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Abstract: Drought limits the production of plantation forests, notably in the drought-prone 
Zululand region of South Africa. During the last 40 years, the country has faced a series of severe 
droughts, however that of 2015 stands out as the most extreme and prolonged. The 2015 drought 
impaired forest productivity and led to widespread tree mortality in this region, but the 
identification of tree response to drought stress remains uncertain because of its spatial variability. 
To address this problem, a method that can capture drought patterns and identify trees with similar 
reactions to drought stress is desired. This could improve the accuracy of detecting trees suffering 
from drought stress which is key for forest management planning. In this study, we aimed to 
evaluate the utility of unsupervised mapping approaches in compartments of Eucalyptus trees with 
similar drought characteristics based on the Normalized Difference Water Index (NDWI) and to 
demonstrate the value of cloud-based Google Earth Engine (GEE) resources for rapid landscape 
drought monitoring. Our results showed that calculating distances between pixels using three 
different matrices (Random Forest (RF) proximity, Euclidean and Manhattan) can accurately detect 
similarities within a dataset. The RF proximity matrix produced the best measures, which were 
clustered using Wards hierarchical clustering to detect drought with the highest overall accuracy of 
87.7%, followed by Manhattan (85.9%) and Euclidean similarity measures (79.9%), with user and 
producer results between 84.2% to 91.2%, 42.8% to 98.2% and 37.2% to 94.7%, respectively. These 
results confirm the value of the RF proximity matrix and underscore the capability of automatic 
unsupervised mapping approaches for monitoring drought stress in tree plantations, as well as the 
value of using GEE for providing cost effective datasets to resource stricken countries. 

Keywords: Unsupervised Random Forest clustering; drought; plantation forests; normalized 
difference water index; Google Earth Engine  

 

1. Introduction 

The commercial forestry sector plays an important role in the economic development of South 
Africa as it contributes a net revenue of approximately R31 billion (USD $918,092,058) to the gross 
domestic product and employs more than 200,000 of the national labour force [1]. However, the most 
productive Zululand forestry region along the north-east coast of the country has been hit by a series 
of severe droughts, causing a corresponding decline in Eucalyptus productivity [2], and widespread 
tree mortality [3]. For example, downward growth patterns were highest during the recent 2015 
drought, where reductions ranging from 35% to 40% were recorded around the Mtubatuba area [4]. 
This phenomenon is characterized by insufficient soil moisture to support tree growth during their 
reproductive phase [5] and is the natural outcome of anomalous precipitation deficits and high 
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temperatures [6]. In response to this strain, the Institute for Commercial Forestry Research sourced a 
variety of Corymbia material from Australia and established two × Corymbia hybrid interaction trials 
within the Zululand region in 2013 [4]. An important feature of the Corymbia hybrids include 
increased tolerance to drier drought conditions and, particularly during the 2015 drought event, they 
were found to perform exceptionally well compared to Eucalyptus in KwaMbonambi [4]. Some 
forestry plantations in this region are projected to suffer from frequent and severe droughts [7,8] and 
this will impose new challenges for timber production. Moreover, the impact of drought on forest 
trees essentially depends on its duration, frequency and magnitude, but also varies with species’ 
sensitivity to drought stress [9]. Beyond South Africa, many studies have also reported widespread 
and accelerated forest mortality due to droughts, ranging from partial but consistent increases in 
background mortality rates [10] to large-scale die-offs [11–14]. Exploring how drought impacts on 
plantation trees is therefore vital to improve our understanding of the effects of ongoing climatic 
changes on these economically valuable resources. 

Over the past four decades, South Africa has faced a series of economically damaging droughts, 
however the 2015 drought stands out as the most extreme [15], costing farmers losses of up to R10m 
(USD $698,850) [16]. During this period, the country received a record-setting (403 mm) annual 
rainfall since the South African Weather Service began collecting rainfall data in 1904 [17]; a record 
lower than the historical mean annual rainfall of 739 mm. Also, the 2015 drought came on the back 
of three successive years (2014–2016) of lower-than-normal rainfall, making it the most severe and 
prolonged drought since the 1940s [17]. This event was associated with the strongest El Niño event 
of climate records [15]. Such conditions prevail typically during the mature El Niño–Southern 
Oscillation phenomenon when the central and eastern tropical Pacific and the Indian Ocean are 
warmer than average [18]. The strong El Niño signal in the semi-arid regions of southern Africa is 
well-known to bring drier conditions which adversely affect vegetation productivity [19]. The 
catastrophic character of the 2015 drought led to the official declaration of a disaster in terms of the 
country’s Disaster Management Act of 2002 [20], which seeks to reduce drought related risk and offer 
agricultural risk insurance which is aimed at enhancing the income of farmers and producers who 
are most vulnerable to losses as a result of drought. Its pronounced effects are reflected in Xulu et al. 
[2]. Eucalyptus trees showed the most extreme response, resulting in extensive tree dieback [3]. 
Therefore, identifying varieties that are resistant to drought and planting them in drought-prone 
areas may increase the resilience of plantations. Again, accurate detection of drought stress 
symptoms or drought damaged trees allow for rapidly estimating crop yields and assists in strategic 
forest protection decisions.  

However, the detection of drought is complex [21] and is different from other forest-damaging 
agents (such as fire) in several respects. For example, under similar drought stress conditions, 
different species [22], and even individual trees [3], can experience differential rates of decline and 
mortality levels, which can cause variations in competitive capacity and affect the species 
composition of forests [23–25]. Secondly, its consequences can be experienced at relatively broad 
geographic scales and simultaneously across landscapes [26]. Thirdly, drought stimulates other forest 
disturbances such as fire [27] and insect outbreaks [28], which further impair tree productivity, 
sometimes leading to tree mortality [29,30]. Lastly, it is challenging to determine the onset and 
cessation of drought episodes since vegetation responds in different ways [31], making it difficult to 
evaluate drought using costly and spatially restricted field-based measurements [32]. For example, 
Crous et al. [3] found that the dying Eucalyptus grandis × Eucalyptus urophylla clone was more 
susceptible to drier drought conditions compared to two co-occurring healthy compartments of the 
same clone. These complex responses present additional difficulties as the outcomes may not be 
directly comparable over a large area and the severity of impact can vary markedly [33]. Fortunately, 
drought characteristics are directly recordable using optical sensors [34], making remote sensing an 
ideal tool for repeated monitoring and over large areal extents. 

Various methods, such as high-density time series analysis based on remote sensing indices, 
have been used to detect the impact of drought due to remotely sensed data being consistent, flexible 
and more spatially continuous than other methods (i.e., field surveys) [35]. Hitherto, numerous 
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studies have effectively characterized droughts through simplified drought indices such as the 
standardized precipitation index (SPI) at various timescales [36,37]. Such an index allows the 
quantification of climate–vegetation anomalies in terms of magnitude and intensity, duration and 
spatial scale, consequently enabling the evaluation of drought’s impact on vegetation [38]. Because 
trees exhibit varying sensitivity to drought stress [9], the analysis of vegetation indices should reveal 
forest response to drought over spatial and temporal scales. The response of forest trees to drought 
has been widely explored using the ratios of the near-infrared (NIR), red and short-wave infrared 
(SWIR) bands and their various combinations. Of these, the indices that are based on the NIR and 
SWIR bands have shown to have the greatest sensitivity to drought stress [39].  

For example, Xulu et al. [2] used normalized difference infrared index (NDII) and normalized 
difference vegetation index (NDVI) to characterize Eucalyptus’ response to the recent intense drought 
in South Africa and found the NDII to show the greatest sensitivity to drought stress. While these 
studies utilized supervised approaches to detect drought, unsupervised mapping methods have also 
shown success in delineating drought areas with similar characteristics [40]. Unlike the supervised 
methods, unsupervised learning is capable of discovering patterns in the data on its own. For 
example, Santos [41] successfully applied principal component analysis (a statistical procedure used 
to emphasize the variations and patterns in a dataset) and k-means (an unsupervised clustering 
method used to classify unlabeled data based on similarities) to explore spatial and temporal patterns 
of droughts in Portugal based on SPI, which is the widely used meteorological drought index, 
computed as a difference of precipitation from the mean for a specified time period divided by the 
standard deviation where the mean and standard deviation are determined from past records [42]. 
Rahmat et al. [43] also segmented the Victoria catchment in Australia into six homogenous clusters 
subject to similar SPI characteristics using hierarchical clustering and SPI. More recently, Xie et al. 
[44] examined drought characteristics in the Xinjiang province of China using k-means clustering and 
SPI.  

In this study, we investigate the utility of a novel Random Forest (RF) unsupervised mapping 
approach using the proximity matrix for detecting anomalous drought stressed forest compartments 
in KwaZulu-Natal, South Africa. We used a remotely-sensed normalized difference water index 
(NDWI) as the basis for the classification exercise. The proximity matrix produces non-linear 
distances between unlabeled pixels to build patterns within a dataset. These proximity scores then 
provide an unsupervised automated methodology for spatial clustering [45]. This study provides an 
exciting opportunity to advance our knowledge of mapping drought-affected compartments using 
unsupervised RF clustering analysis. It provides a cost-effective method to separate drought-affected 
from non-affected plantation trees based on remotely sensed data and cloud-based Google Earth 
Engine (GEE) resources. The results of this study could add value in the identification of drought-
affected plantations so that alternative trees that are suited to drought prone sites can be used. The 
methods applied here can also be tested in other plantations or areas affected by droughts. 

2. Materials and Methods  

2.1. Study Area 

Our spatial area of analysis is the 20,000 ha plantation forest in KwaMbonambi, which is located 
30 km north of the town of Richards Bay along the north-east coast of KwaZulu-Natal (Figure 1). The 
growing stock mainly comprise 6–14-year-old Eucalyptus grandis W. Hill ex Maiden (E. grandis) (2%), 
E. grandis × Eucalyptus camaldulensis Dehnh. (E. gxc) (2%) and E. grandis × Eucalyptus urophylla S.T. 
Blake (E. gxu) (96%) hybrid clones. E. gxu is more drought-sensitive than other hybrid clones in this 
area. The plantations are managed by Sappi, a large South African pulp and paper company with a 
global reach. The compartments are relatively uniform in terms of canopy cover with a tree density 
of 1667 trees ha−1, and the average tree height for most compartments is 14.75 m. The area has a 
subtropical climate, with mean minimum temperatures of 16 °C around June–August and mean 
maximum of 27 °C during November–March [46]. The mean annual rainfall varies from 739 to 1219 
mm, which is highly seasonal, peaking between November and February [47]; the mean potential 
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evapotranspiration is commonly in the range of 1100 to 1772 mm [48]. The landscape of 
KwaMbonambi consists of Quaternary alluvial sediments of clay sands of aeolian deposits [49] and 
soil with varying amounts of organic matter [50] at an elevation of 30 to 100 m above sea level. The 
high penetrability of the soils permits rapid leaching of their nutrients due to the high rainfall [49]. 
These conditions are favorable for fast-growing Eucalyptus plantations [51].  

 

Figure 1. Location of the study area in KwaMbonambi, South Africa.  

2.2. Evaluation of Relative Water Content 

The vegetation index used in assembling clusters of compartments with similar responses to 
drought is the 30 m resolution Landsat-derived normalized difference water index (NDWI); the index 
represents the ratio of the difference between the near-infrared (NIR; 0.76–0.90 µm) and the 
shortwave infrared band (SWIR; 1.55–1.75 µm) reflectance over the combined reflectance in these two 
parts of the spectrum [52], as illustrated in Equation (1).  

The NDWI ranges from 0 to 1, depending on the water content in the plants, where high NDWI 
values correspond to high plant water content and low values correspond to low water content in the 
vegetation. So, the NDWI values are expected to decrease during the period of water stress—that is 
2015 in our case.  

The data were extracted at no cost and processed using the JavaScript code editor in the GEE 
platform (https://earthengine.google.com/, Mountain View, CA, USA), which enables parallel 
computing and extensive data processing. The SWIR reflectance is very sensitive to variations in both 
leaf water content and the spongy mesophyll structure in the forest canopy, whereas the NIR 
reflectance is affected by internal leaf structure and leaf dry matter content, but not by water content 
[52]. The composite signals of the NIR and the SWIR bands removes variants introduced by internal 
leaf structure, thereby augmenting the accuracy of detecting water content from trees [53]. The SWIR 
sensitivity to water stress has rendered it as a reliable surrogate for monitoring drought-induced 
forest disturbance [54]. The cloudy dates were filtered to obtain images captured under cloudless 
conditions and processed using the JavaScript code editor in the GEE environment, resulting in one 
to two images per month. A monthly mean time series of NDWI (2013–2017) for a total of 383 forest 
compartments was retrieved from the GEE environment. The NDWI values were averaged for the 
entire compartment individually, and the mean monthly NDWI was used for analysis. The 
compartments ranged from 0,3 ha to 51 ha in extent. Polygons for all drought stressed (n = 57) and 

𝑁𝐷𝑊𝐼 = 𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅 (1)
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non-stressed (n = 326) compartments covering the study area of almost 20,000 ha were obtained from 
Sappi’s forest management database.  

2.3. Calculating Distance Matrices and Unsupervised Clustering  

In principle, a cluster analysis is fundamentally linked to determining the similarity or difference 
between two or more groups of samples (i.e., pixels). Nonetheless, prior to implementing clustering, 
there are various methods for calculating the similarity between pixels in a dataset. This entails the 
measuring of distances (similarity) between pixels whereby similar pixels are assembled in the same 
terminal node of a tree more often than contrasting pixels [45]. This is a procedure that is efficiently 
achieved through computing a random forests (RF) proximity matrix. Here, the non-linear distance 
between pixels is scored by counting the number of trees that used the same routes to classify them. 
So, the distance between similar pixels is expected to be larger than dissimilar pixels which often 
yield lower distance values [55]. Based on the pixels’ similarity, the proximity matrix creates patterns 
within a dataset which affords an unsupervised automated procedure for detecting anomalous pixels 
and enables the clustering of unlabeled classes [45]. In our case, the distance is based on relative water 
content pixels, where drought-affected trees will exhibit lower water content than non-affected ones. 
The output is expected to shed light on how trees respond to drought-stress―a particularly 
imperative necessity given the recent evidence of recurrent catastrophic drought events in the 
Zululand forestry region of South Africa. While the response of the entire KwaMbonambi forest to 
intense drought conditions was reported by Xulu et al. [2], their results showed variations of trees’ 
reaction to drought stress. Such patterns could be uncovered through proximity analysis.  

For this study, we constructed a matrix of 60 months (2013–2017), incorporating 383 forest 
compartments in an attempt to create clusters of trees with homogeneous (non-drought affected) and 
non-homogeneous (potentially drought affected) water content as measured by NDWI. It should be 
noted that the drought started in 2014, intensified further during 2015 and ceased in 2016, and in this 
study, we decided to include the period before (2013) and after (2017) the event for a complete 
analysis. We then employed k-means cluster analysis based on NDWI as a drought characteristic to 
separate compartments into mutually exclusive drought-affected and non-drought affected clusters. 
K-means is a non-hierarchical clustering method that partitions a dataset into K clusters by 
minimizing the sum of squared distance in each cluster [56].  

For comparison, we applied three more popular matrices for calculating distances between 
samples: RF proximity matrix, Manhattan and Euclidean (linear) measures. Euclidean distance 
computes the root square difference between the coordinates of a pair of objects, whereas Manhattan 
computes the absolute difference between the coordinates of a pair of objects [56]. Therefore, the 
distance matrices computed (RF proximity matrix, Euclidean and Manhattan) were then used in the 
clustering analysis which was performed using Wards Hierarchical clustering. Hierarchical 
clustering is an unsupervised learning technique that combines cases into homogeneous clusters by 
merging them into tree-like hierarchical diagrams displaying associations among all variables in a 
given data set [57], as illustrated in Figure 2. The y-axis represents the similarity between objects, 
which entails the measure of closeness of their individual data points, and the x-axis represents the 
objects. In this example, A is more similar to C than F, but is dissimilar to N. The overall procedure 
followed in this study to cluster forest compartments into drought-affected and non-affected is 
illustrated in Figure 3. The unsupervised RF proximity matrix was generated using the R statistical 
software [58] using the “randomForest” package, while clustering (hierarchical and non-hierarchical) 
analysis was implemented and presented using the “cluster” and “stats” packages. 
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Figure 2. A graphical illustration of the dendrogram, where clusters at one level are joined together 
to form the clusters at the next levels.  

 
Figure 3. Flow diagram of drought clustering analysis. 

2.4. Accuracy Assessment  

To evaluate the performance of the unsupervised methods for detecting the anomalous NDWI 
values, we used the overall accuracy (OA). The OA was computed by dividing the sum of correctly 
classified drought entries by the total number of sampled forest compartments. We also calculated 
the producer’s accuracy (PA), which is calculated by dividing the number of correctly classified pixels 
in each category by the number of reference pixels “known” to be of that category, and the user’s 
accuracy (UA), which is computed by dividing the number of correctly classified pixels in each 
category by the total number of pixels that were classified in that category [59].  

where A is the number of drought affected compartments that were correctly classified as affected 
by drought and B is the number of compartments that were incorrectly classified.   

where C is the number of non-affected drought compartments that were incorrectly classified as 
drought affected and D is also a number of non-affected drought compartments that were classified 
correctly. The overall classification (OA) accuracies were determined by the following equation:     

𝑃𝐴 = 𝐴𝐴 + 𝐵 ൈ 100 (2)

𝑈𝐴 = 𝐶𝐶 + 𝐷 ൈ 100 (3)
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Field data for each compartment (n = 383) was collected annually between 2013 and 2017 using 
scheduled field surveys. Trees were physically observed for drought damage using expert 
knowledge and were recorded on a compartment basis. The data collected at the field included the 
presence of damage and number of trees damaged. Only compartments displaying severe damage 
of greater than 50% were recorded and stored. GPS points were then used from a differentially 
corrected Trimble GeoXT hand held receiver with an accuracy of <2 m to match field data to 
compartment polygons which were extracted from the company’s management database. It is worth 
mentioning that the RF unsupervised algorithm does not work well with unbalanced classes and, 
therefore, a subset of 114 compartments comprising drought-stressed (n = 57) and non-stressed (n = 
57) was used to assess the classification methods, and the full set (n = 383) containing drought-stressed 
(n = 57) and non-stressed (n = 326) was only used to show the spatial patterns. For in-depth analysis, 
we compared the performance of the RF derived proximity matrix, Euclidean and the Manhattan 
distance matrices for detecting drought-affected forest compartments. 

3. Results and Discussion  

We aimed to establish whether Eucalyptus compartments in drought-prone Zululand could be 
separated into drought-affected and non-affected using cluster analysis based on the NDWI as a 
drought indicator and, if so, to what extent. Cluster plots were constructed using the k-means 
algorithm to separate compartments based on their water content. Figure 4 shows the outcome. We 
grouped 114 Eucalyptus forest compartments of which NDWI had similar temporal variability 
between 2013 and 2017. For the sake of simplicity, we considered all 57 drought-affected 
compartments and randomly sampled a total of 57 non-drought compartments for analysis. The 
results distinguished two main clusters differing in their response to drought, as illustrated in Figure 
4. The combined clusters explained 57.4% of the variation in NDWI values in the data set, 
individually accounting for 34.1% (Dim1) and 23.3% (Dim2), respectively. Cluster 1 comprises 57 
forest compartments classified as drought-affected, mainly due to their relatively low values of 
NDWI (0.01–0.46), and cluster 2 also contains 57 randomly sampled forest compartments classified 
as non-drought compartments, totaling 114 compartments. It is instructive to notice the performance 
of different similarity measures in separating the data. As illustrated in Figure 4, the RF proximity 
matrix appears to separate drought-affected from non-affected better than Manhattan and Euclidean 
measures. Figure 4 also shows that Euclidean has a relative overlap between the two clusters which 
is relatively greater than the other two. In all cases, the drought-affected cluster seems to be more 
uniform, whereas the non-affected compartments, on the other hand, show a relatively broad 
distribution. These distinct characteristics between the groups can be seen in Figure 4.  

 

Figure 4. The cluster plots of three similarity measures of trees based on Normalized Difference Water 
Index (NDWI). Cluster 1 represents drought-affected trees and cluster 2 represents non-drought 
affected trees.  

Having shown the separation of the two main clusters, we extend the analysis by further 
partitioning the clusters based on their responsiveness as measured by the NDWI. To achieve this, 

𝑂𝐴 = 𝐴 + 𝐷𝐴 + 𝐵 + 𝐶 + 𝐷 ൈ 100 (4)
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hierarchical clustering was performed using Ward’s method as an amalgamation rule and RF 
proximity as a measure of dissimilarity. The dissimilarity level of the height (difference in NDWI 
values) was set at 2.5, resulting in two main clusters—the drought-affected and the non-affected—as 
illustrated in the dendrogram in Figure 5. This is because drought-affected and non-affected clusters 
are clearly separable at the 2.5 similarity level.  

 
Figure 5. Hierarchical clustering of drought-affected (Yes) and non-affected (No) compartments using 
three similarity measures based on NDWI. 

The first cluster consists mainly of drought-affected forest compartments and the second cluster 
is not affected by drought. As shown in Figure 5, the application of the RF proximity matrix was 
relatively better in grouping forest compartments in their appropriate clusters and the dissimilarity 
level of a few compartments between different clusters was too small. The performance of both 
Manhattan and Euclidean distance was almost similar, and the dissimilarity level of relatively more 
compartments between clusters was higher than the RF proximity matrix. This inconsistency seems 
to emphasize the combined effect of site and species physiological mechanisms since tree species [60], 
and even individuals [61], differ in their reaction to the 2015 drought event. Another possible source 
of complication is silvicultural practices such as harvesting, which would naturally affect the Landsat 
signal. This together with shifting climate conditions makes it difficult to adopt the means for 
consistent spatial and temporal monitoring of drought impacts. Despite these obstacles, the 
hierarchical clustering based on NDWI was able to reliably and accurately record the drought 
characteristics of Eucalyptus plantations. 

Figure 5 confirms that hierarchical clustering analysis using the RF proximity matrix revealed 
high consistency in grouping drought-affected forest compartments; a negligible number of non-
drought compartments were spotted within cluster 1. This is, in part, due to less variation in water 
content because trees were already suffering from water stress. Also, some drought-affected 
compartments were represented within a non-drought cluster because of the complication of the 
greater variability of water content in the trees that were represented in such compartments.  

The results showed that the unsupervised RF proximity matrix is capable of separating 
homogenous forest compartments based on their drought characteristics with consistently high 
accuracies (Table 1). More specifically, the RF proximity matrix achieved the highest overall accuracy 
of 87.7%, followed by Manhattan (85.9%) and Euclidean (79.9%) similarity measures. The 
performance of the RF proximity matrix was superior in detecting drought-affected compartments 
and non-drought compartments, with producer’s and user’s accuracies ranging from 84.2% to 91.2%. 
Manhattan ranged from 42.8% to 98.2%, while the Euclidean similarity measure had accuracies 
stretching from 37.2% to 94.7%. These results confirm conclusions by Peerbhay et al. [45,62], who also 
showed the superiority of using the proximity matrix to map anomalous bugweed pixels in 
commercial forest plantations using remotely sensed datasets.  
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Table 1. Accuracy assessments for different similarity measures (drought stressed (n = 57) and non-
stressed (n = 57)).  

Similarity Measure  
Producer’s Accuracy (%) User’s Accuracy (%)  

Overall Accuracy (%) 
Drought No-drought Drought  No-drought 

Random Forest (RF) 
proximity 

84.2 91.2 90.5 85.2 87.7 

Manhattan 73.6 98.2 42.8 57.1 85.9 
Euclidean 65.3 94.7 37.2 62.7 79.9 

Time series of monthly NDWI values from 2013 to 2017 for all clusters are presented in Figure 
6. In this figure, sites with trees with relatively high water content are displayed as darker colors, 
whereas the water-stressed ones are shown as lighter colors. The results reveal a wave-like pattern of 
plant water content, with notable reduction in four successive time slices: (a) August 2013 to 
December 2014, (b) August 2014 to February 2015, (c) August 2015 to March 2016 and (d) August 
2016 to February 2017. This implies that there were short breaks in the drought for both clusters, with 
marked seasonal cycles of drought severity over the study period. This validates Baudoin’s [15] 
assertion that the 2015 drought was the longest of all drought events in the South African record, 
especially at two successive seasonal scales (2014–2016) and was of profound magnitude. These 
effects were more prominent in the drought-affected cluster (cluster 1); this corresponds to the light 
elements in the heat map, which reveals distinct tonal differences for both clusters 1 and 2. There is a 
markedly darker tone for the non-drought cluster, especially from March to July each year, and the 
consistently lighter tone for the drought-affected cluster, respectively displaying higher-to-medium 
and low NDWI values. Disparities between these clusters in terms of NDWI variability are evident, 
such that the least variation is observed in the drought-affected cluster of trees, whereas the most 
effect corresponds to the greatest influence of drought. 

 
Figure 6. Figure showing the variation of NDWI values for each cluster from 2013 to 2017. Darker 
tones represent high NDWI values and light tones represent low NDWI values. Red in the 
classification tree represents drought-affected compartments and blue represents non-affected 
compartments. 
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The greatest decline in the NDWI values was observed for November 2015, when the lighter 
tones in the heat map coincide with the drought-affected cluster. This area received a relatively low 
monthly mean (48.8 mm) rainfall during this quarter compared to other years (Figure 7). The effect 
of the drought in November is also noticeable in the non-drought cluster, implying that even the 
drought-tolerant hybrid trees were affected at that time. This exceptional reduction in vegetation 
water content coincides with the combined effects of the most extreme El Niño event [15] and record-
breaking temperatures [63]. This El Niño caused a delay in the onset of rainfall and a decline in the 
total precipitation in the summer rainfall areas of South Africa, with its associated water stress for 
vegetation [64], with an exceptional impact on Zululand where our study was based. This observation 
may explain widespread drought-induced tree dieback reported by Crous et al. [3] in this area. These 
results are in harmony with those of Xulu et al. [2], who observed a substantial reduction of forest 
canopy over the entire KwaMbonambi plantation in 2015. These authors further noted different 
reactions of trees in different parts of the plantation, where most trees exhibited lower NDVI values 
while some remnants remained relatively stable; the current study offers some explanations in that 
some trees are drought-responsive while others are not. Given the instructive insights offered by heat 
map analysis pertaining to the changes in water content of vegetation in each cluster over the study 
period, the question that arises now is, in which part of the plantation are the changes identified 
apparent? 

 

Figure 7. Quarterly mean rainfall and temperature over KwaMbonambi from 2013 to 2017.  

After clustering the drought-affected and non-affected forest compartments, we constructed 
quarterly averaged maps of the spatiotemporal patterns of NDWI over the area studied between 2013 
and 2017 (Figure 8), which indicates the consistency with the results in Figure 6. Spatially, the results 
display a patchy distribution of low NDWI values (shown as red and orange) across the study area, 
but appear relatively prominent in the central-east towards the northern part of the plantation. This 
northern part, towards the town of Mtubatuba, experiences long-lasting, drier conditions and hence 
it is expected that trees over this section should exhibit lower values of NDWI. In fact, the SA Forestry 
[4] reported a greater decline of growth trends over drier areas north of Mtubatuba, where an 
ominous 35% to 40% reduction in the E.g×u clone was apparent during the drought period. 
Unfortunately, the current E. g×u clone is maladapted to extreme drought conditions, and the 
Corymbia hybrids are supported in this area of extreme drought which prevailed from 2014 to 2016. 
Generally, from 2013 to 2015, the results show a fluctuating but decreasing tendency in NDWI values 
when water stress in the plantation was widespread. During this period, South Africa recorded the 
lowest annual rainfall since 1904 [65]; it is assumed to have been worse over the drought-prone region 
studied. A slight recovery in rainfall receipts is noticeable from 2016, particularly in the central parts 
of the study area towards the north.  
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Figure 8. The spatial pattern of quarterly NDWI values over KwaMbonambi from 2013 to 2017.  

Overall, our results demonstrate the value of Google Earth Engine and the RF proximity matrix 
for proving to be a cost-effective and fast approach to discriminate drought-affected trees from non-
affected ones. This is particularly relevant for countries such as South Africa that are frequently 
affected by drought events and of which their economy is largely dependent on agricultural systems. 
We hope our results can help to inform drought management plans so that forest productivity is 
optimized in the face of a shifting climate. 

4. Conclusions 

Our results demonstrate that hierarchical cluster analysis is a practical approach to group and 
delineate forest plantations based on their drought characteristics. The RF proximity matrix 
successfully identified drought-affected from non-affected forest compartments with high overall 
accuracy of 87.7%, surpassing Manhattan (85.9%) and Euclidean (79.9%) distance measures. Cluster 
1 displayed a uniform pattern of and mainly lower NDWI values. Cluster 2 showed more variation 
in NDWI values. We found a few overlapping clusters, partly due to the varying sensitivity of hybrid 
Eucalyptus clones to drought stress, which presented complications for clustering. Furthermore, the 
heat map allowed us to determine the temporal evolution of water stress in the clusters. We observed 
the apparent reduction in leaf water content in all the years studied, starting in the summer, with the 
most substantial decline in November 2015, which coincided with an extreme El Niño event and the 
hottest period in the climate records. Spatially, our results showed furthermore that the recent intense 
drought had a differential impact on the KwaMbonambi plantation, which was particularly 
pronounced over the central-east towards the northern part of the forest. Overall, unsupervised 
hierarchical clustering analysis indicate that the NDWI can explain the patterns of drought-stress in 
homogeneous planted forests with high fidelity and with more insight in our study area than had 
previously. Future research may be extended to broader scales and may also include other species, 
particularly in areas affected by drier drought conditions. It would also be ideal to test the model of 
different forests so as to identify factors that could improve its performance. Clear-cut compartments 
may present challenges in the performance of the method, since the water content is greatly altered 
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during the process. Hierarchical cluster analysis is a superior method for improving our 
understanding of the complex response of planted forests to drought stress for these reasons: (a) it 
can handle large amounts of data and is able to reach conclusions rapidly; (b) dendrograms and heat 
maps display the associations of the tree species involved without user prejudice; (c) the R software 
provides unrestricted state-of-the-art statistical analysis and visualization and (d) the full range of 
high-density time series data for vegetation is readily available on cloud-based high-performance 
computing systems.  

Author Contributions: Conceptualization, S.X., R.I., K.P. and M.G.; methodology, formal analysis, resources, 
writing of original draft, S.X., R.I. and K.P. and review and editing of final manuscript: S.X., R.I., K.P. and M.G.  

Funding: This research was funded by the South African National Space Agency (SANSA), the University of 
KwaZulu-Natal and the National Research Foundation (NRF) of South Africa (grant number 114898).   

Acknowledgments: The authors would like to thank Sappi Forests-SA for granting access to the study sites and 
excellent working conditions.  

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. DAFF (Department of Agriculture, Forestry and Fisheries). Facts and figures on the gross domestic 
product. Available online: https://www.daff.gov.za/daffweb3/Branches/Forestry-Natural-Resources-
Management/Forestry-Regulation-Oversight/Facts-and-Figures/GDP/ (accessed on 9 February 2019). 

2. Xulu, S.; Peerbhay, K.; Gebreslasie, M.; Ismail, R. Drought influence on forest plantations in Zululand, 
South Africa, using MODIS time series and climate data. Forests 2018, 9, 528. 

3. Crous, C.J.; Greyling, I.; Wingfield, M.J. Dissimilar stem and leaf hydraulic traits suggest varying drought 
tolerance among co-occurring Eucalyptus grandis × E. urophylla clones. S. Afr. For. J. 2018, 80, 175–184. 

4. SA Forestry. Challenges of forestry in Zululand. Available online: 
http://saforestryonline.co.za/articles/2844/ (accessed on 1 April 2019). 

5. Bijaber, N.; El Hadani, D.; Saidi, M.; Svoboda, M.D.; Wardlow, B.D.; Hain, C.R.; Poulsen, C.C.; Yessef, M.; 
Rochdi, A. Developing a remotely sensed drought monitoring indicator for Morocco. Geosciences 2018, 8, 
55. 

6. Feller, U.; Vaseva, I.I. Extreme climatic events: Impacts of drought and high temperature on physiological 
processes in agronomically important plants. Front Environ. Sci. 2014, 2, 39. 

7. Shongwe, M.E.; van Oldenborgh, G.J.; van den Hurk, B.; van Aalst, M. Projected changes in mean and 
extreme precipitation in Africa under global warming. Part II: East Africa. J. Clim. 2011, 24, 3718–3733. 

8. Malherbe, J.; Dieppois, B.; Maluleke, P.; Van Staden, M.; Pillay, D.L. South African droughts and decadal 
variability. Nat. Hazards 2016, 80, 657–681. 

9. Gazol, A.; Camarero, J.J.; Anderegg, W.R.L.; Vicente-Serrano, S.M. Impacts of droughts on the growth 
resilience of northern hemisphere forests. Glob. Ecol. Biogeogr. 2017, 26, 166–176. 

10. Van Mantgem, P.J.; Stephenson, N.L.; Byrne, J.C.; Daniels, L.D.; Franklin, J.F.; Fulé, P.Z.; Harmon, M.E.; 
Larson, A.J.; Smith, J.M.; Taylor, A.H.; Veblen, T.T. Widespread increase of tree mortality rates in the 
western United States. Science 2009, 323, 521–524. 

11. Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, C.D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; 
Floyd, M.L.; Belnap, J.; Anderson, J.J. Regional vegetation die-off in response to global-change-type 
drought. Proc. Natl. Acad. Sci. USA 2005, 102, 15144–15148. 

12. Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality 
and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 1–55. 

13. Young, D.J.; Stevens, J.T.; Earles, J.M.; Moore, J.; Ellis, A.; Jirka, A.L.; Latimer, A.M. Long-term climate and 
competition explain forest mortality patterns under extreme drought. Ecol. Lett. 2017, 20, 78–86. 

14. Bell, D.M.; Cohen, W.B.; Reilly, M.; Yang, Z. Visual interpretation and time series modeling of Landsat 
imagery highlight drought's role in forest canopy declines. Ecosphere 2018, 9, e02195. 

15. Baudoin, M.A.; Vogel, C.; Nortje, K.; Naik, M. Living with drought in South Africa: Lessons learnt from the 
recent El Niño drought period. Int. J. Disast. Risk Reduct. 2017, 23, 128–137. 

16. Bahta, Y.T.; Jordaan, A.; Muyambo, F. Communal Farmers’ perception of drought in South Africa: Policy 
implication for drought risk reduction. Int. J. Disaster Risk Reduct. 2016, 20, 39–50. 



Forests 2019, 10, 531 13 of 15 

 

17. De Jager, E. SA rainfall in 2015 the lowest on record. Available online: 
https://www.politicsweb.co.za/politics/sa-rainfall-in-2015-the-lowest-on-record--saws (accessed on 1 April 
2019). 

18. Rouault, M.; Richard, Y. Intensity and spatial extension of drought in South Africa at different time scales. 
Water SA 2003, 29, 489–500. 

19. Anyamba, A.; Tucker, C.J.; Mahoney, R. From El Niño to La Niña: Vegetation response patterns over east 
and southern Africa during the 1997–2000 period. J. Clim. 2002, 15, 3096–3103. 

20. AgriSA. A rain drop in the drought. Report to the Multi-Stakeholder Task Team on the Drought—Agri SA’s 
Status Report on the Current Drought Crisis, Viewed; Agri South Africa: Pretoria, South Africa, 2016. 

21. Hayes, M.J.; Svoboda, M.D.; Wardlow, B.D.; Anderson, M.C.; Kogan, F. Drought Monitoring: Historical and 
Current Perspectives; CRC Press: Boca Raton, FL, USA, 2012. 

22. McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T., Plaut, J.; Sperry, J.; West, 
A.; Williams, D.G.; Yepez, E.A. Mechanisms of plant survival and mortality during drought: why do some 
plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739. 

23. Elliott, K.J.; Swank, W.T. Impacts of drought on tree mortality and growth in a mixed hardwood forest. J. 
Veg. Sci. 1994, 5, 229–236. 

24. Klos, R.J.; Wang, G.G.; Bauerle, W.L.; Rieck, J.R. Drought impact on forest growth and mortality in the 
southeast USA: An analysis using forest health and monitoring data. Ecol. Appl. 2009, 19, 699–708. 

25. Martin-Benito, D.; Anchukaitis, K.J.; Evans, M.N.; Del Río, M.; Beeckman, H.; Cañellas, I. Effects of drought 
on xylem anatomy and water-use efficiency of two co-occurring pine species. Forests 2017, 8, 332. 

26. Schwantes, A.M.; Swenson, J.J.; Jackson, R.B. Quantifying drought-induced tree mortality in the open 
canopy woodlands of central Texas. Remote Sens. Environ. 2016, 181, 54–64. 

27. Pausas, J.G.; Fernández-Muñoz, S. Fire regime changes in the western Mediterranean basin: From fuel-
limited to drought-driven fire regime. Clim. Change 2012, 110, 215–226. 

28. Kolb, T.E.; Fettig, C.J.; Ayres, M.P.; Bentz, B.J.; Hicke, J.A.; Mathiasen, R.; Stewart, J.E.; Weed, A.S. Observed 
and anticipated impacts of drought on forest insects and diseases in the United States. For. Ecol. Manag. 
2016, 380, 321–334. 

29. Byer, S.; Jin, Y. Detecting drought-induced tree mortality in Sierra Nevada forests with time series of 
satellite data. Remote Sens. 2017, 9, 929. 

30. Neumann, M.; Mues, V.; Moreno, A.; Hasenauer, H.; Seidl, R. Climate variability drives recent tree 
mortality in Europe. Glob. Chang. Biol. 2017, 23, 4788–4797. 

31. Rahmat, S.N.; Jayasuriya, N.; Bhuiyan, M. Assessing droughts using meteorological drought indices in 
Victoria, Australia. Hydrol. Res. 2015, 46, 463–476. 

32. Grissino-Mayer, H.D.; Fritts, H.C. The International tree-ring data bank: An enhanced global database 
serving the global scientific community. Holocene 1997, 7, 235–238. 

33. Peña-Gallardo, M.; Vicente-Serrano, S.M.; Domínguez-Castro, F.; Quiring, S.; Svoboda, M.; Beguería, S.; 
Hannaford, J. Effectiveness of drought indices in identifying impacts on major crops across the USA. Clim. 
Res. 2018, 75, 221–240. 

34. Mladenova, I.E.; Jackson, T.J.; Njoku, E.; Bindlish, R.; Chan, S.; Cosh, M.H.; Holmes, T.R.H.; De Jeu, R.A.M.; 
Jones, L.; Kimball, J.; Paloscia, S. Remote monitoring of soil moisture using passive microwave-based 
techniques—Theoretical basis and overview of selected algorithms for AMSR-E. Remote Sens. Environ. 2014, 
144, 197–213. 

35. Dalezios, N.R.; Blanta, A.; Spyropoulos, N.V.; Tarquis, A.M. Risk identification of agricultural drought for 
sustainable agroecosystems. Nat. Hazards Earth Syst. Sci. 2014, 14, 2435–2448. 

36. Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; López-Moreno, J.I.; Azorín-
Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; Morán-Tejeda, E. Response of vegetation to drought 
time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. 

37. Rao, M.; Silber-Coats, Z.; Powers, S.; Fox III, L.; Ghulam, A. Mapping drought-impacted vegetation stress 
in California using remote sensing. GIsci. Remote Sens. 2017, 54, 185–201.  

38. Wilhite, D.A.; Hayes, M.J.; Knutson, C.; Smith, K.H. Planning for drought: Moving from crisis to risk 
management. J. Am. Water. Resour. Assoc. 2000, 36, 697–710. 

39. Rullan-Silva, C.R.; Olthoff, A.E.; De la Mata, J.A.D.; Alonso, A.P. Remote monitoring of forest insect 
defoliation. A review. Forest Syst. 2013, 3, 377–391. 



Forests 2019, 10, 531 14 of 15 

 

40. Shamshirband, S.; Gocić, M.; Petković, D.; Javidnia, H.; Ab Hamid, S.H.; Mansor, Z.; Qasem, S.N. Clustering 
project management for drought regions determination: A case study in Serbia. Agric. For. Meteorol. 2015, 
200, 57–65. 

41. Santos, J.F.; Pulido-Calvo, I.; Portela, M.M. Spatial and temporal variability of droughts in Portugal. Water 
Resour. Res. 2010, 46, doi:10.1029/2009WR008071. 

42. McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In 
Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993. 

43. Rahmat, S.N.; Jayasuriya, N.; Bhuiyan, M. Identification of homogeneous areas for drought frequency 
analysis. Int. J. Integr. Eng, 2017, 9, 18–26.  

44. Xie, P.; Lei, X.; Zhang, Y.; Wang, M.; Han, I.; Chen, Q. Cluster analysis of drought variation and its mutation 
characteristics in Xinjiang province, during 1961–2015. Hydrol. Res. 2018, 49, 1016–1027. 

45. Peerbhay, K.; Mutanga, O.; Lottering, R.; Ismail. Mapping Solanum mauritianum plant invasions using 
WorldView-2 imagery and unsupervised random forests. Remote Sens. Environ. 2016, 182, 39–48. 

46. DWAF (Department of Water Affairs and Forestry). Water Resource Protection and Assessment Policy 
Implementation Process. Resource Directed Measures for Protection of Water Resource: Methodology for the 
Determination of the Ecological Water Requirements for Estuaries; Department of Water Affairs and Forestry: 
Pretoria, South Africa, 2004. 

47. Dovey, S.B. Effects of Clear Felling and Residue Management on Nutrient Pools, Productivity and 
Sustainability in A clonal Eucalypt Stand in South Africa. Ph.D. Thesis, Stellenbosch University, 
Stellenbosch, South Africa, 2012. 

48. Little, K.; Rolando, C. The impact of vegetation control on the establishment of pine at four sites in the 
summer rainfall region of South Africa. S. Afr. For. J. 2001, 192, 31–39.  

49. Mucina, L.; Rutherford, M.C. The Vegetation of South Africa, Lesotho and Swaziland; South African National 
Biodiversity Institute: Pretoria, South Africa, 2006. 

50. Luvuno, L.; Kotze, D.; Kirkman, K. Long-term landscape changes in vegetation structure: Fire management 
in the wetlands of KwaMbonambi, South Africa. Afr. J. Aquat. Sci. 2016, 41, 279–288.  

51. Lesch, W.; Scott, D.F. The response in water yield to the thinning of Pinus radiata, Pinus patula and Eucalyptus 
grandis plantations. For. Ecol. Manag. 1997, 99, 295–307. 

52. Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from 
space. Remote Sens. Environ. 1996, 58, 257–266. 

53. Ceccato, P.; Flasse, S.; Gregoire, J.M. Designing a spectral index to estimate vegetation water content from 
remote sensing data: Part 2. Validation and applications. Remote Sens. Environ. 2002, 82, 198–207. 

54. Assal, T.J.; Anderson, P.J.; Sibold, J. Spatial and temporal trends of drought effects in a heterogeneous semi-
arid forest ecosystem. For. Ecol. Manag. 2016, 365, 137–151. 

55. Liaw, A.; Wiener, M. Classification and regression by random Forest. R. News 2002, 2, 18–22. 
56. Singh, A.; Yadav, A.; Rana, A. K-means with Three different distance metrics. Int. J. Comp. Appl. 2013, 67, 

13–17.  
57. Krumbein, W.C.; Graybill, F.A. An Introduction to Statistical Models in Geology; McGraw-Hill: New York, 

NY, USA, 1965. 
58. R Development Core Team. Writing R Extensions; R Foundation for statistical computing: Vienna, Austria, 

2012.  
59. Unger, D.R.; Hung, I.K.; Kulhavy, D.L. Accuracy assessment of land cover maps of forests within an urban 

and rural environment. Forest Sci. 2013, 60, 591–602. 
60. Forner, A.; Valladares, F.; Bonal, D.; Granier, A.; Grossiord, C.; Aranda, I. Extreme droughts affecting 

Mediterranean tree species’ growth and water-use efficiency: The importance of timing. Tree Physiol. 2018, 
38, 1127–1137. 

61. Peguero-Pina, J.J.; Sancho-Knapik, D.; Cochard, H.; Barredo, G.; Villarroya, D.; Gil-Pelegrin, E. Hydraulic 
traits are associated with the distribution range of two closely related Mediterranean firs, Abies alba Mill. 
and Abies pinsapo Boiss. Tree Physiol. 2011, 31, 1067–1075. 

62. Peerbhay, K.Y.; Mutanga, O; Ismail, R. Random forests unsupervised classification: The detection and 
mapping of Solanum mauritianum infestations in plantation forestry using hyperspectral data. IEEE J. Sel. 
Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3107–3122. 

63. Tollefson, J. 2015 breaks heat record: Pacific Ocean warming helped to make last year the hottest in history. 
Nature 2016, 529, 450–451. 



Forests 2019, 10, 531 15 of 15 

 

64. Urban, M.; Berger, C.; Mudau, T.E.; Heckel, K.; Truckenbrodt, J.; Odipo, V.O.; Smit, I.P.J.; Schmullius, C. 
Surface moisture and vegetation cover analysis for drought monitoring in the southern Kruger National 
Park using Sentinel-1, Sentinel-2 and Landsat-8. Remote Sens. 2018, 10, 1482; doi:10.3390/rs10091482.  

65. BFAP (Bureau for Food and Agricultural Policy). Policy Brief on the 2015/2016 Drought; Bureau for Food and 
Agricultural Policy: Pretoria, South Africa, 2016.  

 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open 
access article distributed under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 
 


