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Abstract: Full sets of elastic constants of green Chinese larch (Larix principis-rupprechtii Mayr) with
95% moisture content at four different cross-section sampling positions (from pith to sapwood)
were determined in this work using three-point bending and compression tests. Variations in the
material constants of green Chinese larch from pith to sapwood were investigated and analyzed.
The results showed that the sensitivity of each elastic constant to the sampling position was different,
and the coefficient of variation ranged from 4.3% to 48.7%. The Poisson’s ratios νRT measured at
four different sampling positions were similar and the differences between them were not significant.
The coefficient of variation for Poisson’s ratio νRT was only 4.3%. The four sampling positions had
similar Poisson’s ratios νTL, though the coefficient of variation was 11.7%. The Poisson’s ratio νLT

had the greatest variation in all elastic constants with a 48.7% coefficient of variation. A good linear
relationship was observed between the longitudinal modulus of elastic EL, shear modulus of elasticity
GRT, Poisson’s ratio νRT, and sampling distance. EL, GRT, and νRT all increased with sampling
distance R. However, a quadratic relationship existed with the tangential modulus of elasticity ET,
radial modulus of elasticity ER, shear modulus of elasticity GLT, and shear modulus of elasticity
GLR. A discrete relationship was found in the other five Poisson’s ratios. The results of this study
provide the factual changes in the elastic constants of green wood from pith to sapwood for numerical
modelling of stress wave propagation in trees or logs.
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1. Introduction

Elastic constants, especially the modulus of elasticity (MOE), which indicate the elastic behavior of
wood, are critical parameters for furniture, musical instruments, or wood products, such as plywood,
laminated veneer lumber, and cross laminated timber. Numerical simulation is being increasingly used
to investigate the propagation of stress wave in standing trees or logs [1–4]. Material elastic constants
are required for numerical simulation, especially when defining material properties. Wood, as a complex
and anisotropic material, has considerable variations in its mechanical properties from bottom to top,
pith to sapwood within a tree. In many studies, wood has been considered an orthotropic material,
given its unique and independent material performance in the three principal or orthotropic directions
(radial R, tangential T, and longitudinal L) [5–11]. Nine independent elastic constants (reduced from
twelve elastic constants according to the symmetry of the stress and strain sensor in orthotropic
materials), including three elastic moduli, three shear moduli, and three Poisson’s ratios, are required
to characterize the elastic behavior of orthotropic materials for mechanical analysis. Wood is also a
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hygroscopic material, and its mechanical behavior is therefore impacted by variations in moisture
content (MC) [12–16]. Hering et al. determined all the independent elastic properties of European
beech wood at different moisture conditions (MC ranged from 8.7% to 18.6%), and results indicated
that all elastic parameters, except for Poisson’s ratios νTR and νRT, show a decrease in stiffness with
increasing moisture content [13]. Similarly, Jiang et al. examined the influence of moisture content on
the elastic and strength anisotropy of Chinese fir (Cunninghamia lanceolate Lamb.) wood and found that,
except for Poisson’s ratios, all investigated elastic and strength parameters decreased with increasing
MC (varied from 10.3% to 16.7%), whereby individual moduli and strength values were affected by the
MC to different degrees [14].

Resistance strain gauges and ultrasonic are the two of most commonly used methods determining
the elastic constants of wood. As a destructive method, resistance strain gauges are usually used to
evaluate the material constants of wood. Sliker first proposed the use of compression and bending tests
using strain gauges in wood to determine the elastic constants of materials [6–8]. Many studies had
been conducted to verify the feasibility and validity of this method. Li successfully measured the full
set of elastic constants for Fraxinus mandshurica with 13.4% moisture content via the compression test
using strain gauges [9]. Gong estimated the elastic moduli parallel to the grain of Pinus Massoniana with
15% MC through strain gauges [10]. Wang et al. determined the full set of material constants for White
Birch (Betula platyphylla Suk.) with 12% MC using the compression and three-point bending tests [17].
Shao et al. measured the seven elastic constants of Cunninghamia lanceolata with 12% MC using electric
resistance strain gauges [18]. Aira et al. performed compression tests on dry specimens (around 12%
MC) to determine the elastic constants of Scots pine (Pinus sylvestris L.) and found the MOE values
obtained were greater than the average values for softwoods, and Poisson’s ratios obtained parallel to
the grain were similar to the values in the literature [19].

Ultrasonic, a rapid and efficient non-destructive method for determining material properties,
has drawn increasing attention in wood characteristic measurement. Preziosa et al. first determined
the stiffness matrix of wood using the ultrasonic technique [20,21]. Then, Bucur measured the elastic
constants of six species (pine, spruce, Douglas-fir, oak, beech, and tulip-tree) in the dry condition,
applying ultrasonic to different cubic specimens [22]. Francois proposed the use of a polyhedral
specimen with 26 faces for the determination of all the elements in the stiffness matrix from a single
specimen to measure the elastic constants of dry wood [23]. Many studies have demonstrated the
feasibility of using ultrasonic to measure all the elastic constants from a single specimen of dry wood (MC
ranged from 7.5% to 12.3%) from different species, such as Castanea sativa Mill., ash (Fraxinus excelsior L),
beech, Eucalyptus saligna, Apuleia leiocarpa, and Goupia glabra [24–27].

Although the full material constants of wood can be measured by both resistance strain gauges and
ultrasonic, the full sets of elastic constants for green wood have rarely been reported in the literature.
As wood is often used in a dry state, the elastic constants reported in most published papers for wood
are in these conditions [28–31]. This would lead to a poor representation when the elastic constants of
dry wood are used for modelling standing trees or green logs. Only Davies et al. investigated and
obtained the elastic constants of green Pinus radiata wood using compression and tension tests [32].
Davies et al. stated that the mathematical modelling would be more realistic with the material constants
of green wood rather than those of dry wood. The variation in elastic constants in cross-sections of
green wood from pith to sapwood have not been reported in the literature. Davies et al. only measured
the material constants of the corewood and outerwood of Pinus radiata instead of elastic constants
across whole transverse sections of wood. Although Xavier et al. reported that the two stiffness values
(Q22 and Q66) of P. pinaster varied across three or four different radial positions using the unnotched
Iosipescu test, the moisture content of the specimens was 10.4% and only two stiffness values were
investigated [33]. Therefore, to the best of our knowledge, no full sets of elastic constants varying from
pith to sapwood have been published for green wood. The variations in the mechanical properties of
green wood from pith to sapwood have not yet been studied.
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The main purpose of this research was to determine the elastic constants of green Chinese larch
from pith to sapwood using compression and three-point bending tests, as well as to investigate and
analyze the variations in the mechanical characteristics of green Chinese larch from pith to sapwood.
We aimed to obtain basic knowledge about the mechanical properties of wood from pith to sapwood,
and to describe standing trees or logs as an orthotropic material in numerical modelling. Use of wood
could be optimized in various applications, such as papermaking, furniture, musical instruments,
or wood products, according to the measured material performance in different parts of the wood.
Standing trees or logs could be modelled more realistically in numerical simulation with the acquired
data. The results of this study provide factual elastic constants of green wood from pith to sapwood
for numerical modelling of stress wave propagation in trees or logs.

2. Materials and Methods

2.1. Materials

Two Chinese larches (Larix principis-rupprechtii Mayr), a common plantation species in Northern
China, were harvested from Maojingba National Plantation Farm, located in Longhua County,
Chengde City, Hebei Province, China (118◦06’05” E, 41◦28’46” N at approximately 750 m elevation).
The trees (coded A and B) aged 40 years were felled and branches were subsequently removed.
The diameter at breast height (DBH) values of tree A and tree B were 32 cm and 36 cm, respectively.
Then, two 60-cm-long logs were cut from each selected tree at a height of 0.5 m and 1.25 m above the
ground. A 15-cm-thick disc for density and moisture content measurements was cut from each tree at
a height of 1.1 m above the ground. A total of four 60-cm-long logs and two 15-cm-thick discs were
obtained and immediately sealed in plastic wrap. After, these logs and discs were directly transported
to the mechanics laboratory in Beijing Forestry University and kept in a condition room at 15 ◦C and
95% relative humidity.

2.2. Static Testing Method

2.2.1. Specimen Sampling

A schematic of the sawing pattern used to obtain green larch specimens for static testing is
presented in Figure 1. Four different sampling positions from pith to sapwood (numbered 1, 2, 3, and
4 in Figure 1 referred to sampling position, defined as P1, P2, P3, and P4 hereinafter, respectively)
were chosen to determine the elastic constants at different positions from pith to sapwood in the
cross-sections of standing trees and investigate the distribution of elastic constants in the cross-sections
of standing trees. As shown in Figure 1, sampling positions P1, P2, and P4 were located at the
pith, heartwood, and sapwood, respectively, whereas P3 was located between the heartwood and
sapwood. The initial transverse dimension of specimens for static testing in each sampling location
was 53 × 53 mm.

Parameter R was used to define the distance between the center of pith and the center of sampling
position. Thus, the designed distance R for sampling position P1, P2, P3 and P4 was 13 mm, 56 mm,
76 mm and 132 mm, respectively. It should be noticed that the sampling distance R for P1, P2, P3 and P4
shown in Figure 1 was designed for a log with a DBH ranging from 300 mm to 360 mm. The sampling
distance would be different as the DBH of log over 360 mm and need to be changed.
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testing, including the compression test and three-point bending test, performed according to 
American Society for Testing Materials (ASTM) D5536-94 [34]. Specimens for static testing were 
instantly sealed with plastic wrap and stored in the condition room (15 °C and 95% relative humidity) 
before mechanical testing. The dimensions of the specimens used for static testing are provided in 
Table 1. Each sampling location (referred to as P1, P2, P3, and P4) all used the same size specimens 
for static testing. Therefore, the elastic constants of these four different positions (from pith to 
sapwood) in the cross-section of standing trees could be determined. 
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2.2.2. Compression Test  

The four types of test specimens used for the compression test, with wood grain oriented relative 
to the orthotropic directions and the distribution of strain gauges in specimen, are displayed in Figure 
2. Eight clear test specimens of the required shape and orientation were machined from the cut lumber. 
A total of 128 test specimens (8 replicates × 4 orientations × 4 sampling positions) were used for 

Figure 1. Schematic of sawing pattern for testing specimens. Dashed lines represent the sawing line
and the units are millimeters. The extra 3 mm width was the machining allowance. The number 1, 2, 3,
and 4 in the yellow, gray, green, and blue area, respectively represent four different sampling positions.

One P1 lumber (53 × 53 × 600 mm), two P2 lumbers (53 × 53 × 600 mm), two P3 lumbers
(53 × 53 × 600 mm), and two P4 lumbers (53 × 53 × 600 mm) were obtained from each log according to
sampling pattern shown in Figure 1. A total of 4 P1- lumbers, 8 P2- lumbers, 8 P3- lumbers, and 8 P4-
lumbers were acquired from four 600-mm-long logs. Then, these were used to prepare the specimens
for static testing, including the compression test and three-point bending test, performed according
to American Society for Testing Materials (ASTM) D5536-94 [34]. Specimens for static testing were
instantly sealed with plastic wrap and stored in the condition room (15 ◦C and 95% relative humidity)
before mechanical testing. The dimensions of the specimens used for static testing are provided in
Table 1. Each sampling location (referred to as P1, P2, P3, and P4) all used the same size specimens for
static testing. Therefore, the elastic constants of these four different positions (from pith to sapwood) in
the cross-section of standing trees could be determined.

Table 1. Dimensions of specimens for static testing.

Static Test Orientation Size (mm) (Length ×
Width × Thickness)

Number of Specimens for
One Sampling Position

Compression test

Parallel to grain Longitudinal (L) 25 × 25 × 100 8

Perpendicular to grain
Radial (R)

50 × 50 × 150 8 × 3Tangential (T)
With a 45◦ to tangential

Three-point
bending test

Parallel to grain Longitudinal (L)

25 × 25 × 150 8
25 × 25 × 200 8
25 × 25 × 250 8
25 × 25 × 300 8
25 × 25 × 350 8

2.2.2. Compression Test

The four types of test specimens used for the compression test, with wood grain oriented relative
to the orthotropic directions and the distribution of strain gauges in specimen, are displayed in
Figure 2. Eight clear test specimens of the required shape and orientation were machined from the
cut lumber. A total of 128 test specimens (8 replicates × 4 orientations × 4 sampling positions) were
used for compression testing. Eight 25 × 25 × 100 mm specimens parallel to the grain (Figure 2a)
were used to measure the elastic constants of EL, νLR, and νLT. Eight 50 × 50 × 150 mm specimens
perpendicular to the grain radially (Figure 2b) were used to test ER, νRL, and νRT. Eight 50 × 50 × 150 mm
specimens perpendicular to the grain tangentially (Figure 2c) were used to evaluate ET, νTR, and νTL.
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Eight 50 × 50 × 150 mm specimens inclined at a 45◦ to the grain (Figure 2d) were used to obtain the
shear modulus of elasticity GRT.
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Figure 2. Types of specimens and strain gauges placement for compression test: (a) parallel to the grain,
(b) perpendicular to the grain radially, (c) perpendicular to the grain tangentially, and (d) inclined at 45◦.

Resistance strain gauges were directly bonded to the surfaces of the specimen prior to compression
testing. Figure 2a–c show that four strain gauges were placed on each specimen. Two resistance
strain gauges were glued perpendicularly to a surface of testing sample, and the other two resistance
strain gauges were perpendicularly bonded to the adjacent surface. As shown in Figure 2d, only two
strain gauges perpendicularly glued to a surface of specimen were used for compression testing.
Strain gauges should be placed close to each other so that measurements record the strain state of the
same point with no variability in their elastic properties due to the heterogeneity of wood. The adhesive
used has a lower longitudinal stiffness than wood to avoid restricting its free deformation when
receiving the external load. The adhesive must simultaneously have a high shear stiffness so that
the deformation of strain gauge is not damped by the thickness of the adhesive [19]. RGM-4050-100
(made by Reger Instrument Corporation Limited, Shenzhen City, China), a microcomputer-controlled
electronic universal testing machine, was used to conduct the compression test according to ASTM
D143-09 [35]. Specimens were loaded at a rate of 0.2 mm/min for compression testing. Modulus of
elasticity (EL, ER, and ET), Poisson’s ratios (νLR, νLT, νRL, νRT, νTR, and νTL) and shear modulus of
elasticity (GRT) were calculated from Equations (1)–(3), respectively.

E =
Pn − P0

A0(εn − ε0)
(1)

where E is the modulus of elasticity (MPa), Pn is the final load (N), P0 is the initial load (N), A0 is the
cross-section area of specimen (mm2), εn is the final strain, and ε0 is the initial strain.

v = −
∆ε′

∆ε
(2)

where ν is the Poisson’s ratio of specimen, ∆ε
′

is the lateral strain increase, and ∆ε is the axial strain
increase.

GRT =
∆P45◦

2A0
(
∆εx − ∆εy

) (3)

where GRT is the shear modulus of elasticity in the RT plane (MPa), A0 is the cross-section area of
the specimen (mm2), ∆P45◦ is the load increase of the elastic deformation phase on the load-strain
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curve (N), ∆εx is the strain increase along the axis of the specimen, and ∆εy is the strain increase
perpendicular to the axis of specimen.

Since the moisture content has a significant effect on the mechanical properties of wood, the
specimens were taken from the condition room and tested in sequence to ensure less variation in the
moisture content of specimens. Measurements for each specimen were performed as soon as possible
to reduce the impact of the moisture content on the testing results.

2.2.3. Three-Point Bending Test

In the light of ASTM D5536-94, specimens with five different ratios of span to depth were prepared
to conduct three-point bending test. We obtained a total of 160 test specimens in total (8 replicates × 5
spans × 4 sampling positions) for the bending tests. The specific size of the specimens, especially the
length, are shown in Table 1. The span for each length of specimen was 132 mm, 176 mm, 220 mm,
264 mm, and 308 mm, respectively. Three-point bending tests were conducted using an RGM-4050-100
universal testing machine on the basis of ASTM D143-09. The loading speed of specimens for three-point
bending test was 5 mm/min. As above, the specimens for the bending test were successively measured
and tested as quickly as possible to reduce the variation in the moisture content of the measured
samples. Bending moduli of elasticity (MOE) were calculated using Equation (4), and then shear
modulus of elasticity (G) can be obtained using Equation (5).

MOE =
∆Pl3

4∆ f bh3 (4)

where MOE is the bending modulus of elasticity (MPa), ∆P is loading increase (N), ∆f is the deflection
increase (mm), b is the width of the specimen (mm), h is the thickness of the specimen (mm), and l is
the span of the specimen (mm).

G =
1.2∆(h/l)2

∆(1/MOE)
(5)

where ∆(h/l)2 is the increase in the square of ratio between the thickness and span and ∆(1/MOE) is the
increase in the reciprocal of the bending modulus of elasticity (mm2/N). The shear modulus of elasticity
GLR was obtained by measuring specimen loaded from radial direction, and the shear modulus of
elasticity GLT was obtained by measuring the specimen loaded from tangential direction. Both of them
can be calculated using Equations (4) and (5).

3. Results and Discussion

3.1. Twelve Elastic Constants of Green Chinese Larch at Different Sampling Positions

The moisture content (MC) of green Chinese larch was measured in the laboratory using the
kiln-dry method, and the average MC of the sample trees was 95%. The average green density of
Chinese larch was 625 kg/m3. Twelve elastic constants of green Chinese larch were calculated using
Equations (1)–(4) using the experimental data obtained from three-point bending and compression tests.
The elastic constants of the four different sampling positions (P1, P2, P3, and P4) are shown in Table 2.
The average values of the elastic moduli in the longitudinal, radial, and tangential directions were
7,629 MPa, 773 MPa, and 362 MPa, respectively. Davies et al. reported that the longitudinal, radial, and
tangential elastic moduli of the outerwood in green Pinus radiata were 4,360 MPa, 490 MPa, and 250 MPa,
respectively. The values for the corewood of green Pinus radiata were 3,500 MPa, 260 MPa, and 240 MPa,
respectively. The average values of the three elastic moduli obtained from this work were higher
than those derived from Davies’s research due to the differences in the tested species and tree ages.
The longitudinal modulus of elasticity (EL) increased from 5016 MPa to 10,137 MPa as the sampling
distance (R) varied from 13 mm (P1) to 132 mm (P4), respectively. This means that the longitudinal
mechanical properties of green Chinese larch increased from pith to sapwood. However, the radial
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modulus of elasticity (ER) initially increased from 628 MPa to 1,154 MPa as the sampling distance
changed from 13 mm (P1) to 76 mm (P3) and then decreased to 342 MPa as sampling distance increased
to 132 mm (P4). This may indicate a lower radial modulus of elasticity in sapwood. No significant
relationship was found between tangential modulus of elasticity (ET) and sampling distance (R).

The average values of shear moduli in the LR, LT, and RT plane were 428 MPa, 393 MPa, and
450 MPa, respectively. Davies et al. presented the lower values for these three shear moduli, 60 MPa,
110 MPa, 50 MPa in LR, LT, and RT plane for outerwood and 40 MPa, 110 MPa, 20 MPa in LR, LT, and
RT plane for corewood, respectively. The average values of νLT, νLR, νTL, νTR, νRL, and νRT Poisson’s
ratios were 0.30, 0.22, 0.04, 0.60, 0.05, and 0.77, respectively. The corresponding values of these six
Poisson’s ratios in Davies’s paper were 0.60, 0.29, 0.03, 0.33, 0.03, and 0.64 for outerwood and 0.16,
0.46, 0.01, 0.33, 0.05, and 0.54 for corewood, respectively. However, no significant relationship with
sampling distance was found for either shear modulus of elasticity or Poisson’s ratio.

Table 2. Twelve elastic constants at different sampling locations in cross-sections of green Chinese larch.

Sampling
Position

EL
(MPa) νLT νLR

ET
(MPa) νTL νTR

ER
(MPa) νRL νRT

GRT
(MPa)

GLR
(MPa)

GLT
(MPa)

1 5016 0.15 0.13 339 0.04 0.55 628 0.04 0.74 326 538 403
2 5996 0.47 0.34 423 0.05 0.66 967 0.03 0.75 535 339 352
3 9365 0.21 0.15 402 0.04 0.53 1154 0.06 0.79 383 404 371
4 10137 0.36 0.26 282 0.04 0.66 342 0.05 0.81 556 430 446

Mean 7629 0.30 0.22 362 0.04 0.60 773 0.05 0.77 450 428 393
SD 1 2503 0.15 0.10 64 0.01 0.07 360 0.01 0.03 113 83 41
SE 2 1252 0.07 0.05 32 0.01 0.04 180 0.01 0.02 57 41 21

COV 3 (%) 32.8 48.7 44.7 17.7 11.7 11.6 46.6 28.7 4.3 25.1 19.4 10.5
1 SD, standard deviation; 2 SE, standard error; 3 COV, coefficient of variation.

Table 2 shows that the longitudinal modulus of elasticity (EL) was higher than the radial modulus
of elasticity (ER), and the radial modulus of elasticity (ER) was greater than the tangential modulus
of elasticity (ET), i.e., EL > ER > ET, for all four sampling positions. Similarly, Poisson’s ratio νRT

was higher than Poisson’s ratio νLT, and Poisson’s ratio νLT was greater than Poisson’s ratio νLR,
i.e., νRT > νLT > νLR at these four sampling locations. These results align with the findings in dry
wood [17,18]. Wood is a highly anisotropic material. Thus, different values would be obtained for
the same elastic constant due to different sampling positions. Table 2 also shows that the sensitivity
of each elastic constant to the sampling position was different, and the corresponding coefficient of
variation ranged from 4.3% to 48.7%. Table 3 provides the results of the analysis of variance (ANOVA)
for each elastic constant at different sampling positions. Table 3 shows that sampling position had a
significant impact both on EL, GRT, νLT, and νLR (p < 0.05), whereas no significant effect was found in
the other elastic constants (p > 0.05). For three MOE, only EL showed significant differences (p < 0.05)
in sampling positions with a 32.8% coefficient of variation. Poisson’s ratios νRT measured at four
different sampling positions were similar and the coefficient of variation for Poisson’s ratio νRT was
only 4.3%, which is in agreement with the insignificant differences between them (p > 0.05). The four
sampling positions had similar Poisson’s ratios νTL and showed an insignificant difference (p > 0.05),
though the coefficient of variation was 11.7%. Poisson’s ratio νLT had the greatest variation in all elastic
constants with a 48.7% coefficient of variation and showed a significant difference in sampling position
(p < 0.05). For shear moduli, only GRT showed significant differences (p < 0.05) in sampling positions
with a 25.1% coefficient of variation.
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Table 3. Analysis of variance of elastic constants at different sampling positions.

Source Sum of Squares Degrees of Freedom Mean Square F-Value p-Value

EL

Between groups 1 9.92 × 107 3 3.31 × 107 8.31 0.001
Within groups 9.55 × 107 24 3.98 × 106

Total 1.95 × 108 27

ER

Between groups 1.99 × 106 3 6.65 × 105 1.62 0.21
Within groups 9.84 × 106 24 4.09 × 105

Total 1.18 × 107 27

ET

Between groups 1.55 × 106 3 5.17 × 105 1.07 0.38
Within groups 1.16 × 107 24 4.82 × 105

Total 1.31 × 107 27

GLR

Between groups 8.27 × 104 3 2.76 × 104 1.29 0.322
Within groups 2.56 × 105 12 2.13 × 104

Total 3.38 × 106 15

GLT

Between groups 2.04 × 104 3 6.79 × 104 0.49 0.694
Within groups 1.65 × 105 12 1.38 × 104

Total 1.86 × 105 15

GRT

Between groups 2.23 × 105 3 7.43 × 104 25.57 3.25 × 10−4

Within groups 5.52 × 104 19 2.91 × 103

Total 2.78 × 105 22

νLT

Between groups 0.439 3 0.146 12.14 1.54 × 10−3

Within groups 0.290 24 0.012
Total 0.729 27

νLR

Between groups 0.221 3 0.074 12.82 1.12 × 10−3

Within groups 0.138 24 0.006
Total 0.358 27

νTL

Between groups 0.006 3 0.002 0.644 0.594
Within groups 0.072 24 0.003

Total 0.078 27

νTR

Between groups 0.105 3 0.035 1.505 0.239
Within groups 0.558 24 0.023

Total 0.663 27

νRL

Between groups 0.005 3 0.002 0.974 0.421
Within groups 0.045 24 0.002

Total 0.050 27

νRT

Between groups 0.024 3 0.008 0.187 0.904
Within groups 1.040 24 0.043

Total 1.065 27
1 Groups: there are four groups, i.e., four different sampling positions P1, P2, P3, and P4.

3.2. Vadility of Measured Data

Although the elastic constants of green Chinese larch at the four different sampling positions
were obtained through experiments and data processing, the validity of testing data needed further
verification. According to the mechanics of composite materials, the elastic constants of orthotropic
materials should satisfy the limitations of Maxwell’s theorem, as shown in Equations (6) and (7).
As mentioned, in many studies, wood is considered an orthotropic material in the three main orthotropic
directions. Therefore, the modulus of elasticity and the Poisson’s ratio of green larch measured in this
research should be satisfied the limitations of Maxwell’s theorem.

vi j

Ei
=

v ji

E j
(i, j = L, R, T) (6)

∣∣∣vi j
∣∣∣ < ∣∣∣∣∣∣Ei

E j

∣∣∣∣∣∣
1
2

(7)
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The modulus of elasticity and the Poisson’s ratio obtained from P1 sampling position were taken
into Equations (6) and (7), and the results showed that these elastic constants from P1 satisfy the
limitation of Maxwell’s theorem. Similar results were found in the P2, P3, and P4 sampling locations.
Table 4 provides the results of Equation (7) at the P1, P2, P3, and P4 sampling locations. These results
indicate that acquired data and calculated elastic constants from compression test were both valid
and accurate.

Table 4. Results of the limitations of Maxwell’s theorem at the four different sampling locations.

Sampling Position |vLT| | EL
ET

|
1
2 |vLR| | EL

ER
|

1
2 |vTL| | ET

EL
|

1
2 |vTR| | ET

ER
|

1
2 |vRL| | ER

EL
|

1
2 |vRT| | ER

ET
|

1
2

1 0.15 3.85 0.13 2.83 0.04 0.26 0.55 0.73 0.04 0.35 0.74 1.36
2 0.47 3.76 0.34 2.49 0.05 0.27 0.66 0.66 0.03 0.40 0.75 1.51
3 0.21 4.83 0.15 2.85 0.04 0.21 0.53 0.59 0.06 0.35 0.79 1.69
4 0.36 6.00 0.26 5.44 0.04 0.17 0.66 0.91 0.05 0.18 0.81 1.10

However, Maxwell’s theorem was only used to verify the validity of the modulus of elasticity
and Poisson’s ratio and could not be used to confirm the validity of the shear modulus of elasticity.
Correlation analysis, consequently, was conducted on experimental data from the three-point bending
tests to verify the validity of calculated shear modulus of elasticity. The relationship between the square
of ratio between thickness and span (h/l)2 and the reciprocal of bending modulus of elasticity (1/MOE)
was analyzed both for radial-loaded and tangential-loaded bending tests. The results of correlation
analysis for the P1, P2, P3, and P4 sampling positions are presented in Figures 3–6, respectively.
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Figures 3–6 show that a linear relationship between the square of ratio in span and depth and
the reciprocal of bending modulus of elasticity was found in the four sampling positions both for
tangential-loaded and radial-loaded bending tests. The correlation coefficients between the square
of the ratio in span and depth and the reciprocal of bending modulus of elasticity for the P1, P2, P3,
and P4 sampling positions were all over 0.9 in the tangential-loaded and radial-loaded bending tests.
These results indicate that the three-point bending test data and calculated shear modulus of elasticity
were both effective and reasonable.

3.3. Variation in Elastic Constants of Wood Cross-Sections

3.3.1. Modulus of Elasticity

Wood is a highly anisotropic material with different mechanical properties throughout its
interior. Wood properties change from pith to bark within a tree and differ between trees. Therefore,
the mechanical properties, especially the elasticity constants, of wood vary along the cross-section.
To investigate the difference and variation in the elastic constants along the cross-section of wood,
the relationships between the modulus of elasticity, shear modulus of elasticity, Poisson’s ratios, and
sampling distance R were analyzed by regression analysis to obtain the variation patterns of the elastic
constants along the cross-section of green Chinese larch using the experimental data derived from
compression and three-point bending tests.
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The results of regression analysis for modulus of elasticity and sampling position are provided
in Figure 7 and Table 5. Relationships between sampling distance and the modulus of elasticity for
the three principal axes of wood are illustrated in Figure 7. Table 5 displays the corresponding fitting
equations and correlation coefficients came from regression analysis.
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Table 5. Mathematical model of elastic moduli in three principle directions and distance from pith.

Modulus of Elasticity Fitted Equation Coefficient of Determination (R2)

EL EL = 4436.36 + 46.12R 0.91
ER ER = 343.25 + 22.27R − 0.17R2 0.95
ET ET = 297.55 + 3.68R − 0.03R2 0.98

Figure 7 shows the variation patterns of the three principal moduli of elasticity along the
cross-section of the wood. Figure 7a shows that the longitudinal modulus of elasticity (EL) of green
Chinese larch linearly increased with sampling distance. However, a quadratic relationship was
observed between the radial modulus of elasticity (ER) and the sampling distance, as well as for the
tangential modulus of elasticity (ET) and the sampling distance. ER and ET both first increased with
sampling distance, and then decreased with sampling distances over 70 mm, as shown in Figure 7b,c.
ER and ET near the bark were significantly lower than in other sampling positions, and even lower
than the measured values near the pith. Table 5 shows the linear relationship between the longitudinal
modulus of elasticity and sampling distance (R2 = 0.91). Even though a quadratic relationship was
found in the tangential and radial moduli of elasticity, both coefficients of determination were higher
than 0.95. Little research has been conducted to investigate the variation in elastic constants of wood
from pith to sapwood. Only Xavier et al. studied the variation in two stiffness values (Q22 and Q66)
of dry Maritime pine across the radial position using the unnotched Iosipescu test. They found the
transverse stiffness (Q22 = ER/(1 − νLR·νRL)) of dry Maritime pine decreased between the radial position
r1 (thirteenth ring, 29% of the radius) and r2 (nineteenth ring, 46% of the radius), and a progressive
increase was observed up to r4 (forty-third ring, 81% of the radius) [33]. This means that the transverse
stiffness decreased from the center to about the middle radius of stem and increased afterward to the
outermost positions. The variation pattern of elastic moduli ER of green Chinese larch measured in
this work was different from that of the transverse stiffness Q22. This may be because the transverse
stiffness was not only affected by the radial elastic moduli but also by Poisson’s ratios νLR and νRL.
Different moisture contents and tree species may also produce these differences. More data from the
same or different species should be acquired to investigate the variation in these three elastic constants
in dry or green wood.

3.3.2. Shear Modulus of Elasticity

The results of regression analysis for the shear modulus of elasticity and sampling position are
provided in Figure 8 and Table 6. The relationships between sampling distance and the shear modulus
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of elasticity are illustrated in Figure 8. Table 6 provides the corresponding fitting equations and
correlation coefficients.
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Table 6. Mathematical model of shear moduli and distance from pith.

Shear Modulus of Elasticity Fitted Equation Coefficient of Determination (R2)

GLR GLR = 597.134 + 64.293R + 0.034R2 0.80
GLT GLT = 426.009 − 2.155R + 0.018R2 0.98
GRT GRT = 335.912 + 1.645R 0.72

Figure 8 shows the variation patterns of the three shear moduli of elasticity (GLR, GLT, and GRT)
along the cross-section of wood. Figure 8a,b demonstrate a quadratic relationship between shear
modulus of elasticity GLR and sampling distance, as well as for shear modulus of elasticity GLT and
sampling distance. Both GLR and GLT first decreased with increasing sampling distance, and then
increased at a sampling distance over 70 mm. GLR and GLT near the bark increased compared to
the minimum values. However, the shear modulus of elasticity GRT of green Chinese larch linearly
increased with sampling distance. Table 6 shows the coefficient of determination for the shear modulus
of elasticity GRT and the sampling distance was 0.72, indicating a robust linear relationship between
them. Even though a quadratic relationship was found in the shear modulus of elasticity GLR and GLT,
their coefficients of determination were 0.80 and 0.98, respectively. The possible interpretation for the
relatively lower coefficient of determination (R2) for GRT could be attributed to the large variability in
wood performance especially in the cross-sections. Xavier et al. reported the shear stiffness (Q66 = GLR)
of dry Maritime pine decreased from the center (radial position r1, 29% of the radius) to around the
middle radius of stem (radial position r2, 46% of the radius), and progressively increased afterward
to the outermost positions (r4, 81% of the radius) [33]. Despite the different moisture content and
tree species, the variation in shear moduli GLR along the whole cross-section derived in this research
was basically in compliance with the results reported in Xavier’s study. No study has reported the
variation in the shear moduli GLT and GRT along the whole cross-section of wood, whether dry or
green. Therefore, the variation patterns of shear moduli GLT and GRT presented in this paper could be
used to describe the shear properties of green wood in LT and RT plane. More data from identical or
different species need to be obtained to determine the variation in shear properties of dry or green
wood, especially for shear moduli GLT and GRT.

3.3.3. Poisson’s Ratio

The results from experimental data (Table 2) showed that the relationship between the values of
the Poisson’s ratios at the four sampling positions and sampling distance R was relatively discrete,
except for Poisson’s ratio νRT. To determine the quantitative relationship between Poisson’s ratios and
sampling distance R, three extra data points were inserted using interpolation for each Poisson’s ratio,
apart from νRT. Thus, the relationships between the Poisson’s ratios and sampling distance R were
obtained as shown in Figure 9a–f. The corresponding fitting equations are provided in Table 7.
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Table 7. Mathematical model of Poisson's ratios and distance from pith. 

Poisson’s Ratio Fitted Equation 

νLR νLR =-0.0078+0.0138R-2.112×10-4R2+8.8643×10-7R3-3.155×10-8R4 

νLT νLT =-0.0124+0.0172R-2.2671×10-4R2+5.2757×10-7R3+2.8007×10-9R4 

νRL νRL =0.0044+0.00276R-7.1388×10-5R2+7.7972×10-7R3+2.8887×10-9R4 
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Figure 9. Relationships between distance from pith and Poisson’s ratio of: (a) νLR, (b) νLT, (c) νRL, (d)
νRT, (e) νTL, and (f) νTR.

Figure 9 shows the variation patterns of the six Poisson’s ratios along the cross-section of the
green wood. Figure 9d depicts the linear relationship between the Poisson’s ratio νRT and sampling
distance. Poisson’s ratio νRT gradually increased with sampling distance. However, for the other five
Poisson’s ratios, there was a discrete relationship between the Poisson’s ratio and sampling distance
R. For Poisson’s ratios νLR, νLT, and νTR, the values first increased at sampling distances lower than
50 mm and then significantly decreased as sampling distance varied from 50 mm to about 80 mm.
When the sampling distance was over 80 mm, the values of Poisson’s ratio increased with sampling
distance again. However, similar results were not found for Poisson’s ratios νRL and νTL. The values of
the Poisson’s ratios determined in this study irregularly changed with sampling distance probably
due to the variation in moisture content, density, or microfibril angle in different parts of the wood.
In general, no significant variation patterns were found in these five Poisson’s ratios. Davies et al.
estimated six Poisson’s ratios both in outerwood and corewood from green Pinus radiata and no
significant difference between outerwood and corewood was found [32]. Therefore, we still do not
understand the variation patterns of the Poisson’s ratios along wood cross-sections, and few researchers
have evaluated the variation in the Poisson’s ratios along the whole cross-section of dry or green
wood. Therefore, more efforts are required to investigate the variation patterns of Poisson’s ratio in the
entire cross-section of dry or green wood.

Table 7. Mathematical model of Poisson’s ratios and distance from pith.

Poisson’s Ratio Fitted Equation

νLR νLR = −0.0078 + 0.0138R − 2.112 × 10−4R2 + 8.8643×10−7R3
− 3.155 × 10−8R4

νLT νLT = −0.0124 + 0.0172R − 2.2671 × 10−4R2 + 5.2757 × 10−7R3 + 2.8007 × 10−9R4

νRL νRL = 0.0044 + 0.00276R − 7.1388×10−5R2 + 7.7972 × 10−7R3 + 2.8887 × 10−9R4

νRT νRT = 0.7312 + 6.2191R
νTL νTL = −0.0023 + 0.0046R − 6.7872 × 10−5R2 + 1.9557×10−3R3 + 5.4162 × 10−10R4

νTR νTR = 0.028 + 0.0471R − 0.0011R2 + 1.0274 × 10−5R3
− 3.155 × 10−8R4

4. Conclusions

The objective of this study was to investigate the variation in the mechanical properties, especially
elastic constants, of green Chinese larch from pith to sapwood. The conclusions are as follows:
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(1) The relationships between longitudinal modulus of elasticity (EL), radial modulus of elasticity
(ER), and tangential modulus of elasticity (ET) were EL > ER > ET for all four sampling positions.
Similarly, νRT > νLT > νLR were found for Poisson’s ratios νRT, νLT, and νLR at the four sampling
locations. These results align with the reported findings in dry wood.

(2) The sensitivity of each elastic constant to the sampling position was different, and the coefficient
of variation ranged from 4.3% to 48.7%. The Poisson’s ratios νRT measured at the four different sampling
positions were similar and the differences between them were not significant. The coefficient of variation
for Poisson’s ratio νRT was only 4.3%. The four sampling positions had similar Poisson’s ratios νTL,
though the coefficient of variation was 11.7%. The Poisson’s ratio νLT had the greatest variation in all
elastic constants with a 48.7% in coefficient of variation.

(3) We found a good linear relationship between the longitudinal modulus of elastic EL,
shear modulus of elasticity GRT, Poisson’s ratio νRT and the distance from pith. EL, GRT, and νRT

all increased with sampling distance R. However, a quadratic relationship existed in the tangential
modulus of elasticity ET, radial modulus of elasticity ER, shear modulus of elasticity GLT, shear
modulus of elasticity GLR, and the distance from pith. A discrete relationship was found in the other
five Poisson’s ratios.
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