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Abstract: The method of forest biomass estimation based on a relationship between the volume and
biomass has been applied conventionally for estimating stand above- and below-ground biomass
(SABB, t ha−1) from mean growing stock volume (m3 ha−1). However, few studies have reported on
the diagnosis of the volume-SABB equations fitted using field data. This paper addresses how to
(i) check parameters of the volume-SABB equations, and (ii) reduce the bias while building these
equations. In our analysis, all equations were applied based on the measurements of plots (biomass
or volume per hectare) rather than individual trees. The volume-SABB equation is re-expressed
by two Parametric Equations (PEs) for separating regressions. Stem biomass is an intermediate
variable (parametric variable) in the PEs, of which one is established by regressing the relationship
between stem biomass and volume, and the other is created by regressing the allometric relationship
of stem biomass and SABB. A graphical analysis of the PEs proposes a concept of “restricted zone,”
which helps to diagnose parameters of the volume-SABB equations in regression analyses of field
data. The sampling simulations were performed using pseudo data (artificially generated in order to
test a model) for the model test. Both analyses of the regression and simulation demonstrate that
the wood density impacts the parameters more than the allometric relationship does. This paper
presents an applicable method for testing the field data using reasonable wood densities, restricting
the error in field data processing based on limited field plots, and achieving a better understanding of
the uncertainty in building those equations.

Keywords: allometric equation; biomass estimation; forest biomass dataset; observational error;
parametric equation; parameter diagnosis; restricted zone; wood density

1. Introduction

1.1. Forest Biomass Estimation

Various techniques have been developed for observing the biomass and productivity of forest
ecosystems scattered throughout the world [1,2]. Yet the measurements of large-scale forest biomass
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cannot be conducted directly [3,4] due to restrictions like heavy load of fieldwork [5,6], non-destructive
measurement requirements [7], and difficulty of belowground biomass (BGB) measurement [8–10].
Indirect methods have been applied in estimating forest biomass through the amount of growing
volume [11]. These indirect methods can be classified [12–15] as three conceptually different types: (i) the
empirical statistical approach, (ii) the biogeochemical-mechanistic simulation approach, and (iii) the
remote sensing approach. The first type is conventional. It usually estimates the biomass using a biomass
expansion factor (BEF) or biomass conversion and expansion factor (BCEF) [11], and biomass allometric
equations [14,16]. The factors are helpful for converting the biomass conveniently, and can be improved
by addressing the variation of BEFs over time [17,18]. For more accurate estimation, the volume-based
biomass equations were also frequently employed based on detailed data of plots on each stratum.
These allometric models are constructed based on measurements from field samples. Depending on
the sample size, a number of tree-level and stand-level models have been developed for applications
corresponding to different data sources. Recently, Di Cosmo et al. [16] have deeply discussed
the characters, features, and uses of different models. These models have different development
strategies, structure characteristics, and scope of application [16]. For instance, the tree-level models
with independent variables in diameter at breast height (DBH) and tree height [18–21] are suitable
for predicting the biomass using tree-scale data. If only statistics of the volume information are
available, the stand-level models can be employed to estimate the biomass per unit area [22–25].
As for the types of indirect methods (ii) and (iii), they are helpful for addressing the mechanism
or dynamics of forest carbon sequestration on large temporal-spatial scales [3]. These models are
increasingly applied for monitoring forest biomass at the national and global-scale [26]. Nevertheless,
both biogeochemical-mechanistic simulation and remote sensing approach also require allometric
equations for model calibration, biomass conversion, and result comparison or validation [27–29].
These are indicative of the key role of the allometric equation in forest biomass estimation.

Among the various allometric models developed, the biomass equations with predictor DBH and
tree height are widely applied to predict above-ground biomass (AGB) in the regions with plentiful
information on tree measurements, especially in continental Western Europe and North America [14].
Differing from this approach, which is primarily used in developed countries, the volume predictor
(m3 ha−1) is also applied in the estimation of forest biomass for stand above- and below-ground
biomass (SABB) in many countries. This kind of model usually utilizes hectare-based volume to
predict areal biomass, rather than tree-level conversion. Using these stand-level models may be
the appropriate way, especially in cases where plot data are not available at large scales, to convert
forest biomass from growing stock volume per unit area [16]. The reasons for using hectare-based
volume as a predictor is due to the data sources, which are often lacking in data for DBH and height
for global-scale biomass estimation [25]. In many countries, the data of DBH and height are not
released [30]. Instead, the volume and area statistics are extensively published. The statistical data
are available in national forest inventory (NFI) reports [31]. These national statistics are accessible
for general researchers [32]. Accordingly, in order to know forest biomass in an area during a certain
period from the above statistics, the volume-derived equation at stand-level needs to be applied as
an alternative solution.

1.2. Uncertainty in the Estimation

Unlike equations with the predictor DBH and tree height, some key issues of the volume-SABB
relationship at stand-level have not yet been deeply and adequately explored. Although many studies
have reported successful applications in the last two decades [17,33–38], there are still frequently-raised
questions on the accuracy and precision of the estimations for SABB [8,30,39–41], particularly in
reducing the uncertainty of model parameters and testing the suitability of collected measurement
data [8,42]. In consideration of the regression, field sampling and measurement primarily affect the
quality of biomass equations [43,44]. The challenge is to analyze whether the sampled plots (or stands)
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represent the population especially in a large-scale estimation. If the population is not represented
well, the uncertainty could be implicit and untraceable in the equations.

In practice, no matter what predictor is applied to estimate the biomass of such diverse forest
ecosystems, many factors contribute to errors and biases in the estimations [8,26,45]. These factors may
hamper our efforts to increase the accuracy of biomass estimations because those factors influence each
other and may propagate errors [40,42]. That could be the reason why we cannot easily distinguish
a concrete error source when facing the uncertainty of an estimate. To sort through and clarify thoughts,
we divided possible uncertainty into two parts corresponding to two stages in forest biomass estimation:
(1) volume prediction, in which the sampling error occurs due to the sampling design that affects
the sample representative in NFI, and the non-sampling error may exist as the model error in the
volume calculation using tree and stand-level data. (2) Biomass conversion, in which the non-sampling
error primarily includes the measurement and biomass model errors. The former could affect model
parameterization, and the latter may be caused by the structure of the model itself. Our analysis
focuses on reducing the model error at stand-level in the second stage. This is because the errors in the
first stage may not be addressed in some regions or countries, in which only forest statistics on total
volume and area are released in NFI reports.

1.3. Study Objectives

The purpose of this study is to explore an innovative expression of the volume-SABB equation
based on the use of two separate regression equations to reduce the uncertainty of model predictions.
This study presents a volume-SABB model, which is expressed by two Parametric Equations (PEs)
with stem biomass per hectare as an intermediate variable. This model was parameterized using
field measurements collected at plot-level for different species and forest types. Depending on
the dispersion of the measurements, a restricted zone is suggested for improving the parameters.
The fitted model can be applied to convert SABB (m3 ha−1) from volume data provided by NFI reports.
The analysis framework presented a new understanding of the information from limited measurements,
and suggests a new approach for assessing the regressions of forest biomass by means of forest volume.

2. Materials and Methods

2.1. Strategy

For the purpose of converting forest volume to SABB, a volume-SABB equation can be used
with an independent volume variable (Bt = αVβ, Bt is SABB including foliage, branch, stem, and root
biomass, t ha−1; V is stem volume, m3 ha−1; α and β are parameters). This relationship between
volume and biomass has been proposed in various forms by previous studies [16,18,20]. Although
the studies addressed AGB, their approaches are also valuable for estimating SABB. An inspirational
approach is the use of BCEF and multiplying both sides by growing stock volume [16]. The biomass
equation, in form, expresses two parts of biomass, which might be considered to represent stem and
non-stem organs respectively. This can predict the biomass that maintains biological soundness [16].
Statistically, using the above equations, a number of field measurements are required for model
calibration. If the measured data are relatively few, it may be difficult to parameterize. For example,
due to the cost of measuring BGB, there are only several samples for SABB. The parameters α and
β may not be easily determined for the equation Bt = αVβ. In the graphical analysis of the model,
the physiological relationship between V and Bt can neither be obviously observed nor simply tested.
Thus, whether or not to create a direct causal relationship of V and Bt becomes an issue of interest.
Generally, this issue can be abstracted as a black-box problem, which should be solved gradually
in stages to reduce uncertainty of model predictions (Figure 1). The uncertainty can be identified
according to the general technical flow of nonlinear system identification, namely, data preparation,
model postulation, parameter identification, and model validation [46]. Such a procedure makes it clear
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that the conventional volume-SABB equation needs to be converted to a set of PEs. These postulated
equations and related algorithms are explained in the following sections in detail.
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Figure 1. A diagram of volume-SABB relationship analysis borrowing a simple concept from black-box
system identification. The gray rectangle is assumed as a black-box. It includes two sub-modules
(Bt and Bs) expressed by Parametric Equations (PEs).

2.2. Parametric Equations

In applications of functions and equations, a set of PEs is mainly utilized to solve problems in
multidimensional space for convenience of mathematical treatment. Beyond this, the PEs may also
express some physical or physiological quantity to clearly and more effectively describe the relationship
between the parameter and its function. Here, the parameter (parameter variable) is mathematically
specified as the independent variable in a set of PEs (see Figure 1). This special relationship is the
key that we want to pay more attention to in our analysis. Hence, we introduce a parameter variable
Bs (stem biomass, t ha−1) and make a pair of equations to separate the error source: Bt = aBs

b and
V = Bs/ρ. For general expression, we give the following PEs,

Bt = Bs
b, (1)

Bs = ρV, (2)

where Bt denotes SABB (t ha−1), a and b are parameters of the allometric function, and V is growing
stock volume (m3 ha−1). ρ expresses average wood density for a regression parameter, as no assumption
is made that wood density does not change with age, growing conditions, and species.

Both Equations (1) and (2) are regression equations, in which all parameters (a, b, ρ) are determined
by regression analysis. Equation (1) reflects tree physiological characteristics, which is expressed
as the allometric relationship between stem biomass and SABB; Equation (2) indicates physical
characteristics, which shows a linear relationship of stem biomass and volume with a slope coefficient ρ.
The undetermined parameters a and b are solvable since field measurements of both stem biomass and
SABB are available. While parameterizing the two equations, we can examine whether the parameters
are reasonable and reliable, depending on our tree physiological and wood physical knowledge.
Figure 2 illustrates an example of the parameterization. If all parameters (a, b, and ρ) are reasonable,
there must be a “restricted zone” existing between the curves of the two Equations (Figure 2B),
assuming (1) a stem is lighter than the whole tree, and (2) ρ is equal to wood density and generally
less than 1.0 (t m−3). This restricted zone can be defined as a zone where observed data should not lie
unless there are errors or anomalies in the data. Any observed data lying in the restricted zone strongly
suggests that there may be problems in field measurement or counting. After fixing these problems by
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setting up restrictions on regression parameters, the reliability of these two PEs will be improved and
Equations (1) and (2) can then be rewritten as a conventional single equation by canceling Bs:

Bt = αVβ, (3)

where Bt denotes SABB (t ha−1), V is volume density (m3 ha−1), and α and β are parameters.
Thus, two models have been built, the PE model (Equations (1) and (2)) and the conventional model
(Equation (3)). The parameters of the two models can be substituted by one another as α = aρb, β = b.
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Figure 2. An example (Eucalyptus and other fast-growing trees in China) of the regression for
Equations (1) and (2). (A) is the plots and regression with general equation Bt = αVβ. The green
line graphs equation Bs = ρV. (B) exhibits two regressions outside the restricted zone separately.
The correlation scatters of SABB vs. stem biomass (blue and top left part) and stem biomass vs. stem
volume (green and bottom right part). The top left parts illustrate the regression for Equation (1),
and bottom right parts do this for Equation (2). A restricted zone is designed ranging from the
lower-bound of Bt (shows a proportion as 80% stem and 20% other parts of the tree) to upper-bound of
Bs (shows maximum wood density of 0.7). The samples of Bs vs. Bt are less than the ones of Bs vs. V,
because some plots were not measured for roots. (C) shows the recombined equation using the slope ρ
after data cleaning.

2.3. Parameter Improvement

To follow the above strategy and formulation, two points should be noted: (i) improving
parameters by utilizing PEs is a “separate-to-recombine” process (see Figure 2). After the improvement,
the power β in Equation (3) is same as the power b in Equation (1). This is because the curvature
of Equation (3) is only affected by the allometric relationship of Bs and Bt, but not by volume (V).
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If directly regressing field data for the variables Bt and V in Equation (3), the power β will usually be
impacted more or less by possible outliers of the volume (V). Outliers make wood density estimates
(ρ) largely inconsistent, which changes the curvature (β) of Equation (3). In short, the α and β will
change after carrying out separate-to-recombine processing that forces ρ to be unique for a specified
species. (ii) Through the separate-to-recombine procedure, the impacts of uncertainty or mistake in
volume measurement can be excluded from parameter β. This allows us to concentrate on improving
the parameter α by examining ρ. The necessity of the improvement is also illustrated in Figure 2A,
in which the direct regression curve goes so far as to cross the line of Bs = ρV at the end. It clearly
proves a counterintuitive relationship that may appear by performing regression analysis directly:
stem biomass is greater than SABB. Summarily, we first separate the equation into two PEs (Figure 2A).
Secondly, carry out regressions respectively for the two Equations (Figure 2B). Then combine the
two equations back into one standard volume-SABB equation as was the original form (Figure 2C).
During this procedure, it should be emphasized that the restricted zone may be variable depending on
different species.

2.4. Data Description

We used two data sources: field measurements and forest inventory. The measurements were
utilized for fitting and parameterizing volume-SABB equations. The inventory is a part of China’s NFI,
which contains total volume and area of Eucalyptus forests across the country. This statistical volume
information was employed to convert forest biomass from volume using the volume-SABB model.
The field measurements used in this study are abundant and diversified on species. They consist of
three large datasets based on over 10,840 records, which were collected from a large data compilation
from European, USA, Chinese, and Japanese scientific literatures (by Usoltsev [47], 8033 records;
Luo et al. [48], 1607 records, see supporting information (Table S2); Cannell [49], over 1200 records).
Most of records include data items of growing stock volume (V), stem biomass (Bs), AGB (foliage, branch,
and stem), and BGB (coarse and fine roots) per hectare. The destructive measurements were carried
out for AGB. Roots were completely dug out or partly dug out for BGB estimations. The biomasses
in the datasets were expressed in oven-dry weight and measured based on felled trees at each plot.
Since data from Luo et al. [48] are the latest collection for China’s forests, we excluded all records of
measurements in China from the Usoltsev’s dataset. Of the total 10,840 sample records assembled
in the three datasets, applicable data (3649 records) processed correspond to 3335 records for stem
biomass and SABB, and 3399 records for growing stock volume and stem biomass. For Luo et al. [48]
and Usoltsev [47] the trees were basically grouped by species, while for Cannell [49] all trees were
grouped by forest types (conifer, broadleaved, mixed, and tropical forest). All field data were compiled
and up-scaled from tree and plot data to hectare-based values by data providers.

2.5. Coverage Area of Observations

The spatial locations of all field plots in the datasets are widely distributed geographically in
48 countries around the world (Figure 3). The measurements were carried out for over 317 tree species.
The dataset includes different forest types at different latitudes and climatic conditions. These plots are
dispersed over boreal temperate, subtropical, and tropical zones with forest ages from young stands of
about 5 years to over mature forest of more than 400 years. Main types of woody plant stands are
represented including those from natural and plantation forest origins, ranging from oak woodlands
and coniferous plantations to tropical rainforests and mangrove swamps. The distribution of plots is
uneven across continents and they are highly concentrated in some countries (Figure 3).
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Figure 3. Spatial distribution of all plots measured across the world [50,51].

2.6. Sampling Simulation

To test the numerical stability of model parameters, we made a pseudo population to simulate
the true values of a large-scale forest. This population consists of 10,000 forest stands at the regional
scale based on the output of a pseudorandom number generator. The true values of SABB amount
(5.18 Mt) are counted by enumerating all pseudo stands in the population for model comparisons.
Our experiment carried out random samplings, which simulate the establishing of a few sample plots
(or the collecting of field data). We firstly generated the values of three variables (Area, V, and ρ) for
each stand. ρwas generated in two conditions as constant and random value. Bs can be calculated.
Then Bt can be generated. Based on this population of pseudo stands (10,000 stands), we selected
four types of stand samples from the population. The sampling design consists of four types, such as
20 stands with ρ = 0.59, 100 stands with ρ = 0.59, 20 stands with random ρ, 100 stands with random
ρ. Each sampling rule was performed 500 times. The model outputs were compared between before
and after the improvement of parameters (α and β). The details of data structure, data plotting,
and simulation conditions are described in the Supporting Information (Table S1 and Figure S1).

3. Results

3.1. Comparison of Two Relationships

We respectively analyzed three independent data sources published at different times (refer to
Table 1). Our results report that the relationship between Bs and Bt has a better fitting performance
than V and Bs (Figure 4). Most coefficients of determination for Bs vs. Bt are greater than 0.9. In the
bottom right part of each scatter plot, Bs and V have a significant linear relationship with all coefficients
of determination greater than 0.6, although a few samples are located in the restricted zones for some
species and forest types (No. 8, 10, 15, 18, 25, 27, 29, 30). All regression curves (Bs-to-Bt) and lines
(V-to-Bs) avoid falling in the “restricted zones.”
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Table 1. Parameters in Equations (1)–(3) for 30 tree species and forest types across the world.

No. Species or Types *
After Improving After Data Cleaning

Difference on α
A † B † ρ ‡ SD Recombined α ρ § SD Bias on ρ Recombined α

1 Abies and Picea 3.32 0.86 0.41 1.9% 1.54 0.41 1.6% −0.2% 1.54 −0.1%
2 Cupressus 3.2 0.85 0.42 3.9% 1.53 0.43 3.1% −3.4% 1.57 −2.9%
3 Larix 1.91 0.95 0.45 2.3% 0.89 0.45 2.1% 0.0% 0.89 0.0%
4 Pinus tabulaeformis 2.9 0.86 0.47 3.5% 1.51 0.47 3.5% 0.0% 1.51 0.0%
5 Pinus koraiensis and other temperate pines 3.4 0.84 0.39 3.0% 1.54 0.39 2.9% −0.8% 1.55 −0.6%
6 Pinus yunnanensis and other subtropical pines 4.5 0.8 0.43 3.6% 2.29 0.45 3.0% −4.7% 2.38 −3.7%
7 Cunninghamia lanceolata 2.52 0.89 0.35 1.0% 0.99 0.36 0.9% −3.4% 1.02 −3.0%
8 Pinus massoniana 1.96 0.93 0.47 2.8% 0.97 0.46 2.3% 2.1% 0.95 1.9%
9 Other conifer trees 3.8 0.83 0.35 5.5% 1.59 0.4 4.8% −14.2% 1.78 −11.7%
10 Oaks and other deciduous trees 3.15 0.87 0.67 2.5% 2.22 0.65 2.2% 3.7% 2.15 3.2%
11 Populus and Betula 2.07 0.92 0.41 3.8% 0.91 0.41 3.3% 0.3% 0.91 0.3%
12 Eucalyptus and other fast-growing trees 2.85 0.87 0.56 2.7% 1.72 0.56 2.3% 0.3% 1.72 0.2%
13 Soft broadleaved trees 2.78 0.87 0.4 4.2% 1.25 0.41 3.4% −1.7% 1.27 −1.5%
14 Mixed conifer and deciduous forests 4.28 0.8 0.41 3.3% 2.1 0.42 2.8% −3.4% 2.15 −2.7%
15 Other hard broadleaved trees 4.27 0.8 0.48 3.0% 2.37 0.47 2.1% 1.8% 2.34 1.4%
16 Pinus 2.57 0.89 0.44 0.5% 1.24 0.44 0.5% 0.0% 1.24 0.0%
17 Abies and Picea 2.98 0.87 0.41 0.6% 1.37 0.41 0.6% −0.7% 1.38 −0.6%
18 Fagus, Acer, Carpinus and Quercus 2.9 0.88 0.54 0.9% 1.69 0.53 0.8% 0.9% 1.67 0.8%
19 Betula 3.14 0.85 0.51 0.8% 1.77 0.51 0.7% 0.5% 1.76 0.4%
20 Larix 2.22 0.91 0.47 2.4% 1.12 0.47 2.4% 0.0% 1.12 0.0%
21 Alnus and Populus 2.13 0.91 0.44 1.2% 1.01 0.44 1.2% 0.0% 1.01 0.0%
22 Tilia 3.42 0.84 0.44 5.1% 1.72 0.44 5.1% 0.0% 1.72 0.0%
23 Castanopsis, Cryptomeria, and Pseudotsuga 3.39 0.84 0.39 1.3% 1.54 0.4 1.1% −1.8% 1.56 −1.5%
24 Chamaecyparis obtusa 3.23 0.86 0.43 1.6% 1.56 0.43 1.6% 0.0% 1.56 0.0%
25 Eucalyptus and other fast-growing trees 1.88 0.96 0.64 2.2% 1.22 0.63 2.1% 1.6% 1.21 1.5%
26 Conifer 2.59 0.9 0.41 1.2% 1.16 0.41 1.2% −0.2% 1.16 −0.2%
27 Broadleaved 2.9 0.88 0.53 2.8% 1.66 0.53 2.7% 0.0% 1.66 0.0%
28 Mixed 4.04 0.81 0.4 2.0% 1.92 0.4 2.0% 0.0% 1.92 0.0%
29 Tropical 3.71 0.86 0.65 7.0% 2.56 0.62 4.6% 4.5% 2.46 3.9%
30 Tropical 3.3 0.87 0.61 7.4% 2.15 0.61 7.3% 0.2% 2.14 0.2%

* Species or forest types were compiled by Luo et. al. [48] (No. 1–15), Usoltsev [47] (No. 16–25), Connell [49] (No. 26–29). Tropical life zones include dry, wet, lower montane rain, moist,
montane wet, and premontane forests. † The a and b are obtained by regression; b is the same as β in Equation (3). ‡ The ρ is the slope of regressed straight-lines in Figure 4; the improved
parameter α is decided by a, b, and ρ (α = aρb) (also see Figure 4). § The ρ denotes improved wood density.
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Figure 4. The correlation scatters of 30 tree species and forest types across the world. The least 

squares regression was performed for fitting V-to-Bs equation. The nonlinear regressions were 

conducted for fitting relationships of Bt and Bs. The scatters show stem biomass vs. SABB (curves 

with cyan crosses in top left sections) and growing stock volume vs. biomass (straight-lines with 

black crosses in bottom right sections). The top left parts illustrate the regression for Equation (1), 

and bottom right parts do this for Equation (2). CD means coefficient of determination; n is the 

numbers of plots. Every scatter has two red lines that warn the lower limit for Equation (1) and the 

upper limit for Equation (2). Note that these red lines are set up tentatively for approximate 

estimates of the restricted zone that may change for different species and types. The number of each 

scatter corresponds to the number listed in Table 1. Three variables (volume, stem, and SABB) were 

measured for most plots. The samples of Bs vs. Bt are less than the ones of V vs. Bs, because some 

plots were not measured for roots or volumes. For the data details refer to the footnotes of Table 1. 

3.2. Model Test 

After determining a, b and ρ, the parameter α in volume-SABB equation (Equation (3)) can be 

calculated as α = aρb before data cleaning. The standard deviations of ρ are lower than 5.5% for all 

Figure 4. The correlation scatters of 30 tree species and forest types across the world. The least squares
regression was performed for fitting V-to-Bs equation. The nonlinear regressions were conducted for
fitting relationships of Bt and Bs. The scatters show stem biomass vs. SABB (curves with cyan crosses
in top left sections) and growing stock volume vs. biomass (straight-lines with black crosses in bottom
right sections). The top left parts illustrate the regression for Equation (1), and bottom right parts do
this for Equation (2). CD means coefficient of determination; n is the numbers of plots. Every scatter has
two red lines that warn the lower limit for Equation (1) and the upper limit for Equation (2). Note that
these red lines are set up tentatively for approximate estimates of the restricted zone that may change
for different species and types. The number of each scatter corresponds to the number listed in Table 1.
Three variables (volume, stem, and SABB) were measured for most plots. The samples of Bs vs. Bt are
less than the ones of V vs. Bs, because some plots were not measured for roots or volumes. For the data
details refer to the footnotes of Table 1.

The modeling parameters (a, b, and ρ) are listed in Table 1 for 30 species and forest types.
The values of b are distributed in the vicinity of 0.9 and the values of α have a wide range from 1.88
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(No. 25) to 4.5 (No. 6). As for the estimated ρ, which is the slope of the regressed straight-lines in
Figure 4, all values are less than 0.7 (t m−3). Tropical trees have a relatively high wood density with
values greater than 0.6 (t m−3). The “data cleaning” was carried out based on the range of wood
basic densities (WBD), which were from the data in the Global Wood Density (GWD) database [52].
The WBDs of all species and forest types range from 0.3 to 0.8 (t m−3). All data points that fell into the
restricted zone mean that the data make the ratio of stem biomass to SABB higher than 0.8 (t m−3).
After taking off those irregular observations, the ρ and α were re-estimated and listed in Table 1 (in the
7th and 10th columns).

3.2. Model Test

After determining a, b and ρ, the parameter α in volume-SABB Equation (Equation (3)) can
be calculated as α = aρb before data cleaning. The standard deviations of ρ are lower than 5.5%
for all non-tropical species, and less than 7.4% for tropical species (Table 1). The equation was
tested under two cases (Table 2), (1) all stands have the same ρ and same ratio of stem to SABB,
and also have no measurement errors either; (2) the ρ and ratio become dispersible with measurement
errors. Corresponding to these cases, 500 sampling simulations demonstrated that the mathematical
expectations (seeµvalues in the e column in Table 2) of model errors (absolute value of residuals) become
lower than before after improving the parameters, whether by 20-plot-sampling or 100-plot-sampling.
Table 2 demonstrates that improved parameters decreased residual errors by up to 50% than the
original parameters did.

Table 2. The comparison between the results before and after improving parameters (α and β)
of volume-SABB equations. These equations are regressed based on the simulation data (refer to
Supporting Information Table S1). Parameter (α and β) and residual distributions resulted from
500 simulations of setting field plot.

Assumptions of Plot
Population and Sampling

Before Improving After Improving Simulation
Timesα β e * (Mt) α β e * (Mt)

Homogeneous stands.
All stands have same wood density ρ = 0.59 (t m−3) without any biomass measurement errors †

20 plots Average (µ) ‡ 1.79 0.87 0.0 1.79 0.87 0.0 500
SD (σ) 0.0 0.0 - 0.0 0.0 -

100 plots Average (µ) ‡ 1.79 0.87 0.0 1.79 0.87 0.0 500
SD (σ) 0.0 0.0 - 0.0 0.0 -

Heterogeneous stands.
Wood densities (ρ) are randomly distributed for each plot; measurement errors occur §

20 plots Average (µ) 1.99 0.86 0.16 1.83 0.87 0.08 500
SD (σ) 0.385 0.038 - 0.131 0.014 -

100 plots Average (µ) 1.92 0.87 0.10 1.88 0.88 0.06 500
SD (σ) 0.124 0.013 - 0.06 0.006 -

* e denotes model error (absolute value of residual, e = |B̂t − Bt|) calculated based on total regional biomasses and
model estimated value (B̂t). † This is a hypothetical best-case scenario, in which no measurement error occurred at
all. Regression results are not affected by plot numbers for the homogeneous stands. Bt (5.19 Mt) is the true value
of all pseudo stands. ‡ µ and σ represent mathematical expectation and standard deviation (SD) of the random
variables of α, β, and e which were calculated from every regression using Equation (3) based on 500 sampling
simulations. § This is a Heterogeneous scenario, in which the measurement error occurred. Bt (5.18 Mt) is the true
value of all pseudo stands.

In addition, Figure 5 illustrates a comparison between distributions of the parameter (α and β)
and residual (e), which denotes the difference between two estimations before and after improving
the parameters based simulated data. The distributions of α, β, and e resulted from 500 simulations
of setting stands. It is visible that improved α, β, and e generally have low standard deviations
for both sampling designs (20-plot- and 100-plot-sampling). The convergence rates are faster on
100-plot-sampling than 20-plot-sampling for all tests of α, β, and e (Figure 5). This implies that the
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estimates are closer to the true value (5.18 Mt) by employing the 100-plot-sampling design than the
20-plot-sampling design.
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Figure 5. Comparison between two estimations before and after improving the parameters based
simulated pseudo data. Averaged parameters (α and β) and residual (e) distributions resulted from
500 simulations of setting field plot. The model estimates are calculated using Equation (3) with
parameters before and after improvement. For the data details refer to the footnotes of Table 2.

3.3. Comparison Between Biomass Estimates

To understand the differences of SABB amounts affected by variant wood densities, we estimated
the biomass of China’s Eucalyptus forests, which are scattered in 10 provinces over a large area
(total 4455.2 K ha) [53]. The allometric equation and parameters are shown in Figure 2 (before improving:
Bt = 2.49V0.76; after improving: Bt = 1.72V0.87). These two equations result in large gaps. If using the three
wood densities, the SABB amount increases to 173 (+3%) Mt from 1.68 Mt after improving parameters
(α and β). This implies that different estimates of wood density could produce considerable gaps.

4. Discussion

4.1. Model Test

There are two common ways to test a model and evaluate if it is better than others. A widely
used method is the comparison between prediction and independent observation [54]. Yet we do not
have other field data independent of the measurements used in this study. Another way is statistical
hypothesis testing, which rejects or fails to reject (does not equal accept) the null hypothesis [55].
However, the significance level or p-value provided by a parameter test cannot prove that a model
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result is closer to the true value than other models. A previous study [21] indicated that model tests
are always difficult for the immeasurable forest population on large-scales. Given this consideration,
we made a pseudo population to realize the “true values” of a large-scale forest. In our experiment,
we focus on the sample population. This approach is a low-cost way to acquire the “true value”
of a population and use the “true value” to test if the model has generality for application.

The pseudo population provided two true values (5.19 and 5.18 Mt) of total SABB by specifying
two kinds of wood densities (a constant, and random value fitting the normal distribution). Our results
suggest that the recombined equation is better than the original equation in model performance as
total SABB is closer to the true value after improving parameters. The results of parameter diagnosis
revealed two major points: (1) if all stands have the same features (ρ and the ratio of stem biomass to
SABB) and have no measurement errors either, it makes no difference (Table 2) whether the equation is
improved or not via the separate-to-recombine processing. (2) As long as the plot features become
dispersible in realistic forests, and the errors occur in practical measurements [56], the equation
improvement results in different parameters. It implies that PEs with a parameter ρ is advantageous
for improving the accuracy of biomass prediction. This supports previous analyses of using wood
density as a parameter in biomass equations [25,40,57,58].

Furthermore, two trial sampling designs were carried out for obtaining different samples (20 and
100 stands) in the pseudo population. Through comparing parameters and the estimates of SABB
amount, our results imply that more measurements will have better representativeness for the
population. This evidence on the significant effects of sample size on biomass estimates is consistent
with previous studies [13,59]. The results based on the sampling designs are also in accordance with
reported analyses [8,14,21,22,39,42,43,55]. In addition to the pseudodata test, a practical estimation
was carried out for China’s Eucalyptus on the large scale. Comparing the equation before improvement,
the gap is approximately 3% between SABB amount before and after parameter improvement.
Overall our experiment demonstrated a positive effect on model accuracy based on the processing of
separating regressions.

4.2. Wood Density Estimation

Testing the equations of V-to-Bs, the standard deviations of ρ are relatively low. All regression lines
are below the restricted zone, because the slopes (ρ) express wood density as the value of mathematical
expectation in a normal distribution. This means that some outliers do not have a great impact on the
regression. The reason for produced outliers is complicated [60]. A number of studies have reported
that wood density may vary over broad geographic areas [29,56,61,62] and also between individual
trees and different organs [63,64]. Flores and Coomes [59] investigated wood densities for 8412 species
from the Global Wood Density (GWD) database [52] and indicated that the mean relative error ranges
from ±10% to ±31% for different countries. These analyses at tree-level are consistent with our results
at plot-level.

According to the field measurements, graphic analysis illustrated different ratios of stem biomass
to volume for the same species in (Figures 2B and 4), especially for young stands with low volume.
To address this difference, our study utilized linear regression. Notwithstanding the variance,
the mathematical expectation describes the weighted mean of all plot samples (combined) under
various geographical and environmental conditions. We suggest that the abnormal values of a few
ratios may not be a significant issue in this study. Nonetheless, we re-estimated the parameters of ρ
and α by excluding all data points located in the restricted zone. The difference between α before and
after data cleaning ranges from −3.7% to 3.9% for most of the species and types. This implies that
abnormal values of most ratios do not significantly affect the models. However, type #9 has a difference
of −11.7% after data cleaning, because several data points (whose ratio of stem biomass to SABB is less
than 0.3 t m−3) were excluded. It implies that the data and ratio need to be carefully confirmed for
“other conifer trees” in the application.
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4.3. Uncertainties

The results indicate that conventional volume-SABB equations may introduce more errors than
PEs in a biomass estimation of forest ecosystems. This probably is a problem caused by the equation
structure, for which some studies [14,22,65] have discussed regarding the effect on the estimates.
After separating the estimation of stem (Equation (2)) and SABB (Equation (1)), the effect of equation
structure is reduced for the latter. However, the former is highly dependent on wood density [13].
We noticed that some sample points (black cross marks, Figure 4) are over the 45◦ line. These ratios of
stem biomass to volume (i.e., wood density) become higher than 1.0 t m−3, which becomes a concern.
We tend to think that the measurement issue may be found in the measurements of volume, rather
than stem biomass. Most plot points above the 45◦ lines represent lower volume than other points
below the lines (Figure 4). It should not be like this for most species. For example, the species #11
(Populus and Betula) has a few sample points (close to lower left, Figure 4) located in the restricted
zone, but fast-growing species generally have low densities in their juvenile wood, especially for the
first one or two decades [66,67]. Denslow [68] also reported that wood density is low for pioneer
trees in succession. These seem to be contradictory. It implies that the volume measurement issue
may be, in some cases, a problem of parameterization for conventional volume-SABB equations.
We suggest checking the ratio of stem biomass to volume when scaling the measurements from
tree-level to plot-level.

Technically, in terms of destructive measurement, it could be easier to destructively measure each
organ biomass (e.g., foliage, branch, stem, and coarse and fine root) of a few trees accurately than to
measure and evaluate the growing stock volume (m−3 ha−1) for the unit area. There are many error
sources in real volume estimation. The errors may be introduced from measuring the volume of single
trees [69,70]. Additionally, the volume at plot-level calculation may cause statistical errors due to
the heterogeneity of each stem form and diameter class [71]. Moreover, the definition of stem could
also influence the parameterization [14,22]. Hence, volume measurements might principally affect
the ratio of stem biomass to volume. Our analysis revealed that the measurements of stem and other
organ biomass cause uncertainty (Equation (1)) less than volume does (Equation (2)). For instance,
graphical analyses did not show the indication of heterogeneity in the relationship between stem
biomass and SABB for any species or forest types (see Figure 4). Figure 4 illustrates that the coefficients
of determination (CD) range from 0.81 to 0.99 for Equation (1) (the top half of each subplot), which is
better than the range of 0.62–0.96 for Equation (2) (the bottom half of each subplot). The observed
stem biomass suggests a relatively large and stable portion of SABB regardless of a single tree or
plots based on the dataset [47]. We found that the percentage of stem in SABB is averaged as 67.96%
(SD = 7.83%, n = 1502). This percentage is consistent with the global patterns in forest biomass reported
by Reich et al. [72]. In contrast, ratios of stem biomass to volume were spread over a wide range.
The data marks (Figures 2B and 4) invaded the “restricted zone” more frequently in the bottom left
rather than the top right of the figure. All these imply that measurements are more reliable for stem
than volume.

In addition to the volume issue, the small sample size has been considered to limit the estimate
accuracy [23]. In our datasets, four species or forest types have less than 20 plot samples for the
relationship between stem biomass and SABB; six species or forest types have less than 20 plot samples
for the ratio of stem biomass to volume. The sample size of individual tree has the same issue.
Jenkins et al. [73] reported that nearly half of the studies had sample sizes of 20 trees or less for 2642
equations in the United States. This implies a superior difficulty in obtaining field measurements of
tree volume and organ biomasses over a wide geographic area. The limited size of the dataset affects
models in terms of their application over large spatial domains [8]. For such species that have few and
rare samples, we strongly suggest using PEs as an alternative option to compare the relationship of
volume-to-SABB. The regressions of PE allow WBD or the wood specific gravity to act as an inspector
to check the rationality of the data.
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5. Conclusions

The hectare-based volume-SABB equation is a valuable tool for depicting the relationship between
stem volume and SABB (stand above- and below-ground biomass) at stand-level. It is a realistic
way to estimate forest biomass using hectare-based volume-SABB equations for many countries,
whose NFI reports currently do not contain detailed information of DBH and tree height. The PE
method is a convenient tool for reducing uncertainty in the relationship of forest volume and SABB
based on limited field plots. The graphical representation of PEs proposes a concept of “restricted
zone,” which helps to diagnose the volume-SABB relationship in regression analyses of field data at
stand-level. By obeying the limits of a “restricted zone,” the knowledge of wood densities can act as
an inspector for checking field data. The presented analyses of formulating volume-SABB equations
suggest an applicable method for restricting the error in field data processing, and achieving a better
understanding of the uncertainty in building those equations at stand-level. Diagnosed volume-SABB
equations will hopefully be able to play a significant part in estimations of forest carbon sequestration
and carbon balance at any large scale.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/8/658/s1,
Figure S1. Simulated stands as a forest population for the model testing experiment. The stand number corresponds
to the number in Table S1; Table S1. The simulated data set, based on two assumptions with even (0.59, t m−3)
and randomly distributed for constructing a pseudo stand population in a large region (10,000 stands, assuming
Eucalyptus); Table S2. Measurements of volume and biomass in China. The data include both measured volume
and biomasses of each tree organs for 261 species at 1607 field plots over the country.
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