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Abstract: Although CO2 fertilization on plant growth has been repeatedly modeled to be the main
reason for the current changes in the terrestrial carbon sink at the global scale, there have been
controversial findings on the CO2 fertilization effects on forests from tree-ring analyses. In this
study, we employed conventional dendrochronological tree-ring datasets from Northeast China, to
detect the effect of CO2 fertilization on Larix gmelinii growth from 1950 to 2010. Among four sites,
there were two sites exhibiting a significant residual growth enhancement at a 90% confidence level
after removing the size, age and climaterelated trends of tree-ring indices. In addition, we found
consistency (R from 0.26 to 0.33, p < 0.1) between the high frequency CO2 fluctuation and residual
growth indices at two of the four sites during the common period. A biogeochemical model was
used to quantitatively predict the contribution of elevated atmospheric CO2 on accumulated residual
growth enhancement. As found in the tree-ring data, 14% of the residual growth was attributed to
the CO2 fertilization effect, while climate was responsible for approximately the remainding 86%.
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1. Introduction

The rapid increase in CO2 concentration in the atmosphere as a greenhouse gas is thought to
be responsible for the increase in earth’s surface temperature [1]. The response of forest ecosystems
to elevated atmospheric CO2 concentration will affect their net uptake or loss of carbon and may,
therefore, have large consequences on the global carbon cycle [2]. Numerous global-level experiments
were conducted to investigate and understand how the terrestrial ecosystem carbon cycle responds
to rising atmospheric CO2. Recent studies based on terrestrial carbon cycle models suggested that
the strength of the terrestrial C sink was growing at the global scale, while CO2 fertilization was the
predominant driver of the growth in the terrestrial C sink [3–6]. Free air CO2 enrichment (FACE)
experiments [7–10] also showed considerable growth enhancement due to the CO2 fertilization effects.
In spite of the wealth of global assessments and experimental evidences on CO2 fertilization on tree
growth, results from tree-ring studies on the CO2 fertilization effect are controversial and still under
debate [11–17].

It is widely held that the postindustrial rise in the concentration of CO2 in the atmosphere should
have enhanced tree growth through a fertilization effect, that can be ascribed this CO2 fertilization effect
on growth to the following two main mechanisms: first, direct CO2 fertilization may occur because the
higher partial pressure of CO2 increases the rate of CO2 reactions with Rubisco during photosynthesis,
and inhibits photorespiration [18]. Second, the increase in water-use efficiency takes place when
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the stomatal conductance is reduced but, at the same time, also the assimilation is kept constant or
increasing, which results in an increase in the ratio of carbon gain to water loss [19]. As expected,
several tree-ring studies have reported an increase in radial growth of trees with the rise of atmospheric
CO2 concentration in natural forests [11–13]. In contrast, some studies did not find any evidence of
this CO2 fertilization effect as a cause for enhanced tree growth in mid- and high-latitude forests of
the northern hemisphere [15–17]. It may be argued that the CO2 fertilization effect on forests at high
latitudes is either non-existent because of other growth-limiting conditions such as temperature and
nitrogen or is too small to detect [20,21].

Here, the objective of our study is to apply tree-ring analysis approaches to detect possible
effects of atmospheric CO2 fertilization on natural Larix gmelinii forests in Northeast China over the
period 1950–2010. We examined the time-related trend in the residual growth after removing size-,
age- and climate-related trends through conventional dendrochronological analysis. Consequently,
any CO2-induced increases in productivity could be evident as an increase in the residual tree-ring
width. Meanwhile, an integrated terrestrial ecosystem C-budget (InTEC) model [22], which integrates
stand development with the effects of environmental conditions on growth, was used to assess
the contributions of climate factors, and increased CO2 concentration on growth enhancements in
stemwood from 1950 to 2010. Finally, we will directly evaluate whether the CO2 fertilization effect is
significant in forest stands at high latitudes.

2. Materials and Methods

2.1. Tree-Ring Data

Increment cores of Chinese Larix gmelinii trees were collected from four sites. All sites were
selected in stands with low levels of human disturbance and distributed in the main forest areas of
Northeast China (Figure 1). These sites include four mature-tree sites (more than 200 years): Mohe,
Heilongjiang, China (MH), Mangui, Inner Mongolia, China (MG), Alihe, Inner Mongolia, China (ALH),
and Keyihe, Inner Mongolia, China (KYH). We measured annual growth increments from the pith to
the outermost ring at a precision of 0.001 mm using a Velmax measuring system (sliding stage, Velmex
Inc., Bloomfield, NY, USA), dating and measurement errors were further checked with COFECHA
software [23]. Finally, a total of 171 cores (1 per tree) were collected, and ring-width measurements
were recorded for a period extending from 1715 to 2010 (Table 1).

Table 1. Characteristics of four sampling sites.

Site Longitude (E) Latitude (N) Elev. (m) T (◦C) P (mm) Length of Chronology N

MH 122.13 53.30 617 −5.1 437 1802–2005 61
MG 121.80 52.23 695 −6.0 465 1760–2005 61

ALH 123.48 50.84 135 −3.9 471 1782–2010 27
KYH 122.38 50.64 779 −3.7 461 1715–2010 22

T: annual mean temperature; P: annual total precipitation; N: number of trees.
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2.2. Tree-Ring Approach

2.2.1. Chronology Development

All of the ring-width measurements were detrended using linear lines or negative exponential
curves. These conservative approaches to detrending should preserve virtually all of the low-frequency
variability in the tree ring series [24]. The standard (STD) chronologies were then generated for each
site. All series were created by the program ARSTAN [24] (Figure 2). The statistical characteristics of
the STD chronologies for each site include (Table 2): the mean index and standard deviation (Std.) of
the STD chronologies; the skewness and kurtosis are included to assess the effects on the probability
distribution owing to the method of standardization [25]; the mean sensitivity, which quantifies the
relative change in width among consecutive years [26]; the serial correlation is used to describe the
correlation of each ring width with the preceding ring width [26]; the Rbar express average correlation
among trees for the common overlap period among series [26]; the expressed population signal (EPS)
(Equation (1)) is used to test the chronology confidence and strength of the common signal in the
chronology. We employed 0.85 as an expressed population signal (EPS) threshold value to assess the
robustness, which has been widely suggested as reliable [11,12,27].

EPS =
Nr

1 + (N − 1)r
(1)

where N is the number of trees, r is the mean inter-series correlation.
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Table 2. General statistics of the standard chronologies for four sites.

Sites MH MG ALH KYH

Mean index 0.92 0.94 1.01 0.98
Std. 0.34 0.23 0.40 0.23

Skewness 0.89 0.28 1.02 0.03
Kurtosis 4.66 2.55 5.37 2.74

Mean Sensitivity 0.24 0.17 0.31 0.21
Serial correlation 0.65 0.68 0.47 0.39

Rbar 0.26 0.30 0.26 0.31
EPS 0.97 0.98 0.93 0.94

2.2.2. Dendroclimatic Analysis

Our dendroclimatic analysis was conducted by using the program PRECON [28] throughout
1950–2010 for four sites. In this work, a climatic response function analysis was performed with
monthly mean temperatures and total precipitation records (from June of the previous year to October
of the current year) as climatic predictors, and the STD chronologies as the dependent variables. Then
the predicted ring-width indices were estimated through multiple regression, after extracting the
principal components of the climatic predictors that explained the greatest variation in radial growth.
This includes a bootstrap method to assess statistical significance of the regression coefficients in
response functions. In this work, 1000 iterations were computed to estimate the confidence intervals of
regression coefficients (p < 0.05). If the confidence interval for the mean of a bootstrapped estimate of a
regression coefficient does not include zero, the association between growth and that climate variable
is deemed statistically significant. The final residual indices (STD residuals) could be calculated as
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actual indices minus predicted indices; this process means that these climatically induced variabilities
have been removed from the STD tree-ring chronologies.

2.3. CO2 Fertilization Test

To test the CO2 fertilization hypothesis, we used two methods. First, a nonparametric method was
implemented in this study for detecting the trend of residual indices after removing the effects of age
and climatic variability from 1950–2010. If a linear trend exists, the true slope can also be estimated by
a nonparametric procedure developed by Sen (1968) [29], which is closely linked to the Mann–Kendall
test [30]. The Sen’s method is not much affected by outliers and can be computed with missing data.
Then the residual indices (STD residuals) were tested for an increasing trend in growth over time that
cannot be attributed to climate by the Sen’s method. This test is premised on the assumption that once
the effects of climatic variability have been removed from the chronologies, the residual indices should
exhibit an increasingly positive bias over time due to CO2 growth stimulations [14].

Second, to test the effect of CO2 fluctuation on tree growth variation, we calculated the first
order difference of the raw CO2 concentration, then the linear trend was removed from the first
order difference of the raw CO2 concentration. In this way, a high frequency fluctuation in CO2

concentration could be produced and correlated with interannual variations in tree growth [12]. Then,
the comparisons were performed between the CO2 fluctuation time series and the STD residuals for
four sites, respectively.

2.4. Description of the InTEC Model

The InTEC model is a process-based biogeochemical model that mechanistically integrates the
effects of non-disturbance factors (climate variables and atmospheric CO2) and disturbance factors
(disturbance and regrowth) on the long-term C and N cycles in forest ecosystems. The model includes
five core processes: (a) simulation of net primary production (NPP) in a recent reference year (NPPref)
using a two-leaf canopy photosynthesis model based on Farquhar’s leaf-level biochemical model [31];
(b) based on NPPref and past climate, the initial value of NPP in the starting year (NPP0) of simulation
is reconstructed retrospectively through iterative adjustments of NPP0, until the simulated NPP in the
reference year agree with NPPref to within ±1%; (c) the NPP of a region for each pixel in any year is
calculated from the NPP0 multiplied by a factor that integrates the effects of non-disturbance factors
(φNPP) and forest stand age (FNPP(i)) (Equation (2)). In the InTEC model, NPP-age relationships are
replaced by normalized productivity (FNPP) curves (Equation (3)) [32]. The curves are obtained by
dividing NPP at a given age by their maximum NPP value in their forest life cycle with values ranging
from 0 to 1. These relationships are used to simulate forest regrowth after disturbance and changes
in the different C components; (d) a three-dimensional distributed hydrological model is used to
simulate soil moisture and temperature [33]; and (e) a modified CENTURY model [34] and the net N
mineralization model [35] are employed to simulate soil C and N cycles.

NPP(i) = NPP0 ×∅NPP(i) × FNPP(i) (2)

FNPP(i) = NPP(i)/NPPmax (3)

where NPP(i) represents the NPP at age i, NPPmax represents a maximum of NPP.

2.4.1. Model Inputs

In order to drive the InTEC model, several spatial datasets were created in this study, including
monthly mean temperature, water vapor pressure, and total precipitation, which were collected from
the UK Climate Research Unit [36], and monthly solar irradiance data was from the US National Center
for Atmospheric Research [37]. A map of stand age in 2010 [38] and a forest type map in 2006 [39]
were created from forest inventory data in this study. A reference NPP map in 2003 was producted
by using the boreal ecosystem productivity simulators (BEPS) [40]. The annual atmospheric CO2
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concentrations from 1950 to 2010 were taken from the dataset obtained at the Mauna Loa Observatory
(20◦ N, 156◦ W) [41]. A maximum leaf area index (LAI) map was produced in 2003 by Deng et al. [42]
using SPOT-VEGETATION data. The physical properties of the soil used in the InTEC, including the
field capacity of soil water, wilting point, soil depth, and the fractions of clay, silt, and sand, were
included. Field capacity and wilting point were derived from the International Geosphere-Biosphere
Programme, Global Gridded Surfaces of Selected Soil Characteristics [43]. Soil depth was derived
from the global soil texture dataset from Oak Ridge National Laboratory Distributed Active Archive
Center, Tennessee, U.S. [44]. The fractions of clay, silt, and sand were obtained from the Harmonized
World Soil Database (HWSD) constructed by the Food and Agriculture Organization of the United
Nations (FAO) and the International Institute [45].All of these spatial datasets were employed in the
UTM WGS-84 coordinate system and interpolated to 1 km resolution. Detailed descriptions of datasets
were reported elsewhere [46,47].

2.4.2. Stemwood Biomass Growth

We used InTEC to estimate the stemwood biomass growth (G_SW) of Larix gmelinii forests at four
sites from 1950–2010. In this study, we assumed that stemwood growth consists of 31% of NPP in
InTEC simulations [48].

2.4.3. Baseline and Residual Stemwood Biomass Growth

The yield table for Larix gmelinii of Heilongjiang Province, China was developed by the Forest
Survey Scheme Designing Institute in 2010. It was collected to provide information on the stand
development, such as mean age, stand density (S), volume (V) and mean volume growth (Vg).
The age ranges in the yield table are 0–150, and five-year intervals were used in the yield tables.
Using this information, the baseline stemwood growth (B_SW) can be calculated based on the stand
biomass equation.

We used Equation (4) to calculate the B_SW for Larix gmelinii forests at different ages by combining
stand mean volume growth and age information in the yield table. The regression coefficients in
Equation (4) were taken from Dong (2015) [49]. The age response of B_SW (B_SW(age)) was then fitted
using the Weibull distribution function as Equation (5) [32] (Figure 3). Finally, the residual stemwood
biomass growth (R_SW), which includes only the total signal of external forcings (e.g., climate, CO2,
and N) was determined as the difference between G_SW and B_SW.

B_SW = exp
(
a + b× log Vg

)
×Cs (4)

B_SW(A) = a1(1 +
a2(

A
a3
)

a4
− 1

exp ( A
a3
)

) (5)

where log denotes natural logarithm; a and b are regression coefficients; B_SW is baseline stemwood
biomass growth (Mg/ha/yr); Vg is mean stand volume growth (m3/ha/yr), which is available in the
yield table; A represents stand age (years); a1, a2, a3, and a4 are fitted parameters that were listed in
Table 3. We set the C content in stemwood as 0.47 in this study [50].

In this study, we did not integrate the age and size effects on stemwood growth from the observed
tree-ring index into the InTEC model because of lacked of sufficient information to establish the NPP-age
relationships for Larix gmelinii at these sites. Although, the B_SW-age relationship we established by
using the yield table could represent the long-term average state of age response of B_SW at these
sites. In addition, the stemwood growth component in the NPP-age relationship which integrated in
the InTEC model was also calculated by using the same yield table and biomass equation as in this
study [48], so that the age effect could be completely removed from simulated stemwood growth.
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Figure 3. Variations of baseline stemwood growth with age for Larix gmelinii. Dots represent steemwood
biomass growth calculated by yield tables; error bars represent standard deviation.

Table 3. Coefficient estimates and goodness of fit statistics (Mg C/ha/yr) of Equations (3) and (4).

Parameters a b a1 a2 a3 a4 R2 RMSE Samples

Values −0.726 1.038 0.019 91.639 710236 0.073 0.997 0.051 29

2.4.4. The Partitioning Approach to Attribute Growth Variation to Various Factors

To examine the relative individual effects on growth of climate factors and CO2 concentration on
stemwood growth enhancement, we designed a series of modeling experiments by setting one factor in
question constant at a time while using realistic historical values for all other factors in the simulation.
For example, to investigate the effect of CO2 on growth, we first set CO2 to be a constant as the average
over the 1901–1910 period, while the historical values of other factors were used in the simulation.
We then detect the CO2 effect as the difference between the full historical simulation and the constant
CO2 simulation.

3. Results

Our climate-growth response function analysis showed that no clear common patterns were
observed in the relationships between climate and radial growth across the four mature-tree sites
(Figure 4). The high temperature during the growing season was generally unfavorable for tree growth
at these sites, especially in June and July of the current year. The growing season precipitation was
positively correlated with the tree growth, while negative correlations could be found in the winter
months (from December of the previous year to February of the current year). Additionally, 58%, 63%,
52% and 56% of the variance in the raw growth indices of MH, MG, ALH, and KYH was explained by
mean temperature and precipitation for the period 1950–2010. Based on these responses to climate
variations, the predicted growth indices could be producted for each site; then we calculated residual
indices by subtracting predicted from raw tree-ring indices.

Among the four sites, ALH and KYH exhibited a positive trend in their STD residuals at a 90%
and 95% confidence level, respectively (Figure 5a,b), but the other two sites (MH and MG) did not
have a significant positive trend in their residuals (Figure 5c,d).



Forests 2019, 10, 454 8 of 16

Forests 2019, 10, x FOR PEER REVIEW 7 of 15 

 

B_SW at these sites. In addition, the stemwood growth component in the NPP-age relationship which 

integrated in the InTEC model was also calculated by using the same yield table and biomass 

equation as in this study [48], so that the age effect could be completely removed from simulated 

stemwood growth. 

2.4.4 The Partitioning Approach to Attribute Growth Variation to Various Factors 

To examine the relative individual effects on growth of climate factors and CO2 concentration 

on stemwood growth enhancement, we designed a series of modeling experiments by setting one 

factor in question constant at a time while using realistic historical values for all other factors in the 

simulation. For example, to investigate the effect of CO2 on growth, we first set CO2 to be a constant 

as the average over the 1901–1910 period, while the historical values of other factors were used in the 

simulation. We then detect the CO2 effect as the difference between the full historical simulation and 

the constant CO2 simulation.  

3. Results 

Our climate-growth response function analysis showed that no clear common patterns were 

observed in the relationships between climate and radial growth across the four mature-tree sites 

(Figure 4). The high temperature during the growing season was generally unfavorable for tree 

growth at these sites, especially in June and July of the current year. The growing season precipitation 

was positively correlated with the tree growth, while negative correlations could be found in the 

winter months (from December of the previous year to February of the current year). Additionally, 

58%, 63%, 52% and 56% of the variance in the raw growth indices of MH, MG, ALH, and KYH was 

explained by mean temperature and precipitation for the period 1950–2010. Based on these responses 

to climate variations, the predicted growth indices could be producted for each site; then we 

calculated residual indices by subtracting predicted from raw tree-ring indices. 

 

Figure 4. Correlation coefficients between the standard chronologies and total precipitation (■) and 

mean temperature (□) from June in the previous year to October in the current year for four sites over 

Figure 4. Correlation coefficients between the standard chronologies and total precipitation (�) and
mean temperature (�) from June in the previous year to October in the current year for four sites over
the period 1950–2010. The * denotes months with significant response function coefficients determined
from the bootstrapped response model.

Forests 2019, 10, x FOR PEER REVIEW 8 of 15 

 

the period 1950–2010. The * denotes months with significant response function coefficients 

determined from the bootstrapped response model. 

Among the four sites, ALH and KYH exhibited a positive trend in their STD residuals at a 90% 

and 95% confidence level, respectively (Figure 5a,b), but the other two sites (MH and MG) did not 

have a significant positive trend in their residuals (Figure 5c,d). 

 

Figure 5. Raw growth indices (gray line), predicted growth indices (black dash line), and residual 

growth indices (black line), with Sen’s regression line (red line) superimposed for four sites; Q is Sen’s 

slope and B is a constant. 

We then compared the residual indices with high frequency CO2 interannual fluctuation (the 

linear trend was removed from the first order annual difference of the raw CO2 concentration) (Figure 

6). Two sites showing a statistically significant positive correlation between the CO2 fluctuation and 

residual indices (Pearson’s correlation coefficient (R) from 0.26 to 0.33, p < 0.1), except for MH (R = 

−0.01, p > 0.05) and MG sites (R = 0.08, p > 0.05), which also failed to detect a significant upward trend 

in their residual indices.  

Figure 5. Raw growth indices (gray line), predicted growth indices (black dash line), and residual
growth indices (black line), with Sen’s regression line (red line) superimposed for four sites; Q is Sen’s
slope and B is a constant.



Forests 2019, 10, 454 9 of 16

We then compared the residual indices with high frequency CO2 interannual fluctuation (the linear
trend was removed from the first order annual difference of the raw CO2 concentration) (Figure 6). Two
sites showing a statistically significant positive correlation between the CO2 fluctuation and residual
indices (Pearson’s correlation coefficient (R) from 0.26 to 0.33, p < 0.1), except for MH (R = −0.01,
p > 0.05) and MG sites (R = 0.08, p > 0.05), which also failed to detect a significant upward trend in
their residual indices.Forests 2019, 10, x FOR PEER REVIEW 9 of 15 
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Figure 6. Comparison of the tree-ring residual indices and CO2 interannual fluctuation (the first order
annual difference of the CO2 concentration) for four sites during the common period.

The relationship between stand age and baseline stemwood growth (B_SW) for Larix gmelinii was
produced by using yield tables (Figure 3). The B_SW increased with stand age initially, reached a peak,
then declined slowly at an approximately constant rate. For all sites, the curve presented a trend of
slow decrease from 1950 to 2010 (Figure 7b), and it indicated that the stand age had a negative effect on
stemwood growth since 1950.
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Figure 7. Temporal changes in stemwood growth (G_SW) (a) and baseline stemwood growth (B_SW) (b)
from 1950 to 2010. Shaded area delineates the 90% confidence interval for the G_SW and B_SW estimates.

We removed the age effect from stemwood growth (G_SW) (Figure 7a) to calculate the residual
stemwood growth (R_SW), and then we compared the R_SWs with the STD chronologies for each
site, respectively. The R_SWs agreed well with those STD chronologies with a correlation coefficient
from 0.27 to 0.51 (p < 0.05) as shown in Figure 8. Through these site-level comparisons, there were
reasons to believe that InTEC was a reliable model to link historical climate data and reconstruct the
interannual variability of tree growth that was induced by external factors.
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The contributions of climate and CO2 on R_SW were partitioned using the approach described in
the methods section. Overall, 86% of accumulated R_SW was mainly attributed to climate (Figure 9a).
The CO2 concentration increased from 346 ppmv in 1950 to 387 ppmv in 2010. The elevated CO2

contributed to accumulated R_SW by 14%. We also further separated the total climate effect into
those from temperature, precipitation, radiation, and water vapor pressure (Figure 9b). Among the
four climate factors, temperature was the dominating factor contributing 73% to the changes in the
accumulated R_SW. The second was precipitation, at 20%, followed by water vapor pressure at 4% and
radiation at 3%.Forests 2019, 10, x FOR PEER REVIEW 11 of 15 
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4. Discussion

Trees from cold environments may show either positive or negative growth responses to warming
depending on both inherent acclimation potential and other potentially limiting factors [51]. Our
results indicate that high temperature generally has a negative effect on the growth of Larix gmelinii at
four sites, particularly in June or July (Figure 4). This result agrees with similar studies about coniferous
trees in northern China [12,52]. High temperature can cause an increase in transpiration, evaporation,
moisture loss, and the internal nutrient consumption of the trees, and since dark respiration is a
temperature-dependent process, warmer temperatures increase the respiration rates of plants, which
results in decreases in the accumulation of carbohydrate content in plants, and consequently limits
growth [53].

In our tree-ring analysis, two sites exhibited evidence of residual indices (after removing the
effects of age and climatic variability) to increase in response to increasing CO2 (Figure 5c,d). These
results indicate that tree growth has a “CO2 acclimation” response to CO2 enhancement [18–20]. We
failed to detect a statistically significant positive trend in the residual indices at the MH and MG sites
(Figure 5a,b). These two sites are located at higher latitudes, and the CO2 fertilization effect may be
severely limited by lower temperatures (annual mean temperature was −5.1 ◦C for MH site and −6.0 ◦C
for MG site, respectively) there. Many studies reported that low temperature in some cases might
impair Rubisco activity and diminish the positive influence of higher CO2 on photosynthesis [54,55].
In addition, lower temperature makes the growing season shorter, giving little opportunity for trees
to allocate carbon to the cambial production of stem tissue even if limited growth enhancement has
occurred [56].

Some consistency was found between the time series of CO2 high-frequency fluctuation and
residual indices at two sites (R from 0.26 to 0.33, p < 0.05) (Figure 6c,d). This result indicate that
interannual variations in tree growth was linked to the high-frequency fluctuation of CO2 concentration.
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Our result was similar to that of Chen et al. [12], who reported that there was a significant correlation
between CO2 high-frequency fluctuation and tree-ring indices in Pinus tabuliformis in the northeast of
China over 1950–2010. These results reinforce our findings that conventional dendrochronological
techniques can detect the effect of CO2 fluctuations on yearly tree growth in coniferous forests.

It is not easy to quantitatively separate the CO2 fertilization effect on tree growth from those of
external environment factors. The InTEC model can not only capture key ecosystem processes but also
describe interactions of terrestrial ecosystems with environmental forcing factors. Also, systematic
tree growth-age relationships were integrated into the InTEC model, making it possible to remove the
influences of the intrinsic age factors [57]. Our model results indicate that 14% of accumulated R_SW
can be attributed to atmospheric CO2 increase (Figure 9a). Although increased CO2 contributed only
a small fraction to the overall growth enhancement, it may be important to fully explain the carbon
balance in mid to high northern latitude forests.

The CO2 fertilization effects reported were not uniform across the forest sites investigated [11–16].
Stand characteristics might be partly responsible for this cross-site variability [7,58]. Our results
agree with most reports for Canadian, American and Chinese forests in terms of tree-ring analysis or
terrestrial carbon model [12,57,59], and these results collectively provided clear evidence for greater
efficiency of CO2 uptake in plants from mid and high altitudes of the northern hemisphere [60,61]. Our
results also support another view that the CO2 fertilization would be more evident in the environments
with annual precipitation between 300 mm and 500 mm [62,63].

Based on the increasing CO2 fertilization evidences from many short-term CO2-enriched
experiments and dendrochronological tree-ring studies, we speculated the failures of some
studies [15–17] in detecting the CO2 fertilization effect to be due to the following possible reasons: (1)
temperature-limiting and N-limiting regions could preclude a direct CO2 growth response by trees [20];
(2) many biased sampling of trees could also produce spurious trends in growth rates (i.e., slow-grower
survivorship bias and big-tree selection bias), consequently, a small increase in biomass increment due
to the CO2 fertilization effect may be diminished [64]; and (3) carbon partitioning and growth within a
plant that is species-specific [20].

Our results also point to weaknesses and additional work in the future: First, the NPP allocation
coefficient to stemwood growth was set to a constant for Larix gmelinii based on the calculation results
by using forest inventory data and yield tables [48]. However, the allocation coefficient varies with
forest types, stand age, and environment. Unfortunately, due to lack of enough information, we could
not calculate NPP allocation coefficients for each site. The use of forest inventory allowed us to check
whether the allocation coefficients was reasonable for Larix gmelinii. We observed a 17% underestimate
in simulated stemwood growth from InTEC compared with the forest inventory data for the period
2000–2005. Clearly, significant improvements can still be made in the relative allocation to stemwood
component once more data become available. Second, since it is difficult to exclude the impact of
atmospheric deposition of N on tree-ring growth; we could not be sure that the residual growth in
the tree ring data was entirely due to the CO2 fertilization effect. Although many studies suggest the
N deposition effect was small with a very weak trend over the study period [65–67], these estimates
could be refined with additional N data. Third, due to limited availability of high quality tree ring
data, we have access to data only for four sites. Although we have confidence in the detected CO2

fertilization signals, data at more sites are needed to assess the latitudinal gradient of these signals.

5. Conclusions

In this study, we employed a series of approaches for detecting the effect of CO2 fertilization on
Larix gmelinii tree growth in Northeast China from 1950–2010. We conclude from tree-ring analysis
that elevated atmospheric CO2 had a positive effect on tree growth. Meanwhile, the change in annual
tree growth was found to be significantly correlated to CO2 interannual fluctuations. These results
indicate that the CO2 fluctuations influence the high-frequency growth variability, but not necessarily
the overall tree growth. Our InTEC modeling results also suggest that the growth change over 61 years
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cannot be explained by climate alone, 14% of accumulated R_SW can be attributed to CO2 increase,
while the remaining approximately 86% can be attributed to climate.
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