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Abstract: Research Highlights: Today’s approaches to modeling of forest stands are in most cases
based on that the regression models and they are constructed as static sub-models describing
individual stands variables. The disadvantages of this method; it is laborious because too many
different equations need to be assessed and empirical choices of candidate equations make the results
subjective; it does not relate to the stand variables dynamics against the age dimension (time); and
does not consider the underlying covariance structure driving changes in the stand variables. In
this study, the dynamical model defined by a fixed-and mixed effect parameters trivariate stochastic
differential equation (SDE) is introduced and described how such a model can be used to model
quadratic mean diameter, mean height, number of trees per hectare, self-thinning line, stand basal area,
stand volume per hectare and much more. Background and Objectives: New developed marginal
and conditional trivariate probability density functions, combining information generated from an
age-dependent variance-covariance matrix of quadratic mean diameter, mean height and number of
trees per hectare, improve stand growth prediction, and forecast (in forecast the future is completely
unavailable and must only be estimated from historical patterns) accuracies. Materials and Methods:
Fixed-and mixed effect parameters SDE models were harmonized to predict and forecast the dynamics
of quadratic mean diameter, mean height, number of trees per hectare, basal area, stand volume per
hectare, and their current and mean increments. The results and experience from applying the SDE
concepts and techniques in an extensive whole stand growth and yield analysis are described using a
Scots pine (Pinus sylvestris L.) experimental dataset in Lithuania. Results: The mixed effects scenario
SDE model showed high accuracy, the percentage root mean square error values for quadratic mean
diameter, mean height, number of trees per hectare, stand basal area and stand volume per hectare
predictions (forecasts) were 3.37% (10.44%), 1.82% (2.07%), 1.76% (2.93%), 6.65% (10.41%) and 6.50%
(8.93%), respectively. In the same way, the quadratic mean diameter, mean height, number of trees
per hectare, stand basal area and stand volume per hectare prediction (forecast) relationships had
high values of the coefficient of determination, R2, 0.998 (0.987), 0.997 (0.992), 0.997 (0.988), 0.968
(0.984) and 0.966 (0.980), respectively. Conclusions: The approach presented in this paper can be used
for developing a new generation stand growth and yield models.

Keywords: quadratic mean diameter; mean height; number of trees per hectare; basal area per
hectare; stand volume per hectare; trivariate diffusion process; trivariate probability density function

1. Introduction

In the forestry literature, two philosophically different streams of research have been used; statistical
inference and mechanistic modeling mechanisms describe the relationships between whole-stand
(thereafter-stand) variables [1–3]. First attempts to model stand growth and yield were done in
Germany by Schwappach [4], and in Austria by Guttenberg [5]. At that time, graphical smoothing of
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empirical data was used to create relationships between stand-level dependent and response variables.
Mathematical modeling of the stand yield and growth start in the middle of the 20th century by
Assmann and Franz [6]. Stand density (number of trees per hectare), mean or max stand height, and
quadratic diameter at breast height are fundamental stand variables when developing mathematical
models for predicting and forecasting forest stand growth and yield. Quadratic mean diameter is the
measure of the average tree diameter and stems from the exact relationship B = k × N × (Dq)2 (B is
the basal area and k is a constant that depends on the measurement units used) [7]. The quadratic
mean diameter assumes greater value than the arithmetic mean depending on the variance, W2, of
the diameter, D (by the relationship (Dq)2 = D2 + W2). The quadratic mean diameter is essential
for estimating product yields. Stand density denotes a quantitative measurement of the stand and
evaluates the degree of stem crowding within a particular forest area. The interaction between stand
density, mean height, quadratic mean diameter and volume for even-aged stands are graphically
represented by stand density diagrams [8–10]. Stand density diagrams are average whole stand models
those facilitate the stand density silvicultural management. The construction of the stand density
diagrams was traditionally performed using regression techniques to fit the non-linear allometric
or algebraic difference equations for the quadratic mean diameter, volume and number of trees per
hectare [10,11]. The algebraic difference approach represents a four-variable prediction system that
is suitable for modeling pooled cross-sectional and longitudinal data, remeasured at least once [12].
The state-space models ignore correlations between tree size components and stand density [11]. The
relationship between mean tree size and stand density have received considerable attention by forest
researchers and have many applications in stand growth and yield modeling [1].

The philosophy of the mean stand volume estimation is based on stand density, mean stand
height, and quadratic mean stand diameter. Classical mathematical modeling of relationships between
mean tree size and stand density have been framed in a linear form as ln(N) + β ln(S) = constant
that varies with species and site (Reineke’s rule [13]) and nonlinear form as Dq = (β1Hβ

2N + β3Hβ
4),

where N is the number of trees per hectare and S is some measure of stem size (mean stand height, H,
quadratic mean diameter, Dq, or volume, V) (see [3]; and references therein). Traditionally, the linear
regression relationship has been used to relate the number of trees per hectare and quadratic mean
diameter [13]. The Reineke’s rule was initially used to establish the −3/2 power (Reineke’s β≈ −1.605
and varies little with species, age or site quality) law of self-thinning [14–17] and the universality of
this exponent was documented by several researchers [18,19]. Reineke’s Rule curve is referred to as the
‘reference curve’ [13,15], which graphically represents the potential profile of the density and diameter
relationships of a particular species across sites.

The natural mortality process is not a continuous one, and it can be mimicked by using the Markov
type diffusion processes. The main assumptions are that the current state of a stand and random forces
completely determines its future evolution; independently of the history of past silvicultural treatments.
The linear regression relationships presented in previous studies [3,13] have provided information on
the number of trees per hectare that can be predicted at a given quadratic mean diameter, however,
they do not relate to the stand density dynamic against the age dimension (time), and do not consider
the underlying covariance structure driving changes in the number of trees per hectare, mean height,
and quadratic mean diameter.

Historically, pure and even aged stand growth models that estimate structure changes over time
were related to diameter distribution functions [20]. In this study, we attempted to link different types
of whole stand models over a large geographic area by developing a trivariate mixed effect parameters
stochastic differential equation (SDE) framework for an integrated system in which models of different
resolutions are related in a unified mathematical structure. The newly developed probability density
function can therefore be used for different models of stand attributes such as quadratic mean diameter,
mean height, number of trees per hectare, stand basal area, stand volume per hectare and much more.

In the few last decades, the modeling of stochastic phenomenon in all areas of applied sciences has
incorporated fluctuations in the model parameters, state variables, and measurement errors that are
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omitted in deterministic models [21,22]. The first SDEs models were introduced to forestry by Suzuki
(1971) [23] and Sloboda (1977) [24]. Diameter and height dynamics via an average stand age as a
bivariate stochastic process were modeled using fixed effects reducible SDEs [25]. More recently, mixed
effects univariate SDE models have provided the means to quantify and distinguish additional sources
of variability in an observed dataset [26]. In addition to the inter-individual variability, multivariate
SDE models also consider the covariance structure between size components [27–29].

The main goal of this study was to introduce the mathematics of fixed- and mixed effect parameters
trivariate SDEs and to describe how such models can be used to aid our understanding of stand density,
mean height, quadratic mean diameter, basal area, stand volume, their current and mean annual
increments, and other stand attributes evolution via stand age in a forest stand. The theoretical results
are illustrated using a Scots pine (Pinus sylvestris L.) dataset in Lithuania.

2. Materials and Methods

2.1. Stochastic Differential Equation Model

This paper supposed that at stand age t, the underlying state variables vector is a trivariate random
process denoted by X(t). In the sequel, the number of trees per hectare, mean quadratic diameter, and
mean height as response variables, X(t) = (X1(t), X2(t), X3(t))T = (N(t), D(t), H(t))T, are modeled by a
system of 3-variate SDE against the stand age. The Vasicek type SDE [30] was proposed due to its
solutions with the normal shape probability density function. In this study, the Vasicek type 3-variate
SDE in the Itô (1942) [31] sense evolving in M different experimental stands randomly chosen from a
theoretical population takes the following form:

dXl(t) = A
(
Xl(t)

)
dt + B

1
2 ·dWl(t), l = 1, 2, . . . , M (1)

here: the drift term A(x) is defined as:

A(x) =
(
β1

(
α1 + φl

1 − x1
)
, β2

(
α2 + φl

2 − x2
)
, β3

(
α3 + φl

3 − x3
))T

(2)

the diffusion term B is defined as:

B =


σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 (3)

t ∈ [t0; T], t0 = 5 (we postulate that trees in a stand on the average achieve the mean height 1.3 m and
quadratic mean diameter 0.01 cm at 5 years, and tree diameters are measured outside the bark at 1.3 m

above the ground), Xl(t0) = x0 = (x10, x20, x30)
T =

(
δ+ φl

4, 0.01, 1, 3
)T

, Wl(t) =
(
Wl

1(t), Wl
2(t), Wl

3(t)
)T

is a 3-variate Brownian motion, δ is an unknown parameter that outlines initial stand density, φl
i,

1 ≤ i ≤ 4, are independent and normally distributed random variables with zero mean and unknown
constant variances σ2

i , σi j, 1 ≤ i, j ≤ 3 are fixed effect parameters to be estimated, αi, 1 ≤ i ≤ 3 are
the asymptotic maximum stand size component parameters (maximum number of trees per hectare,
mean quadratic diameter, and mean height), βi, 1 ≤ i ≤ 3 are the speed of mean reversion at which the
process tends to go around the value of αi, 1 ≤ i ≤ 3, and σii, 1 ≤ i ≤ 3 are volatility parameters. The
components Wl

i(t) and φl
j are mutually independent for all 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, l = 1, 2, . . . , M.

Taking into account the transformation Yl(t) =
(
eβi(t)·Xl

i(t), i = 1, 2, 3
)T

[28], we can deduce that

the conditional random vector
(
Xl(t)

∣∣∣Xl(t0) = x0
)
=

(
Xl

i(t)
∣∣∣Xl

i(t0) = xi0, i = 1, 2, 3
)T

has a 3-variate

normal distribution N3
(
µl(t), Σ(t)

)
with the mean vector µl(t) defined by:
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µl(t) =


µl

1(t)
µl

2(t)
µl

3(t)

 =

α1 + φl

1 +
(
δ+ φl

4 −
(
a1 + φl

1

))
e−β1(t−t0)

α2 + φl
2 +

(
x2,0 − (a2 + φl

2)
)
e−β2(t−t0)

α3 + φl
3 +

(
x3,0 − (a3 + φl

3)
)
e−β3(t−t0)

 (4)

the variance-covariance matrix Σ(t):

Σ(t) =


ν2

11(t) ν2
12(t) ν2

13(t)
ν2

12(t) ν2
22(t) ν2

23(t)
ν2

13(t) ν2
23(t) ν2

33(t)


=


σ11
2β1

(
1− e−2β1(t−t0)

)
σ12
β1+β2

(
1− e−(β1+β2)(t−t0)

)
σ13
β1+β3

(
1− e−(β1+β3)(t−t0)

)
σ12
β1+β2

(
1− e−(β1+β2)(t−t0)

)
σ22
2β2

(
1− e−2β2(t−t0)

)
σ13
β2+β3

(
1− e−(β2+β3)(t−t0)

)
σ13
β1+β3

(
1− e−(β1+β3)(t−t0)

)
σ13
β2+β3

(
1− e−(β2+β3)(t−t0)

)
σ33
2β3

(
1− e−2β3(t−t0)

)


(5)

and probability density function:

f (x1, x2, x3, t|θ, Ψ ) =
1

(2π)2∣∣∣Σ(t)∣∣∣ 1
2

exp
(
−

1
2

Ω(x1, x2, x3, t)
)

(6)

Ω(x1, x2, x3, t) =
(
x− µl(t)

)T
(Σ(t))−1

(
x− µl(t)

)
,

θ =
{
α1, β1,α2, β2,α3, β3, σ11,ρ12,ρ13, σ22,ρ23, σ33

}
, Ψ =

{
φl

1,φl
2,φl

3,φl
4, l = 1, 2, . . . , M

}
,

here, the parameters of covariance, σij, 1 ≤ i, j ≤ 3, i , j, are re-parameterized using coefficients of
correlation, ρi j, 1 ≤ i, j ≤ 3, i , j, as: σi j =

√
σii·σ j jρi j.

2.2. Marginal and Conditional Distributions

Since the random process
(
Xl(t)

∣∣∣Xl(t0) = x0
)
=

(
Xl

i(t)
∣∣∣Xl

i(t0) = xi0, i = 1, 2, 3
)T

has a 3-variate

normal distribution N3
(
µl(t), Σ(t)

)
, l = 1, 2, . . . , M defined by Equations (4)–(6) and referred to properties

of multivariate normal distribution [32], the marginal univariate distribution of Xl
i(t)

∣∣∣Xl
i(t0) = xi0 ,

1 ≤ i ≤ 3 is univariate normal N1
(
µl

i(t), ν
2
ii(t)

)
with mean µl

i(t) and variance ν2
ii(t) functions defined by

Equations (4) and (5).
The marginal bivariate distribution of

(
X j(t)

∣∣∣X j(t0) = x j0, Xk(t)
∣∣∣Xk(t0) = xk0

)
, 1 ≤ j, k ≤ 3 is

bivariate normal N2
(
µ2,l(t), Σ jk(t)

)
with the mean vector, µ2,l(t), defined by:

µ2,l(t) =
(
µl

j(t),µ
l
k(t)

)T
(7)

the variance-covariance matrix Σ jk(t):

Σ jk(t) =

 ν2
j j(t) ν2

jk(t)

ν2
jk(t) ν2

kk(t)

 (8)

and the coefficient of correlation trend defined by:

ρ jk(t) =
v2

jk(t)√
v2

j j(t)·v
2
kk(t)

(9)
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The conditional distribution of
(
Xl

i(t)
∣∣∣Xl

i0(t0) = xi0
)
, 1 ≤ i ≤ 3 at a given

(
Xl

j(t) = x j, Xl
k(t) = xk

)
,

j, k ∈ {1, 2, 3}/{i} is a univariate normal N1
(
η2,l

i (t, x j, xk),λ2
i,2(t)

)
. Using Equations (4) and (5), the mean

and variance can be computed in the following forms:

η2,l
i

(
t, x j, xk

)
= E

(
Xl

i(t)
∣∣∣∣Xl

j(t) = x j, Xl
k(t) = xk

)
= µl

i(t) + Σ12(t)
[
Σ jk(t)

]−1[
x2
− µ2,l(t)

]
(10)

λ2
i,2(t) = Var

(
Xl

i(t)
∣∣∣∣Xl

j(t) = x j, Xl
k(t) = xk

)
= v2

ii(t) − Σ12(t)
[
Σ jk(t)

]−1
(Σ12(t))

T (11)

Σ12(t) =
(

v2
i j(t) v2

ik(t)
)

(12)

here x2 =
(

x j xk
)T

.

The conditional distribution of
(
Xl

i(t)
∣∣∣Xl

i(t0) = xi0
)
, 1 ≤ i ≤ 3 at a given

(
Xl

j(t) = x j

)
, j ∈ {1, 2, 3}/{i}

is a univariate normal N1
(
η1,l

i (t, x j),λ2
i,1(t)

)
. Using Equations (4), (5), and (9), the mean and variance

can be computed in the following forms:

η1,l
i

(
t, x j

)
= E

(
Xl

i(t)
∣∣∣∣Xl

j(t) = x j

)
= µl

i(t) +
v2

i j(t)

v2
j j(t)

(
x j − µ

l
j(t)

)
(13)

λ2
i1(t) = Var

(
Xl

i(t)
∣∣∣∣Xl

j(t) = x j

)
=

(
1− ρ2

i j(t)
)
v2

i j(t) (14)

In summary, Equations (11) and (14) show us that the univariate conditional distributions of the
ith stand size component (number of trees per hectare, mean quadratic diameter, and mean height)
have an age dependent variance, which is the same for each previously listed scenario of predictor
stand size components.

2.3. Data

The data used were obtained from permanent experimental Scots pine (Pinus sylvestris L.) stands
(PESs) from the period 1983–2010. For the production of this dataset, a network of 15 stands was
established in even-aged, older, naturally regenerated pine-dominated stands, and 2 in artificially
regenerated young pine stands [33]. The area of the PESs varied from 0.1 to 0.6 ha (latitude,
53◦54′–56◦27′ N; longitude, 20◦56′–26◦51′ E; altitude, 10–293 m). Mean temperatures vary from
−16.4 ◦C in winter to +22◦ in summer. Precipitation is distributed throughout the year although
predominantly in summer; the average is, approximately, 680 mm a year.

All trees in each sample plot were numerically numbered. Two measurements of diameter at
breast height (1.3 m above root collar) were made (at right angles to one another) to the nearest 0.1 cm
using calipers and a mean was calculated. The total tree height in each plot was measured by using a
clinometer to the nearest 0.5 m. The dataset was formed by including data from four to six inventories
(i.e., remeasurements). The mean stand age was measured in each PES during the first inventory.
For each PES, we calculated the number of growing trees per hectare (N), the quadratic mean diameter
(dq), and mean stand height (hm). Since PESs observation periodic intervals are short, the forecast
validation technique is based on a dataset composed from the last remeasurement of all PES. Validation
dataset gives the best indication of the accuracy that can be expected when forecasting the future.
The dataset in the estimation period (without the last remeasurement) are used to estimate model
parameters. The dynamics of the number of trees per hectare (N), quadratic mean diameter (dq), and
mean stand height (hm) are presented in Figure 1 for the estimation (in black) and validation (in red)
datasets. The site productivity index estimated by mean height at the base age varied from 19 to 33 m
and based on mean diameter at the base age varied from 21 to 43 cm [33].
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Figure 1. Observed datasets. Black–estimation dataset; red–validation dataset; (A) number of trees per
hectare; (B) quadratic mean diameter; (C) mean height; (D) stand volume per hectare.

2.4. Estimating Results

In practice, the maximum likelihood methodology is presented within the framework of
discretely observed stochastic processes. Suppose that we observe the number of trees per
hectare, quadratic mean diameter, and mean height

{(
xl

1,1, xl
2,1, xl

3,1

)
,
(
xl

1,2, xl
2,2, xl

3,2

)
, . . . ,

(
xl

1,ni
, xl

2,ni
, xl

3,ni

)}
at discrete time (age) points

{
tl
1, tl

2, . . . , tl
ni

}
. The maximum likelihood estimation procedure for

the fixed effect parameters vectors θ f , θr (for both fixed- and mixed effect scenarios) and the
random effect vector Ψ =

{
φl

1,φl
2,φl

3,φl
4, l = 1, 2, . . . , M

}
(for mixed effect scenario) determines

the vectors θ̂ f , θ̂r, and Ψ̂ that maximize the log-likelihood that the number of trees per hectare,
quadratic mean diameter, and mean height 3-variate stochastic process described by Equation (1)
produces for the observed dataset. For the fixed effect scenario model, the parameter estimators
θ̂ f =

{
δ̂, α̂1, β̂1, α̂2, β̂2, α̂3, β̂3, ˆσ11, ˆρ12, ˆρ13, ˆσ22, ˆρ23, ˆσ33

}
were calculated by the maximization of the

log-likelihood function defined by Equation (A1) (see Appendix A), and for the mixed effect scenario
model the fixed effect parameters θ̂r =

{
δ̂, α̂1, β̂1, α̂2, β̂2, α̂3, β̂3, ˆσ11, ˆρ12, ˆρ13, ˆσ22, ˆρ23, ˆσ33, σ̂1, σ̂2, σ̂3, σ̂4

}
and random effects Ψ̂ =

{
φ̂l

1, φ̂l
2, φ̂l

3, φ̂l
4, l = 1, 2, . . . , M

}
were calculated by the maximization of the

approximated log-likelihood function defined by Equations (A4) and (A5) (see Appendix A) using
the NLPSolve procedure in the symbolic algebra system MAPLE [34]. The results of the parameter
estimates are summarized in Table 1.

Table 1. Estimates of fixed effect parameters.

Scenario
Parameters of drift term

α1 β1 α2 β2 α3 β3 δ

Fixed 278.6 0.0378 28.53 0.0228 39.40 0.0136 5705.0
Mixed 330.9 0.0343 28.59 0.0227 41.03 0.0128 5496.4

Scenario
Parameters of diffusion term

σ11 ρ12 ρ13 σ22 ρ23 σ33 σ1 σ2 σ3 σ3

Fixed 12,765.0 −0.5447 −0.6327 0.4189 0.9104 0.3473 - - - -
Mixed 625.3 −0.7589 −0.5572 0.0330 0.6412 0.0237 435.7 4.249 7.047 1837.9
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3. Results

3.1. Marginal Bivariate Distributions

The focus of this study was mainly on the methodology of growth and yield modeling using a
3-variate SDE. The newly developed 3-variate probability density function defined by Equations (4)–(6)
is reliable for its multiplicity of cases such as the marginal univariate and bivariate, and conditional
univariate and bivariate probability density functions of the number of trees per hectare, quadratic mean
diameter and mean height, and its global attractiveness in the context of the application perspective.

To demonstrate that the observed dataset of Scots pine trees does indeed follow the marginal
bivariate estimated probability density function with the mean vector defined by Equation (7) and
the covariance matrix defined by Equation (8), we used simple graphical techniques. In the sequel,
the estimates of the fixed effect parameters θ̂ f and θ̂r were calculated by the maximum likelihood
procedure (see Table 1) using the estimation dataset (see Figure 1). In the forestry literature, calibration
means that random effects are calibrated using a supplementary sample of observations taken from
that sampling unit. The number of trees per hectare, quadratic mean diameter, and mean height
could be predicted (forecasted) for the estimation (validation) dataset either by using random effects
set to estimators determined by maximum likelihood procedure, or by using random effects that
were calibrated from the previous observations

{
(x1,1, x2,1, x3,1), (x1,2, x2,2, x3,2), . . . , (x1,m, x2,m, x3,m)

}
at

discrete previous times (ages) {t1, t2, . . . , tm}. The random effects (φ1,φ2,φ3,φ4) can be calibrated using
the following form:

φ̂ = argmax
(φ1,φ2,φ3,φ4)

m∑
j=1

ln
(

f
(
x1, j, x2, j, x3, j, t j

∣∣∣θ̂r,φ1,φ2,φ3,φ4
))
+

4∑
i=1

ln(p(φi|σ̂i )) (15)

Figure 2 illustrates the estimated bivariate density functions with fixed effect- and mixed effect
scenarios on three randomly selected stands at the ages tni , i = 1, 2, 3, which correspond the observed
validation dataset. The random effects were calibrated by Equation (15) using two previous observations
at discrete times

{
tni−1, tni−2

}
, i = 1, 2, 3 from the estimation dataset. The estimated bivariate probability

density functions presented in Figure 2 are flatter and the standard deviations are larger for the
fixed-effect scenario, which most likely reflects the full-scale conditions of the temporal and spatial
hierarchy dataset sampled. Figure 2 indicates that the fixed effect parameters bivariate density accounts
for the range of size components variation in different stands. For mixed effect parameters scenario
each stand size component variation should be expected to be peculiarly adapted to the stand variation.

The 95% confidence region plots of these estimated bivariate density functions and the observed
data point from validation dataset are presented in Figure 3. The bivariate analog of confidence interval
is given by an ellipsoid: (

x− µ2,l(t)
)T[

Σ jk(t)
]−1(

x− µ2,l(t)
)
= χ2

2(α) (16)

where 1 ≤ j, k ≤ 3, mean vector µ2,l(t) and covariance matrix Σ jk(t) are defined by Equations (7) and (8),
respectively, and χ2

2(α) is from the Chi-square distribution with 2 degree of freedom. Specifically,
if α = 0.05 (χ2

2(0.05) ≈ 5.99), Equation (16) provides the confidence region containing 95% of the
probability mass of the marginal bivariate distribution. Figure 3 shows that the mixed effect parameters
bivariate estimated probability density function centered the observed data point better than the fixed
effect parameters bivariate estimated probability density function for the three randomly selected
stands from the validation dataset.
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Figure 2. Estimated marginal bivariate density functions for three randomly selected stands. (M1–M3)
mixed effects scenario; (F1–F3) fixed effects scenario; (M1–F1) the first stand (age 96 years), quadratic
mean diameter and number of trees per hectare; (M2–F2) the second stand (age 65 years), mean height
and number of trees per hectare; (M3–F3) the third stand (age 29 years), mean height, and quadratic
mean diameter.

Figures 2 and 3 show that the estimated mixed effect parameters bivariate probability density
functions become steeper than fixed effects parameters densities. The 95% confidence regions of the
estimated mixed effect parameters bivariate densities and the observed values given in Figure 3 show
that the mixed effects model seems well capture the forthcoming values from the validation (forecast)
dataset, but the fixed effects model shows worse results. Figure 3 illustrates negative correlations
between mean tree size components and stand density and positive correlation between quadratic
mean diameter and mean height.
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Figure 3. The 95% confidence regions with the observed data point for three randomly selected:
(M1–M3) mixed effects scenario; (F1–F3) fixed effects scenario; (M1,F1) the first stand, quadratic mean
diameter and number of trees per hectare; (M2,F2) the second stand, mean height and number of trees
per hectare; (M3,F3) the third stand, mean height, and quadratic mean diameter.

3.2. Maximum Density-Size Relationships

The number of trees per hectare varies with the quadratic mean diameter of the stand. Stands of
small quadratic mean diameter have a large number of trees, while stands of large quadratic mean
diameter have relatively few [20]. To develop the number of trees per hectare trajectory for all stands,
it is necessary to determine a relationship describing development of the number of trees per hectare
development versus the quadratic mean diameter [16,35,36]. The relationship between the quadratic
mean diameter (increasing over age) and the number of live trees per hectare (decreasing over age) are
commonly described by means of a “limiting relationship” [13]. In forest management interest has
focused on how the quadratic mean diameter affects the tails of the conditional distribution of the
number of trees per hectare [20,37]. Since the marginal univariate distribution of Xl

i(t)
∣∣∣Xl

i(t0) = xi0 ,

i = 1, 2; l = 1, 2, . . . , M is the normal N1
(
µl

i(t); v2
ii(t)

)
with mean and variance functions defined by

Equations (4) and (5), it is possible to write the quantile equations (“limiting relationship”) of the
number of trees per hectare and quadratic mean diameter subject to any desired conditional quantile,
0 < p < 1. Expressions for p-quantiles, 0 < p < 1, qxl

i(t, p), 1 ≤ i ≤ 2, l = 1, 2, . . . , M can be formulated
as follows:

qxl
1(t, p) = Φ−1

p

(
µl

1(x); ν
2
11(x)

)
(17)
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qxl
2(t, p) = Φ−1

p

(
µl

2(x); ν
2
22(x)

)
(18)

A parametric representation of both (p,0.5)-quantile equations depending on the age as the
parameter,

{(
qxl

2(t, 0.5), qxl
1(t, p)

)
, t = 10, . . . , 110

}
, describes the maximum number (p-level quantile) of

trees per hectare over the quadratic mean diameter. Figure 4 presents the fitted parametric equations
involving the maximum number (p-level quantile) of trees per hectare over the quadratic mean diameter
with five different p-quantile scenarios:

1)
{(

qxl
2(t, 0.5), qxl

1(t, 0.25)
)
, t = 10, . . . , 110

}
, lower quartile of stand density over quadratic

mean diameter;
2)

{(
qxl

2(t, 0.5), qxl
1(t, 0.75)

)
, t = 10, . . . , 110

}
, upper quartile of stand density over quadratic

mean diameter;
3)

{(
qxl

2(t, 0.5), qxl
1(t, 0.5)

)
, t = 10, . . . , 110

}
, mean of stand density over quadratic mean diameter;

4)
{(

qxl
2(t, 0.5), qxl

1(t, 0.95)
)
, t = 10, . . . , 110

}
, 95% percentile of stand density over quadratic

mean diameter;
5)

{(
qxl

2(t, 0.5), qxl
1(t, 0.05)

)
, t = 10, . . . , 110

}
, 5% percentile of stand density over quadratic

mean diameter.
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Figure 4. Relationships between the number of live trees per hectare (declining over age) and the
quadratic mean diameter (increasing over age). (M1) mixed effects scenario for the first stand; (M2)
mixed effects scenario for the second stand; (M3) mixed effects scenario for the third stand; (F) fixed
effects scenario for all stands; solid-blue line—the third 0.5-quantile scenario; dash-red line—the second
0.75-quantile scenario; dot-black line—the first 0.25-quantile scenario; dashdot-green line—the 0.05-and
0.95-quantile scenarios; circle—observed values.

4. Discussion

4.1. Models of the Number of Trees per Hectare, Quadratic Mean Diameter and Mean Height

Whole stand growth and yield modeling is still facing many challenges among which their
complexity including interactions between various stand size components. This paper provides the
state of art on advanced modeling on how stand size components (the number of trees per hectare,
quadratic men diameter and mean height) interact. It is well-known that height growth is less sensitive
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to competition than diameter growth, so that height-diameter relationships vary depending on past
stand densities [38]. This statement confirms that univariate stand size component relationships are
unsatisfactory for the modeling of stand volume and biomass. The limitation of univariate methods
for the frequency analysis of diameter (or height) has attracted the attention of foresters in recent
decades [39,40]. Moreover, it is necessary to consider multivariate probability problems, since they can
easily connect univariate marginal and conditional distribution probability density functions of stand
density, quadratic mean diameter and mean height with their multivariate probability distributions.

Using univariate marginal probability densities, N1
(
µl

i(t), ν
2
ii(t)

)
, i = 1, 2, 3, l = 1, 2, . . . ,

M with mean and variance defined by Equations (4) and (5) and the conditional probability
densities, N1

(
η2,l

i (t, x j, xk),λ2
i,2(t)

)
, N1

(
η1,l

i (t, x j),λ2
i,1(t)

)
, with the mean and variance defined by

Equations (10)–(14), respectively, we can predict (forecast) the response variable (the number of
trees per hectare, quadratic mean diameter, and mean height) versus age and a given selection of
one or two predictor variables. The number of trees per hectare, quadratic mean diameter, mean
height, and basal area dynamics in the forestry literature have been formulated using a wide range of
mathematical relationships from linearized fixed effect parameters regression equations to nonlinear
mixed effect parameters generalized relationships [1,3,41]. The relationship between the quadratic
mean diameter and the other stand variables such as the number of trees per hectare and mean height
has many applications in forest inventory using remote sensing technologies [42].

In this study, the models concerning the dynamics of the number of trees per hectare, quadratic
mean diameter, and mean height are listed by Equations (4), (10), and (12). Figure 5 shows the number
of trees per hectare, quadratic mean diameter, mean height, and their 2 sigma limits dynamics via
age for three randomly selected stands, using marginal univariate probability densities where mean
and variance are defined by Equations (4) and (5) for both mixed- and fixed effects scenarios (the
random effects were calibrated by Equation (15) using two previous observations at discrete times{
tni−1, tni−2

}
, i = 1, 2, 3, from the estimation dataset). Plots presented in Figure 5 reveal the superiority

of the mixed effects scenario to the fixed effects scenario. The mean curves of the number of trees
per hectare, quadratic mean diameter and mean height for all stands in the validation dataset (see
Figure 5) were clearly differentiated and each forecast curve was found passing really quite close to the
measured point in the validation dataset. Except for some stands, which measurements passed 95%
confidence limits of the mean trends (see Figure 5) for both fixed- and mixed effect scenarios. The 95%
confidence limits generated for the mixed effects scenario showed that the quadratic mean diameter
and mean height models complete cover both estimation and validation datasets.

Table 2 shows the fit statistics for both the estimation and validation datasets of the number of
trees per hectare, quadratic mean diameter, mean height models, the p-value of the Shapiro-Wilk
(1965) [43] normality test (SW-test) of the residuals, and the p-value of the Stjudent test (T-test) [44] for
the difference between the mean value of model predictions (forecasts) and the mean observed value
of experiment measurements, when the random effects were calibrated by Equation (15) using two
previous observations at discrete times

{
tni−1, tni−2

}
, i = 1, 2, 3 from the estimation dataset. Table 3 shows

the fit statistics and p-values of tests for both the estimation and validation datasets of the number of
trees per hectare, quadratic mean diameter, mean height models using fixed effect parameters scenario.
The Student (T)-test analyze whether the mean prediction (forecast) bias is excessively positive or
excessively negative. It is understandable that what define small p-values of both statistics SW and T is
relative to inherent variability of the estimation and validation datasets, and the more data we have
the more certain we can be about the deviations.
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Figure 5. Mean of response variable dynamics and mean ± 2 standard deviations with observed
data points. Mean response variable prediction trend from initial age to observed stand age—solid
line and forecast trend from this age forward—dot line, for three randomly selected stands (from
first till third row). First row—mixed effects scenario for the first stand; second row—mixed effects
scenario for the second stand; third row—mixed effects scenario for the third stand; last row—fixed
effects scenario for all stands; mean ± 2 standard deviations—dash; estimation dataset—black circles,
validation dataset—red circles.
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Table 2. Statistical indexes and p-values of the Shapiro-Wilk (SWp) and Student (Tp) tests for the mixed
effect scenario models *.

(Equation):
(Predictors)

Estimation Dataset (Prediction) Validation Dataset (Forecast)

B
(%B) PR AB

(%AB) R2 SW p
T p

B
(%B) PR AB

(%AB) R2 SW p
T p

Number of trees per hectare

(4): (t) 1.753
(–0.62) 75.91 57.20

(5.45) 0.996 0.090
0.989

−67.10
(–3.80) 132.03 102.06

(11.68) 0.982 0.650
0.750

(10): (d,h,t) 0.352
(–0.06) 45.18 32.31

(3.33) 0.998 0.002
0.998

23.98
(8.05) 107.77 73.09

(10.04) 0.985 0.650
0.909

(13): (d,t) 0.455
(−0.09) 46.02 32.34

(3.38) 0.998 0.002
0.997

21.37
(7.11) 101.06 66.87

(9.02) 0.987 0.018
0.919

(13): (h,t) 0.704
(–0.21) 52.95 36.78

(3.08) 0.998 0.009
0.996

–8.79
(6.91) 140.03 96.92

(12.77) 0.973 0.047
0.967

Quadratic mean diameter

(4): (t) −0.012
(–0.18) 0.669 0.531

(3.75) 0.987 0.652
0.985

1.021
(5.01) 1.212 1.069

(5.22) 0.984 0.779
0.423

(10): (N,h,t) –0.001
(0.27) 0.340 0.266

(2.03) 0.997 0.980
0.998

0.371
(1.66) 0.598 0.494

(2.34) 0.992 0.779
0.769

(13): (N,t) −0.002
(0.03) 0.410 0.318

(1.99) 0.995 0.906
0.997

0.598
(2.38) 0.922 0.771

(3.59) 0.981 0.619
0.636

(13): (h,t) −0.004
(0.39) 0.387 0.309

(2.94) 0.996 0.688
0.994

0.400
(2.54) 0.758 0.571

(3.21) 0.990 0.835
0.751

Mean height

(4): (t) −0.008
(–0.84) 0.653 0.495

(3.36) 0.991 0.059
0.992

1.045
(3.83) 1.317 1.154

(4.80) 0.985 0.440
0.525

(10): (N,d,t) −0.002
(–0.74) 0.349 0.256

(2.37) 0.997 0.133
0.998

0.399
(0.67) 0.894 0.765

(3.61) 0.985 0.440
0.807

(13): (N,t) −0.002
(–0.72) 0.444 0.342

(2.74) 0.996 0.435
0.998

0.746
(1.93) 1.309 1.127

(5.17) 0.974 0.036
0.649

(13): (d,t) –0.002
(−0.76) 0.359 0.268

(2.42) 0.997 0.349
0.998

0.377
(0.69) 0.814 0.700

(3.26) 0.988 0.198
0.817

* The best values of the statistical indexes are in bold, the mean prediction bias (B = 1
n

n∑
i=1

(yi − ŷi)) and the

percentage mean prediction bias (%B = 1
n

n∑
i=1

yi−ŷi
yi
·100), the absolute mean prediction bias (AB = 1

n

n∑
i=1

∣∣∣yi − ŷi
∣∣∣)

and the percentage mean absolute prediction bias (%B = 1
n

n∑
i=1

∣∣∣∣ yi−ŷi
yi

∣∣∣∣), an adjusted root mean square error (PR =√
B2 + 1

n−1

n∑
i=1

(yi − ŷi − B)2) and coefficient of determination (R2 = 1−

n∑
i=1

(yi−ŷi)
2

n∑
i=1

(yi−y)2
). Here n =

M∑
i=1

ni is the total number

of observations used to fit (forecast) the model, M is the number of stands, ni is the number of measured trees in the
ith stand, yi, ŷi and y are the measured, estimated, and average values of the dependent variable (number of trees
per hectare, N, quadratic mean diameter, d, or mean height, h, stand basal area, G, stand volume, VS).

Statistical indexes and p-values of both used tests presented in Tables 2 and 3 reveal that mixed
effect scenario framework outperformed fixed effects scenario. Therefore, from a statistical point of
view (see Table 2; Table 3), for the impact on the number of trees per hectare, and quadratic mean
diameter dynamics, mean height was revealed to be the most important predictor variable. For the
impact on the mean height dynamic, quadratic mean diameter was revealed to be the most important
predictor variable. For the mixed effects scenario forecast relationships of the number of trees per
hectare, quadratic mean diameter and mean height attained acceptable values of statistical indexes and
p-values of tests (see Table 2). For the fixed effects scenario, all forecast relationships attained lower
values of statistical indexes and p-values of tests than the mixed effects scenario models (compare
Table 2; Table 3).
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Table 3. Statistical indexes and p-values of the Shapiro-Wilk (SWp) and Student (Tp) tests for the fixed
effect scenario models *.

(Equation):
(Predictors)

Estimation Dataset (Prediction) Validation Dataset (Forecast)

B
(%B) PR AB

(%AB) R2 SW p
T p

B
(%B) PR AB

(%AB) R2 SW p
T p

Number of trees per hectare

(4): (t) 21.52
(−15.22) 465.27 327.35

(33.99) 0.833 0.143
0.864

10.43
(−16.97) 259.95 174.54

(32.12) 0.907 0.117
0.960

(10): (d,h,t) 13.52
(−4.37) 304.47 223.59

(23.27) 0.929 0.296
0.915

121.51
(15.58) 222.52 157.51

(27.24) 0.952 0.117
0.565

(13): (d,t) 17.02
(−7.19) 359.18 269.73

(28.24) 0.901 0.586
0.893

111.22
(5.34) 271.51 213.08

(36.72) 0.916 0.496
0.598

(13): (h,t) 14.71
(−4.35) 306.04 224.67

(23.32) 0.932 0.223
0.907

124.60
(15.81) 224.99 159.99

(27.63) 0.952 0.101
0.556

Quadratic mean diameter

(4): (t) 0.066
(−2.32) 3.171 2.697

(14.90) 0.712 0.0004
0.919

1.342
(5.14) 3.099 2.508

(10.68) 0.701 0.582
0.295

(10): (N,h,t) 0.004
(0.13) 1.069 0.877

(6.33) 0.967 0.048
0.995

0.098
(0.34) 1.501 1.096

(4.90) 0.914 0.740
0.937

(13): (N,t) 0.009
(−0.43) 2.432 2.014

(11.87) 0.831 0.013
0.989

1.373
(5.97) 2.850 2.223

(9.95) 0.761 0.708
0.284

(13): (h,t) 0.008
(0.21) 1.075 0.880

(6.25) 0.967 0.024
0.990

0.104
(0.43) 1.506 1.091

(4.84) 0.913 0.719
0.934

Mean height

(4): (t) −0.087
(−3.46) 3.479 2.872

(15.41) 0.733 0.0004
0.906

1.515
(4.92) 3.758 2.698

(10.32) 0.730 0.147
0.359

(10): (N,d,t) 0.0004
(−0.80) 0.941 0.805

(5.65) 0.980 0.004
0.999

0.333
(0.90) 1.617 1.315

(5.40) 0.943 0.840
0.838

(13): (N,t) -0.0006
(−1.14) 2.304 1.874

(11.29) 0.883
3.9 ×
10−5

0.999

1.545
(6.05) 3.103 2.245

(9.19) 0.835 0.106
0.350

(13): (d,t) −0.019
(−1.26) 1.161 0.977

(6.58) 0.970 0.064
0.976

0.196
(0.08) 1.779 1.376

(5.49) 0.929 0.976
0.904

* The best values of the statistical indexes are in bold.

For Scots pine stands the number of trees per hectare dynamic over dominant height was examined
by Stankova (2016) [45] and attained the bias value −11.0 (−0.37%), the root mean square error value
403 and the coefficient of determination value 0.948. The transition functions method for the stand
density predictions, using dataset from teak forests in southern India [46], produced coefficient of
determination, 0.985, and root mean square error, 43.15. For Pinus radiata D. Don plantations in
Galicia [9] explained 99.3% of the total variance. For the new developed mixed effects scenario stand
density models the predictive ability accessed by statistical indexes such as the mean prediction
bias (percentage), 0.352 (−0.06%), the root mean squared error of predictions (percentage), 45.173
(3.36%), the mean absolute prediction bias (percentage), 32.305 (3.32%), exceeds the results in previous
studies [45].

Previous prediction models of quadratic mean diameter for Pinus radiata D. Don plantations in
Galicia [9] attained coefficient of determination, 0.959, and root mean square error, 4.5 cm, and for
teak forests in southern India [46] attained coefficient of determination, 0.742, and root mean square
error, 2.3 cm. For Chinese pine (Pinus tabulaeformis) plantations situated on upland sites throughout
northwestern Beijing the forecast model (5 year) attained coefficient of determination, 0.927 [47]. In this
study, for the mixed effects scenario, the quadratic mean diameter prediction (forecast) defined by
Equation (10) proved satisfactory with the mean prediction (forecast) bias, −0.001 cm (0.188 cm), the
absolute prediction (forecast) bias, 0.266 cm (0.494 cm), the root mean squared prediction (forecast)
error, 0.340 cm (0.469 cm), and prediction (forecast) coefficient of determination, 0.997 (0.992).
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4.2. Stand Basal Area Models

Stand basal area, G, is an important variable of a forest stand which is simply the sum of the
cross-sectional area at breast height of all trees per hectare of a forest stand (m2/ha). Stand basal area
can be used to estimate stand volume or as a useful measure of the degree of competition in the
stand [1,13]. Basal area growth describes the stand development over age and is traditionally used in
exploring management scenarios [48]. Stand basal area is defined by:

G =
π·D2

40000
·N (19)

By using the marginal bivariate (number of trees per hectare and quadratic mean diameter)
probability density function defined by Equations (7) and (8), the basal area dynamic takes the
following form:

G(t) =

+∞∫
−∞

+∞∫
−∞

π·x2
2

40000
·x1· f

(
x1, x2

∣∣∣Θ̂ )
dx1dx2, Θ̂ ∈

{(
θ̂ f , 0

)
,
(
θ̂r, Ψ̂

)}
(20)

Figure 6 represents the basal area dynamic over age with the observed dataset for three randomly
selected stands using mixed effect scenario (the random effects were calibrated by Equation (15))
and for all stands using fixed effect scenario. Figure 6 illustrates that the mixed effects basal area
relationship, defined by Equation (20), for three randomly selected stands provides the predicted
(forecast) values closer to the observed stand basal area values than the fixed effects model.
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Figure 6. Evolution of basal area over age. (M1) mixed effects scenario for the first stand; (M2) mixed
effects scenario for the second stand; (M3) left—mixed effects scenario for the third stand; (F) fixed
effects scenario for all stands; black solid line—stand basal area prediction curve; black dot line—stand
basal area forecast curve; black circles—estimation dataset, red circles—validation (forecast) dataset.

Table 4 shows the goodness-of-fit statistics for stand basal area. From Table 4, it is clear that the
mixed effect scenario model was more accurate in predicting (forecasting) stand basal area than the
fixed effect scenario model.
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Table 4. Statistical indexes and p-values of the Shapiro-Wilk (SWp) and Student (Tp) tests for the basal
area (m2 ha−1) Equation (20) *.

Scenario
Estimation Dataset (Prediction) Validation Dataset (Forecast)

B
(%B) PR AB

(%AB) R2 SW p
T p

B
(%B) PR AB

(%AB) R2 SW p
T p

Mixed −0.115
(−0.30) 1.760 1.251

(6.23) 0.968 0.097
0.907

0.993
(3.80) 2.733 2.028

(7.38) 0.988 0.580
0.678

Fixed −0.746
(−8.08) 6.917 4.972

(20.70) 0.510 0.098
0.452

4.352
(4.67) 9.568 7.081

(27.70) 0.867 0.104
0.082

* The best values of the statistical indexes are in bold.

Stand basal area modeling has a long history in forestry. In this study, for the mixed effects scenario
the basal area per hectare defined by Equation (20) proved satisfactory with the mean prediction
(forecast) bias, −0.115 m2 ha−1 (0.993 m2 ha−1), the absolute prediction (forecast) bias, 1.251 m2 ha−1

(2.028 m2 ha−1) and attained a high coefficient of determination, 0.968 (0.988). The combination
modeling technique used to model stand basal area of Norway spruce [49] attained the coefficient of
determination, 0.974, and the bias, 0.1 m2 ha−1. For loblolly pine (Pinus taeda L.) stands disaggregation
modeling technique explained 86.2% of the total variance, attained the prediction bias 0.06 m2 ha−1

and the absolute prediction bias 2.17 m2 ha−1 [50].
Dynamic of a forest stand is a multiple process whose important stand level characteristic is

biomass accumulation. Forest stand productivity is the production that can be realized at a certain
site with a specified management regime. Assessment of the production capacity is necessary for the
scientifically sound management. Stand basal area increment models are highly useful for estimation of
the biomass production. The rate of increments could be ascertained either by systematic measurements
of standing trees or by a stem analysis of felled trees. Using dynamical stand basal area growth model
defined by Equation (20), we can define the current and mean annual basal area increments CAIG,
MAIG, respectively, in the following forms:

CAIG(t) =
d
dt

G(t) (21)

MAIG(t) =
1
t

G(t) (22)

Relationships between basal area current and mean annual increments against the age of a forest
stand are illustrated in Figure 7. As seen in Figure 7, the age of a stand exerts a strong influence on
current and mean annual basal area increments. The effect of the age on basal area current annual
increments becomes negligible above 100 years of age. From Figure 7, we can see that the culmination
of the mean annual basal area increment is reached even later than that of the current annual increment.
The peak in current and mean annual basal area increments occurred approximately at 20 and 30 years
of age, respectively. The current annual basal area increment becomes equal to a mean annual increment
at 30–45 years of age.
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Figure 7. Evolution of current and mean annual basal area increments over age. (M1) mixed effects
scenario for the first stand; (M2) mixed effects scenario for the second stand; (M3) mixed effects scenario
for the third stand; (F) fixed effects scenario for all stands; black solid line—MAIG prediction curve;
black dot line—MAIG forecast curve; red solid line—CAIG prediction curve; red dot line—CAIG

forecast curve; black circles—estimation dataset, red circles—validation (forecast) dataset.

4.3. Stand Volume Models

The methodology of stand volume modeling is one of the main challenges in growth and
yield forecasting [1]. The regression approach is traditionally used to estimate stand volume from
measurements of more accessible variables such as the diameter at breast height and height that
are measured directly in the Lithuanian National Forest Inventory (LNFI) [51]. This paper presents
some current challenges, where multivariate SDEs have become a corner stone of whole stand
growth modeling.

A typical example of a whole stand volume equation is given by [52,53]:

VS = G·H·F =
π·D2

40000
·N·H·F (23)

Stand form factor, F, was estimated using observed datasets (see Figure 2) by a power regression
equation in the following form:

F = F(D, H) = 1.4263 + D−1.0295H0.673 (24)

The trivariate probability density function, f (x, y, z, t|θ, Ψ ) (number of trees per hectare, x,
quadratic mean diameter, y, and mean height, z) defined by Equation (6) enables us to characterize a
stand volume per hectare as a function of any specified stand age, t, in the following form:

VS(t) =
π

40000
·

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

F(y, z)·x·y2
·z· f

(
x, y, z, t

∣∣∣Θ̂ )
·dx·dy·dz, Θ̂ ∈

{(
θ̂ f , 0

)
,
(
θ̂r, Ψ̂

)}
(25)

Figure 8 shows the evolution of the stand volume per hectare as a function of a stand age using
the fixed- and mixed effect scenarios. Table 5 shows the predictive ability for both newly developed
fixed- and mixed effect scenarios stand volume per hectare models defined by Equation (25) for both
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estimation and validation (forecast) datasets using the estimates of parameters presented in Table 1.
Naturally, the models of stand volume per hectare evolution show lower statistical indexes for the
forecast (validation) dataset. The individually observed stand volume per hectare for all stands
from the estimation and validation datasets were calculated by regression Equation (23). On the
whole, for the mixed effects scenario, the stand volume per hectare defined by Equation (25) proved
satisfactory with the percentage mean prediction (forecast) bias, −1.05% (5.47%), the percentage
absolute prediction (forecast) bias, 5.338% (7.86%), the corrected root mean squared error of predictions
(forecasts), 17.352 m3 ha−1 (30.276 m3 ha−1), and attained a high coefficient of determination of
predictions (forecasts), 0.966 (0.980). Relative root mean squared error of stand volume predictions
(forecasts) attained value 6.50% (8.93%). The inclusion of random effects in a trivariate SDE reduced
the mean bias, mean absolute bias and root mean squared error of stand volume predictions (forecasts),
and also increased the coefficient of determination.
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Figure 8. Evolution of stand volume per hectare over age. (M1) mixed effects scenario for the first stand;
(M2) mixed effects scenario for the second stand; (M3) mixed effects scenario for the third stand; (F) fixed
effects scenario for all stands; black solid line–stand volume prediction curve; black dot line–stand
volume forecast curve; black circles–estimation dataset, red circles–validation (forecast) dataset.

Table 5. Statistical indexes and p-values of the Shapiro-Wilk (SWp) and Student (Tp) tests for the stand
volume (m3 ha−1) model (Equation (25)) *.

Scenario
Estimation Dataset (Prediction) Validation Dataset (Forecast)

B
(%B) PR AB

(%AB) R2 SW p
T p

B
(%B) PR AB

(%AB) R2 SW p
T p

Mixed −0.323
(−1.05) 17.355 12.016

(5.33) 0.966 0.008
0.973

19.281
(5.47) 35.894 26.235

(7.86) 0.980 0.028
0.381

Fixed −12.971
(−9.39) 62.403 50.605

(20.87) 0.583 0.360
0.176

57.935
(11.98) 97.901 78.597

(24.49) 0.862 0.119
0.015

* The best values of the statistical indexes are in bold.

According to the results presented by Stankova [45] for Scots pine stands, the best performing
stand volume prediction model achieved prediction bias, −0.480 m3 ha−1 (–1.89%), the root mean
squared prediction error, 41.81 m3 ha−1, and the coefficient of determination, 0.919. The Growfor
(GF) dynamic empirical stand-level model based on the state-space framework [54] used to model
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stand volume of Sitka spruce (lodgepole) pine attained the relative mean prediction bias, −0.01–16.91%
(−2.65–10.60%), the relative root mean squared error, 14.32–23.91% (14.33–29.13%), and the coefficient
of determination, 0.62–0.92 (0.59–0.86). For teak forests in southern India [46] stand volume prediction
models attained coefficient of determination, 0.97, and root mean square error, 13.34 m3 ha−1.

The stand volume curve defined by Equation (25) was used to define current annual increment
(CAIV) and mean annual increment (MAIV) curves, respectively, in the following forms:

CAIV(t) =
d
dt

VS(t) (26)

MAIV(t) =
1
t

VS(t) (27)

CAIV is the yearly stand volume growth rate, while MAIV informs on the stand volume growth
over the whole period from origin to a specific age. Together these curves inform the growth pattern
of the forest stand and are of particular interest to forest managers, as the intersection of CAIV and
MAIV curves informs on theoretical optimal harvest age that maximizes timber productivity [55].
Relationships between stand volume current and mean annual increments against the age of a forest
stand are illustrated in Figure 9. As we see in Figure 9, the age of a stand exerts a strong influence on the
current and mean annual stand volume increments. From Figure 9, we see that the culmination of the
mean annual basal area increment is reached even later than that of the current annual increment. The
peak in current and mean annual basal area increments occurred approximately at 20 and 30 years of
age, respectively. The current annual basal area increment becomes equal to a mean annual increment
at 30–45 years of age.
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Figure 9. Evolution of current and mean annual stand volume increments over age. (M1) mixed
effects scenario for the first stand; (M2) mixed effects scenario for the second stand; (M3) mixed effects
scenario for the third stand; (F) fixed effects scenario for all stands; black solid line-CAIV prediction
curve; black dot line–CAIV forecast curve; blue solid line-MAIV prediction curve; blue dot line–MAIV

forecast curve; black circles–estimation dataset, red circles–validation (forecast) dataset.

5. Conclusions

Growth processes in many areas of forestry, ecology, and environment are often perturbed by
various types of environmental variation. In a general manner, eco-regional mixed effect parameters
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models are used as means to circumvent data collection and subsequent analyses. The essential features
of the trees, the stands, and the way they change with age can be captured through growth and yield
models by using the concept of diffusion processes. Most models of forest stand growth and yield are
constructed from several equations independently fitted to datasets. Separate estimation of all model
components increases overall model errors. This study focused on complex dynamical process defined
by trivariate fixed-and mixed effect parameters Vašiček type SDE. Fundamental representation of a
forest stand is formalized by the age-dependent trivariate probability density function of the number
of trees per hectare, quadratic mean diameter, and mean height. New developed the mixed effect
scenario SDE model relates the number of stems per hectare, quadratic mean diameter and mean height
evolution to a mean stand age in the form of a trivariate age-dependent probability density function.
This density function leads us to a variety of applications that span relationships of the most important
stand characteristics such as the number of stems per hectare, quadratic mean diameter, mean height,
basal area per hectare, stand volume per hectare, their increments and much more. The relationship of
stand variable can be dependent on only stand age, or also on some predictors from a list defined by the
number of stems per hectare, quadratic mean diameter and mean height. The newly developed model
relates stand variables against the age dimension and consider the underlying covariance structure
driving changes in the number of trees per hectare, quadratic mean diameter, and mean height. The
views and results presented in this paper can be used for developing a new generation of stand growth
and yield models. Using permanent sampling data of LNFI, the combination of those type of models
with stem taper stochastic models [51] might be of interest in the wood industry. The potential wood
consumer could get an output of the models, as detailed information on amounts of wanted sizes
of roundwood.

Mixed effects SDE framework has made it possible to build dynamical models of structural
components of forest stands from eco-regional databases like national inventory. Site quality variation
can be accounted via random effect calibration (see, Equation (15)) using a sub-sample of trees measured
for age, height, and breast height diameter.
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Appendix A. Maximum Likelihood Estimates

The SDE model defined by Equation (1) can be fitted to the number of
trees per hectare (x1), quadratic mean diameter (x2), and mean height (x3) samples{(

xl
1,1, xl

2,1, xl
3,1

)
,
(
xl

1,2, xl
2,2, xl

3,2

)
, . . . ,

(
xl

1,nl
, xl

2,nl
, xl

3,nl

)}
at discrete times (ages)

{
tl
1, tl

2, . . . , tl
nl

}
(nl is the

number of observed trees of the lth stand, l = 1, 2, . . . , M) by the maximum likelihood procedure.
The associated maximum log-likelihood function for the 3-variate fixed effect SDE scenario takes the
following form:

LL f (θ
f ) =

M∑
l=1

nl∑
j=1

ln
(

f
(
xl

1, j, xl
2, j, xl

3, j, tl
j

∣∣∣θ f , 0
))

(A1)

where θ f =
{
δ,α1, β1,α2, β2,α3, β3, σ11, σ12, σ13, σ22, σ23

}
are the fixed effects parameters (the same for

all plots).
The maximum likelihood function for the 3-variate mixed effects SDE scenario takes the

following form:

Lr(θ
r, Ψ) =
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+∞∫
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and the maximum log-likelihood function is:

LLr(θr, Ψ)

=
M∑

l=1

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

 nl∑
j=1

ln
(

f
(
xl

1, j, xl
2, j, xl

3, j, tl
j

∣∣∣θr,φl
1,φl

2,φl
3,φl

4

))
+

4∑
i=1

ln
(
p(φl

i|σi )
)dφl

1dφl
2dφl

3dφl
4

(A3)

where θr =
{
δ,α1, β1,α2, β2,α3, β3, σ11, σ12, σ13, σ22, σ23, σ1, σ2, σ3, σ4

}
are the fixed effects parameters

(the same for all plots), Ψ =
{
φl

1,φl
2,φl

3,φl
4, l = 1, 2, . . . , M

}
are random effects, φl

1, φl
2, φl

3, and φl
4 are

independent random variables (stand specific) following normal distributions with a 0 mean and
constant standard deviations σ1, σ2, σ3, and σ4, respectively, and following the normal density functions
p(φl

1|σ1 ), p(φl
2|σ2 ), p(φl

3|σ3 ), and p(φl
4|σ4 ), respectively.

As the 4-variate integral in Equation (A3) does not have a closed form solution and the analytic
expression is known, so using the Laplace transform [56], the maximum log-likelihood function for the
trivariate mixed effects SDE model is approximately given by:

LLr(θ
r, Ψ̂) ≈

M∑
l=1

g
(
φ̂l

∣∣∣θr
)
+

3
2

ln(2π) −
1
2

ln

det


−∂2g

(
φl
|θr

)
∂φi

j∂φ
i
k



φl=φ̂l


 (A4)

The random effects φl =
(
φl

1,φl
2,φl

3,φl
4

)
are estimated by maximization:

Ψ̂ = argmax
φl

g
(
φl

∣∣∣θ̂r
)
, l = 1, 2, . . . , M (A5)

where g
(
φl
|θr

)
=

nl∑
j=1

ln
(

f
(
xl

1, j, xl
2, j, xl

3, j, tl
j

∣∣∣θr,φl
))
+

4∑
i=1

ln
(
p(φl

i|σi )
)
.

The maximization of LLr(θr, Ψ) is a two-step optimization problem. The internal optimization step
estimates the vector φl for every stand l = 1, 2, . . . , M with Equation (A5). The external optimization
step maximizes LLr(θr, Ψ̂) after plugging the estimates φ̂l into Equation (A4). These two steps are
iterated until convergence.
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