of Aspergillus sp., Penicillium
sp., Paecilomyces sp. in group B significantly differed between the bark-side and pith-side surfaces
(p = 0.001, 0.000, and 0.001, respectively). For B group, neither indirect nor direct treatments inoculation
gave any significant difference in mould grade, but there was a significant difference for fungal areas of
Aspergillus sp., Penicillium sp., Paecilomyces sp. with p = 0.000; 0.000 and 0.004 respectively. A significant
difference in fungal area of pith-side surfaces after indirect and direct inoculation for the B group was
found only for Paecilomyces sp. with p = 0.037.

With the S group there were no significant differences between bark/pith-side surfaces for
Aspergillus sp. but there was a distinct difference with Penicillium sp. and Paecilomyces sp. with
p = 0.008 and 0.005. With the samples from G group in terms of bark/pith-side surfaces the inoculation
method had a significant differences only for Aspergillus sp. and Penicillium sp. with p = 0.004 and
0.040 respectively. The difference between inoculation methods for bark-side surfaces for group G was
significant for the area of Penicillium sp. fungus with p = 0.044. For the pith-side surface, a significant
difference between inoculation methods was obtained only for Aspergillus sp. with p = 0.014.

The average in variable mould area showed, in general, that the Aspergillus sp. area when inoculated
indirectly was 3.6 times smaller than with the direct method (see Tables 5 and 6). The area for
Penicillium sp. was the opposite of the area in the indirect method being 2.5 times larger than with the
direct method.
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Table 6. The fungal area and mould grade on different GRAS treated surfaces, %.

GRAS
Treatment

Aspergillus niger Penicillium commune Paecylomyces variotti Mould
GradeMean Range (SE) CV, % Mean Range (SE) CV, % Mean Range (SE) CV, %

Direct Fungal Inoculation

R
Bark side
Pith side

48.74
66.20
31.28

11.0–87.0
(9.7)

11.0–87.0
(14.1)

11.9–56.3
(8.7)

63
48
62

30.3
22.0
38.7

0–68.0 (8.5)
0–68.0 (12.5)

6.9–66.7
(11.6)

89
128
67

12.0
4.2

19.9

0–29.7 (3.5)
0–15.0 (2.9)
10.5–29.7

(3.8)

90
154
43

4.9
5.0
4.8

B
Bark side
Pith side

51.9
62.6
41.3

10.7–77.0
(8.1)

27.0–77.0
(9.2)

10.7–66.7
(12.4)

49
33
67

27.3
19.4
35.2

0–60.0 (6.6)
0–43.0 (7.2)

6.5–60.0
(10.6)

76
83
67

6.9
3.6

10.2

0–18.3 (2.3)
0–10.0 (2.3)
0–18.3 (3.7)

106
139
80

5.0
5.0
5.0

S
Bark side
Pith side

3.0
4.4
1.5

0–18.0 (1.8)
0–18.0 (3.4)
0–7.4 (1.5)

195
176
216

11.4
15.0
7.9

0–53.0 (5.0)
0–53.0 (9.9)

3.5–20.5 (3.2)

139
147
90

0.2
0.4
0

0–2.0 (0.2)
0–2.0 (0.4)

0

306
223
0

1.8
2.0
1.6

G
Bark side
Pith side

61.3
69.2
53.3

35.0–81.0
(5.1)

54.0–81.0
(5.1)

35.0–76.4
(7.6)

26
17
32

4.3
0

8.6

0–42.9 (4.3)
0

0–42.9 (8.6)

316
0

224

2.3
0

4.6

0–22.8 (2.3)
0

0–22.8 (4.6)

316
0

224

4.3
4.6

4.00

Average per method 41.2 18.3 5.4 4.0
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The behaviour of Paecilomyces sp. was similar to that of Penicillium sp. showing a 2.6 times higher
value of fungal area after indirect rather than direct inoculation, but a value lower 3 times than the
Penicillium sp. area. The mould grade averages was similar with both inoculation methods. The high
variability of the data of all the samples from 0% to 316% (see Tables 5 and 6) makes it difficult to draw
relevant conclusions based on the univariate or comparison of average data. In order to find a possible
deeper relationship between the variables, a multivariate statistical analysis was performed.

By plotting two principal components, it was possible to observe the spreading and grouping
pattern in the dataset, but in PC analysis the model performance (R2) was low (see Model 1 in Table 6).
Despite the weakness of model 1, it showed the correlation between Aspergillus area and the method of
inoculation (Table 3), supporting the previous observation from Table 5 that for all surface treatments,
the coverage area for Aspergillus was higher when the indirect inoculation method was applied.
However, with Penicillium sp., the area depended on the type of treatment with a maximum in the R
group for both inoculation methods and a minimum in the G group for direct inoculation (Table 5).

A stronger performance of the model was achieved by PLS-DA modelling, but the OPLS-DA
classification was even stronger (Table 7). The critical variables for explaining the model were mould
grade and area of fungi.

Table 7. Summary of multivariate analysis (MVA).

№ Model PC Obs. R2X R2Y Q2 (cum)

1 PCA 2 80 0.448 −0.0139
2 PLS-DA 2 80 0.404 0.36 0.319 Treatment class
3 OPLS-DA 2 + 1 + 0 80 0.534 0.394 0.336 Treatment class
4 PLS 3 80 0.49 0.843 0.75 Y mould grade
5 PLS 3 79 0.519 0.847 0.766 Y mould grade

A stronger performance of the model was achieved when Mould grade was used as Y (response)
and other variables as X (explanatory variables)— the results of PLS regression (model 4 in Table 6)
described in Table 6. However, the R2X was quite low in comparison to the Q value due to high noise.
The observation of the DModX plot (the distance of observation in training set to the X model plane or
hyperplane) revealed a definite outlier, and its removal marginally improved the PLS model (No 5.)
listed in Table 6.

The scope and loading plot of the PLS model No. 5 is presented in Figure 4. It is evident that the
Aspergillus sp. is highly associated with the indirect method of inoculation (Figure 4a) whereas the
areas of Penicillium sp. and Paecilomyces sp. were found to be more influenced by the type of treatment.
It is also evident that there are moderate relations between these two fungi (correlation coefficient 0.7),
and the Paecilomyces sp. moderately contributed to mould grade development (Figure 4b).

The variables that contributed most to the model or were essential for the projection of VIP
were the areas of Aspergillus sp., Penicillium sp., Paecilomyces sp and the mould treatment method.
The regression line for PC3 is presented in Figure 5a. In Figure 5b, residuals from normal and random
distribution and absence of outliers are demonstrated.
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4. Discussion

The present study provides an understanding of the influence of GRAS compounds of organic and
inorganic origin in restricting mould fungi growth on dry Scots pine sapwood surfaces. The selected
fungal species were isolated main primary colonisers [13]. Efforts were made to define criteria for
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multivariate modelling and the prediction of mould growth for various GRAS treatments under the
influence of different inoculation methods.

Between selected GRAS treatments, the most effective treatment was treatment S (potassium
silicate) which gave the greatest reduction in fungal growth in the direct method of inoculation
with the lowest mould grade. The known fact that potassium silicate has a fungicidal effect via
reinforcement of the wood surface and acts as a physical barrier for the fungi improves the properties
of the material [21–23]. The efficiency of bacterial treatment was lowest and rather stimulated fungal
growth. This effect is surprising because the biocidal role of Bacillus sp. has been reported in wood
protection [24]. The biocidal action of quaternary ammonium compounds (group G) was found to be
small and seemed not to be useful for mould control. The non-treated reference boards showed high
mould grade, but it was lower in the direct method of inoculation than with indirect inoculation due to
low fungal growth on the inner pith surface with a variation of 43%–67%. In general, the growth of
fungi on inner pith surfaces was lower than on the bark side surface of the samples. This was expected
because of the presence of extensive nutrients close to the cambium/bark. In this study, boards were
single stacked during drying and the movement of nutrients occurred in all directions. Such a nutrient
enrichment of the sapwood side influenced fungal growth even after subsequent preservative surface
treatment [8,9,12]. Noticeable was the great variation in the data within the test results particularly
when direct inoculation was applied (from 0% to over 300%). The equilibrium moisture content
(EMC) for the reference wood sample was calculated to be ca 24.4% in our test conditions according to
tables [25]. At the end of the test, the MC of all samples was higher than that EMC value but the final
MC was found to have a negligible influence on fungal growth probably because the high moisture
conditions are favourable for mould growth.

The method of inoculation influenced the development of Aspergillus sp. growth, the development
of the fungal area was quite significant in the direct method of inoculation. It agrees with our previous
study [12], and the necessity of a water reservoir for single dry spores’ germination of Aspergillus sp.
was proposed [13]. The Penicillium sp. growth was more related to the type of treatment and was more
intense with the indirect method of inoculation. It is reasonable since the growth of Penicillium sp.
and Paecylomyces sp. were related in our study, and previous studies have shown that, for example,
Penicillium sp. spores and probably Paecylomyces sp. do not require large amounts of water for
germination and no influence on the growth of the method of inoculation was found [26]. The areas
of all fungi in our study influenced the mould grade in the multivariate model the Paecylomyces sp.
having most significant influence on the model performance. The three-component PLS model showed
quite a strong performance and can predict about 77% of data variation (Q2 = 0.766).

5. Conclusions

This study contributes to the transition to sustainable wood materials by applying GRAS
compounds that can control and prevent contamination by primary colonising mould fungi. Substances
based on potassium silicate could be excellent sustainable substances for wood treatment. By combining
wood surface treatments with the response to a fungal attack, a PLS model makes it possible to predict
the contamination rate of wood. The model may be beneficial in the use of smart sorting systems
equipped with high-speed digital cameras in industrial use. It shows the ability to model such a
complicated phenomenon that standard tests do not provide. However, the measurements based
on chemical characterisation should be the next step to take in order to significantly enhance model
properties and increase the range of robust applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/9/714/s1:
Table S1: Data set used for data analysis in the article; Table S2: The p-value for the significance of moisture content
changes after test difference between treatments in the indirect and direct method of inoculation, significant
difference p < 0.05; Table S3: The p-value for the significance of difference between treatments in both methods,
significant difference p < 0.05.
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