
Article

Reconstruction of June–July Temperatures Based on a
233 Year Tree-Ring of Picea jezoensis var. microsperma

Yangao Jiang 1,2, Xue Yuan 3, Junhui Zhang 2,*, Shijie Han 2,4, Zhenju Chen 5, Xiaoguang Wang 6,
Junwei Wang 1, Lin Hao 3, Guode Li 1, Shengzhong Dong 1 and Haisheng He 1

1 Experimental Teaching Center, Shenyang Normal University, Shenyang 110034, China;
jiangyangao-jyg@163.com (Y.J.); synuwjw@163.com (J.W.); Liguode@synu.edu.cn (G.L.);
zhongnet3168@163.com (S.D.); hehaisheng1002@163.com (H.H.)

2 Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
3 College of Life Sciences, Shenyang Normal University, Shenyang 110034, China;

15041999335@163.com (X.Y.); haolinwj2001@163.com (L.H.)
4 School of Life Sciences, Henan University, Kaifeng 475004, China; hansj@iae.ac.cn
5 College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; chenzhenjuf@163.com
6 College of Environmental and Resource Sciences, Dalian Minzu University, Dalian 116600, China;

wangxiaoguang0306@163.com
* Correspondence: jhzhang@iae.ac.cn; Tel.: +86-24-8397-0443

Received: 10 April 2019; Accepted: 13 May 2019; Published: 14 May 2019
����������
�������

Abstract: In this study, ring-width chronology of Picea jezoensis var. microsperma from the Changbai
Mountain (CBM) area, Northeast China, was constructed. Growth/climate responses suggested
that mean maximum temperature (Tmax) was the limiting factor affecting radial growth of PJ trees
in the study region. According to the correlation analysis between the ring-width index and
meteorological data, a June–July mean maximum temperature (Tmax6–7) series between 1772 and
2004 was reconstructed by using the standard chronology. For the calibration period (1959–2004), the
explained variance of the reconstruction was 41.6%. During the last 233 years, there were 36 warm
years and 34 cold years, accounting for 15.5% and 14.7% of the total reconstruction years, respectively.
Cold periods occurred in 1899–1913, 1955–1970, and 1975–1989, while warm periods occurred in
1881–1888. The reconstructed temperature series corresponded to the historical disaster records of
extreme climatic events (e.g., drought and flood disasters) in this area. Comparisons with other
temperature reconstructions from surrounding areas and spatial correlation analysis between the
gridded temperature data and reconstruction series indicated that the regional climatic variations
were well captured by the reconstruction. In addition, multi-taper method spectral analysis indicated
the existence of significant periodicities in the reconstructed series. The significant spatial correlations
between the reconstructed temperature series and the El Niño–Southern Oscillation (ENSO), solar
activity, and Pacific Decadal Oscillation (PDO) suggested that the temperature in the CBM area
indicated both local-regional climate signals and global-scale climate changes.

Keywords: Changbai Mountain; Picea jezoensis; Tree-ring width; temperature reconstruction; solar
activity; Pacific Decadal Oscillation; El Niño–Southern Oscillation

1. Introduction

The increase in global temperature since the 20th century has had a major impact on natural
systems [1]. Global warming will result in significant changes in species abundance and the distribution
of mountain ecosystems at the mid–high latitudes of the Northern Hemisphere, where plant growth
is mainly limited by temperature [2–10]. Northeast China, an ecotone between temperate and
cold temperate climatic zones and transitioning between monsoon and non-monsoon conditions, is
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extremely sensitive to climatic changes [11]. The drought and flood disasters caused by the interannual
instability of the East Asia summer monsoon (EASM) have seriously affected the healthy development
of agriculture and forest ecosystems [12,13]. Additionally, previous studies have shown that climate
change in this region was also associated with global land–sea atmospheric circulation and solar
activities [14,15]. It is widely believed that the climate will get colder in periods of less solar activity
(e.g., the “Little Ice Age” during AD 1450 and 1850) [16,17], while in a period of intense solar activity,
the climate will become warmer (e.g., the warm period of the Middle Ages during AD 1000 and
1400) [18,19]. In the last few years, the temperature in Northeast China has been rising [11,20].
To understand the potential impact of climate change on this area requires a detailed understanding
of climate changes and trends in this region over the past few hundred years, or even longer [21,22].
However, most of the measured and archived meteorological records are from after 1949 (in this year,
The People’s Republic of China was established), which limits our understanding of the processes and
mechanisms of past climatic changes in this region.

The tree-rings of trees growing in climate-limited environments can record climatic conditions
well [23]. Tree rings in areas where temperature is the dominant limiting factor have already been widely
applied to reconstruct past temperatures [24–28]. These reconstructed temperature series from tree
rings have played a crucial role in the study of regional and global temperature changes. The Changbai
Mountain (CBM) is situated in the core area of Northeast Forest, a large area of undisturbed temperate
old-growth forest that offers an excellent opportunity for studies on climatology. Trees growing in
this forest were shown to be sensitive to temperature change in the growing season [29–31]. In the
last years, some studies on temperature reconstructions have been conducted in the CBM, including
January–April and February–April temperature reconstructions based on Korean pine chronologies
by Shao et al., 1997 [32], and Zhu et al., 2009 [33], respectively; and September–October temperature
reconstruction based on Fraxinus mandshurica chronology by Wang et al., 2012 [34]. As mentioned
above, temperature reconstructions, especially during the growing season (June–August), are still
lacking in this area. Thus, it is very important to fill this gap. In the process of exploring the response
of high-altitude Picea jezoensis var. trees to climate change in Changbai Mountain, we found that the
radial growth of PJ has a high correlation with the mean maximum temperature in the previous year
June–July (T67), and the radial growth has a high sensitivity to its annual variation. Therefore, we
reconstructed the historical changes of T67 in the Changbai Mountain area, based on the chronology of
PJ (see Section 4.1 for the physiological basis). The long-term reconstruction of past temperatures in
the growing season will enable us to better understand the change in climate and update the current
climate model of Changbai Mountain. [35].

In this study, a tree-ring width series, constructed from the living trees of Picea jezoensis (PJ) was
used to reconstruct the June–July maximum temperature histories for the last 233 years. The aims of
this study are (1) to reconstruct and investigate temperature variability since 1772 AD in Changbai
Mountain, and (2) to explore the potential connections between the reconstructed June–July temperature
data and large scale climatic change.

2. Materials and Methods

2.1. Study Area and Sample Collection

The study area was located at the Changbai Mountain (CBM) Natural Reserve in Northeast China
(Figure 1), where the climate is affected by the temperate continental monsoon, which is characterized
by cold, windy winters and moist summers [33]. The annual average temperature is between −7 ◦C and
3 ◦C, and the annual precipitation is 700–1400 mm (Figure 2). About 88.4% of the annual precipitation
occurs from April to September. The sample site (1600–1700 m a. s. l, 42◦12′ N and 128◦03′ E) (Figure 1)
was located on the north slope of CBM. Picea jezoensis (PJ) was the dominant tree species in the site,
accompanied by some Abies nephrolepis [34]. To minimize the influence of non-climatic factors on
the growth of trees, the selected PJ forest was an open forest, with no signs of recent fires or human
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disturbances. Three stands of 30 m × 30 m were established, and PJ trees accounted for 83.8% of the
basal area at breast height (1.3 m) of the sampling stands. All of the largest, presumably oldest, and
healthiest PJ were chosen, and then one or two oppositely oriented increment cores were sampled
at the trunk, 1.3 m above the ground. 59 cores from 33 PJ trees were collected in November 2005.
The slope of the sampling points was from 0 to 20.

Forests 2018, 9, x FOR PEER REVIEW  3 of 16 

non-climatic factors on the growth of trees, the selected PJ forest was an open forest, with no signs of 
recent fires or human disturbances. Three stands of 30 m × 30 m were established, and PJ trees 
accounted for 83.8% of the basal area at breast height (1.3 m) of the sampling stands. All of the largest, 
presumably oldest, and healthiest PJ were chosen, and then one or two oppositely oriented increment 
cores were sampled at the trunk, 1.3 m above the ground. 59 cores from 33 PJ trees were collected in 
November 2005. The slope of the sampling points was from 0 to 20. 

 
Figure 1. Map showing the sampling site of CBM (Changbai Mountain) and meteorological stations 
in Erdao and Tianchi (a), and the sampling site of CBM and other locations mentioned in text for 
comparison, including Laobai Mountain (LBM): April–July temperature [36] and Hailar (HLE): April–
September temperature [27] (b). 

 

Figure 1. Map showing the sampling site of CBM (Changbai Mountain) and meteorological stations
in Erdao and Tianchi (a), and the sampling site of CBM and other locations mentioned in text
for comparison, including Laobai Mountain (LBM): April–July temperature [36] and Hailar (HLE):
April–September temperature [27] (b).

Forests 2018, 9, x FOR PEER REVIEW  3 of 16 

non-climatic factors on the growth of trees, the selected PJ forest was an open forest, with no signs of 
recent fires or human disturbances. Three stands of 30 m × 30 m were established, and PJ trees 
accounted for 83.8% of the basal area at breast height (1.3 m) of the sampling stands. All of the largest, 
presumably oldest, and healthiest PJ were chosen, and then one or two oppositely oriented increment 
cores were sampled at the trunk, 1.3 m above the ground. 59 cores from 33 PJ trees were collected in 
November 2005. The slope of the sampling points was from 0 to 20. 

 
Figure 1. Map showing the sampling site of CBM (Changbai Mountain) and meteorological stations 
in Erdao and Tianchi (a), and the sampling site of CBM and other locations mentioned in text for 
comparison, including Laobai Mountain (LBM): April–July temperature [36] and Hailar (HLE): April–
September temperature [27] (b). 

 
Figure 2. Total precipitation (in mm) and mean monthly temperature (in ◦C) in Changbai Mountain
(CBM) (AD 1960–2005).



Forests 2019, 10, 416 4 of 16

2.2. Development of Ring-Width Chronologies

In the laboratory, the samples were pretreated, naturally air dried, glued to wooden holders, and
then sanded with successively finer grits of sandpaper to highlight the tree rings [23,37,38]. The tree
rings were cross-dated under a binocular microscope, and then the annual ring width was carefully
measured using a Velmex measuring system interfaced with the Time Series Analysis Program (TSAP;
Frank Rinntech, Heidelberg, Germany) with a resolution of 0.001 mm. The COFECHA program was
used for quality control of the cross-dating and the measurements [38].

To eliminate the effects of stand dynamics, age, and any other non-climate-related growth variation,
the cross-dated tree-ring data were detrended using three different techniques—negative exponential
(EXP), regional curve standardization (RCS), and 300-year splines (SPL), via ARSTAN [37]. Each
technique produced three chronologies, autoregressive (ARS), residual (RES), and standard (STD).
The STD chronology with an EXP detrending was the best chronology because it contained more low
frequency signals (Figure 3). Thus, the STD chronology from EXP was selected. The analysis was
restricted to the period with an expressed population signal (EPS) > 0.85 to ensure the reliability of the
chronology [39].
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2.3. Climate Data

Meteorological data were collected from the Meteorological Stations in Erdao (42◦24′ N, 128◦16′

E, 591 m a. s. l.) and Tianchi (42◦1′ N, 128◦5′ E, 2623 m a. s. l.) in the Changbai Mountain area
(CBM) (Figure 1a). The Mann–Kendall method [40,41] was applied to check the abrupt turning point
of climate change. Monthly total precipitation (Prec), monthly mean minimum temperature (Tmin),
monthly mean temperature (Tm), and monthly mean maximum temperature (Tmax) were used for the
dendroclimatological analyses.
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2.4. Statistical Methods

Growth/climate relationships were tested through the use of response functions and correlation
analysis [42,43] to identify the best model for the climatic reconstruction (Figure 4a). Following this,
a linear regression equation between tree-ring index chronology and climate data was calculated
for the calibration period of 1959–2004. To check the stability of the relationship between tree-rings
and temperature, the running correlation coefficient was calculated and the Mann-Kendall Test was
applied (Figure 4b). The p-value associated with the Mann-Kendall test was statistically insignificant
(tau = 0.122, two-sided p-value = 0.080289), suggesting the absence of a statistically significant
upward/downward trend in the running correlation coefficient series. The statistical reliability of this
model was verified by split sample calibration-verification tests [44]. All statistical analyses were
performed using the commercial software SPSS12.0 (SPSS, Inc., Chicago, IL, USA). Spectral analysis
can be used to extract the non-random signals stored in time series [23]. To explore the possible
mechanisms affecting climate variability in this region, the frequency domain of the reconstructed
series was examined through the multi-taper method (MTM) spectral analysis [45] (MTM software
can be downloaded at http://www.ldeo.columbia.edu/res/fac/trl/). Additionally, spatial correlations
between our reconstruction and the gridded CRUTS 4.01 temperature pattern from 1959 to 2004
were calculate based on the KNMI climate explorer (http://climexp.knmi.nl). This was done to assess
the spatiotemporal representativeness of the reconstruction. The spatial correlations between the
reconstructed temperature series in June–July and the June–July averaged HadlSST11◦ (Sea Surface
Temperature from a grid temperature of 1 degree by 1 degree) were estimated during the period of
1870–2004 (http://climexp.knmi.nl).
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Figure 4. (a) Correlations between the standard chronology and monthly climate data, including
monthly total precipitation (Prec), mean maximum temperature (Tmax), mean minimum temperature
(Tmin), and mean temperature (Tm) from CBM during 1960–2005. The dashed lines indicate the
95% confidence level. (b) Running correlation between the ring-width index and mean maximum
temperature from June to July of the previous year with a 10-year window.

3. Results

3.1. Chronology Statistics

The chronology statistics are shown in Table 1. The mean ring width (MRW) was 0.89 mm.
The standard deviation (SD) was 0.15. The mean sensitivity (MS) of the STD chronology was 0.32,
revealing that the chronology showed inter-annual variation and contained strong environmental
signals. The first order autocorrelation was 0.68. The average correlation within a tree was 0.69 and the
signal-to-noise ratio (SNR) was 4.6, revealing that the common growth limiting signals were contained
in the tree-ring series. To ensure the validity and reliability of the reconstructed series, an EPS threshold

http://www.ldeo. columbia.edu/res/fac/trl/
http://climexp.knmi.nl
http://climexp.knmi.nl
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value of 0.85 was employed to assess the most credible time span of the STD chronology. The threshold
was met by a sample depth of six trees and a period of 1773–2005 (Figure 5).

Table 1. Statistical features of STD chronology.

Statistic STD

MS 0.32
SD 0.15

Kurtosis 0.17
skewness 0.45

First order autocorrelation 0.68
Mean correlation between all series 0.39
Mean correlation between the trees 0.35

Mean correlation within a tree 0.69
Period 1934/1743–2005
SNR 4.6

MRW (mm) 0.89
EPS 0.90

First year where EPS > 0.85 (number of trees) 1773 (6)
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Figure 5. (a) Ring-width STD chronology for the period 1743–2005 constructed for Picea jezoensis var.
microsperma from Changbai Mountain in the northeast of China. The blue lines indicate the numbers
of tree-ring series and (b) the expressed population signal (EPS) and average correlation between all
series (Rbar) of the STD from AD 1743 to 2005. The vertical dash line indicates the point where EPS
was higher than 0.85.

3.2. Growth/Climate Responses

The monthly mean temperatures and precipitation were used to compute the correlation coefficient
between the tree-ring width index and climate variables from 1960 to 2005 (Figure 4a). The correlation
analysis used climate data from the previous June and the current September. The significant negative
correlations (p < 0.05) between the STD chronology and temperatures in the previous year June–July and
current year July were found. The tree-ring width indices also showed significant negative correlations
(p < 0.05) with the Tmin and Tmean from December of the previous year and February–March of the
current year. Meanwhile, the previous August–September Tmin and current May Tmax were found to
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be significantly positively correlated with the radial growth of PJ. In addition, the radial growth of PJ
had a significant positive correlation with the July precipitation of the previous year/the current year
(p < 0.05), and had a significant negative correlation with the precipitation of May of the current year.
After examining the different combinations of months, it was found that the correlation between the
ring-width indices and monthly mean maximum temperature from June to July of the previous year
was the best (Table 2). Therefore, the monthly mean maximum temperature from June to July of the
previous year was reconstructed, using the PJ chronology.

Table 2. Correlations between the ring-width index and meteorological data for different month
combinations over the common period of 1960–2005. Months are given as follows: p6–p7—previous
June to July; p8–p9—previous August to September; p12–c3—previous December to current March;
p12–c2—previous December to current February; p12–c1—previous December to current January;
c1–c3—current January to March; c2–c3—current February to March. *: p < 0.05.

Months Tmin Tmean Tmax

p6–p7 −0.39 * −0.45 * −0.64 *
p8–p9 0.31 * 0.17 −0.12
p12–c3 −0.37 * −0.31 * −0.21
p12–c2 −0.35 * −0.26 −0.19
p12–c1 −0.29 −0.25 −0.16
c1–c3 −0.33 * −0.31 * −0.22
c2–c3 −0.36 * −0.30 * −0.27

3.3. Maximum Temperature Reconstruction

A linear regression model was used to describe the relationship between the tree ring width and
the mean maximum temperature from June to July of the previous year. The parameters of the model
were derived from results obtained by the correlation analysis. The model was designed as follows:

PTmax6-7 = 26.22 − 3.84× Xt, (1)

where PTmax6–7 is the mean maximum temperature from June to July of the previous year and Xt is
the ring-width index of the Changbai Mountain (CBM) chronology at the t year. For the calibration
period (1959–2004), the reconstruction accounted for 42.0% of the actual Tmax6–7. Running correlation
analysis showed that the tree-ring proxy/climate relationship was stable over the entire calibration
period (Figure 4b). The overall split calibration-verification tests indicated this model was acceptable
(Table 3). The Durbin–Watson (DW) test was applied to analyze the residuals of the reconstruction,
ranging from 1.50 to 1.72, suggesting that there is no linear trend or significant autocorrelation in the
residuals (Figure 6b,c; Table 3). The positive coefficient of efficiency (CE) and reduction of error (RE)
values (Table 3) revealed that model (1) was stable and reliable. These analyses demonstrated that this
regression model was valid for temperature reconstructions.

Table 3. Statistics of calibration and verification test results for the common periods.

Parameter Calibration Verification Calibration Verification Final Calibration

1960–1982 1983–2005 1983–2005 1960–1982 1960–2005
r −0.59 −0.68 −0.68 −0.59 −0.64

R2 0.35 0.46 0.46 0.35 0.42
R2adj 0.34 0.44 0.41
DW 1.72 1.50 1.56
RE 0.35 0.46 0.46 0.31
CE 0.35 0.41 0.46 0.22
t 5.5 7.3 7.1 5.7

r—correlation coefficient; R2—explained variance; R2adj—adjusted for the loss of degrees of freedom; RE—reduction
of error statistic; CE—coefficient of efficiency statistic; t—product means; DW—Durbin–Watson.



Forests 2019, 10, 416 8 of 16

Forests 2018, 9, x FOR PEER REVIEW  8 of 16 

Table 3. Statistics of calibration and verification test results for the common periods. 

Parameter  Calibration Verification Calibration Verification Final calibration 
 1960–1982 1983–2005 1983–2005 1960–1982 1960–2005 
r −0.59 −0.68 −0.68 −0.59 −0.64 

R2 0.35 0.46 0.46 0.35 0.42 
R2adj 0.34  0.44  0.41 
DW 1.72  1.50  1.56 
RE 0.35 0.46 0.46 0.31  
CE 0.35 0.41 0.46 0.22  
t 5.5 7.3 7.1 5.7  

r—correlation coefficient; R2—explained variance; R2adj—adjusted for the loss of degrees of freedom; 
RE—reduction of error statistic; CE—coefficient of efficiency statistic; t—product means; DW—
Durbin–Watson. 

 
Figure 6. (a) Observed (blue line) and reconstructed (black line) Tmax6–7 for the common period of 
1959–2004; (b) Shapiro–Wilk residuals normality test (SW); (c) Durbin–Watson test for residuals 
autocorrelation (DW); (d) reconstruction of Tmax6–7 in CBM for the last 233 years. The smoothed line 
indicates the 11-year moving average, red dots represent drought events, and blue dots represent 
flood events. The drought and flood events were recorded by [46]. 

3.4. Temperature variability  from AD 1772 to 2004 

Based on model (1), the reconstructed Tmax6-7 series during 1772 and 2004 in the CBM area 
showed a mean of 22.81 °C and a standard deviation of σ = 1.03 °C (Figure 6d). We defined Tmax6–7 
≥ 23.84 °C (Mean+1σ) and Tmax6–7 ≤ 21.78 °C (Mean-1σ) as the threshold values for determining the 
warm years and cold years, respectively [27,47]. Based on these criteria, the reconstructed Tmax6–7 
series contains 36 warm years and 34 cold years (Table S1 of the Supplementary Materials). The cold 
and warm years accounted for 16.4% and 14.4%, respectively. The 11-year smoothing average of the 

Figure 6. (a) Observed (blue line) and reconstructed (black line) Tmax6–7 for the common period
of 1959–2004; (b) Shapiro–Wilk residuals normality test (SW); (c) Durbin–Watson test for residuals
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indicates the 11-year moving average, red dots represent drought events, and blue dots represent flood
events. The drought and flood events were recorded by [46].

3.4. Temperature Variability from AD 1772 to 2004

Based on model (1), the reconstructed Tmax6-7 series during 1772 and 2004 in the CBM area
showed a mean of 22.81 ◦C and a standard deviation of σ = 1.03 ◦C (Figure 6d). We defined Tmax6–7
≥ 23.84 ◦C (Mean+1σ) and Tmax6–7 ≤ 21.78 ◦C (Mean-1σ) as the threshold values for determining the
warm years and cold years, respectively [27,47]. Based on these criteria, the reconstructed Tmax6–7
series contains 36 warm years and 34 cold years (Table S1 of the Supplementary Materials). The cold
and warm years accounted for 16.4% and 14.4%, respectively. The 11-year smoothing average of the
reconstructed Tmax6–7 series was used to reveal low-frequency information and to show temperature
variability in this area (Figure 6d). After smoothing with an 11-year moving average, cold periods
occurred in 1899–1913 (average value was 21.41 ◦C), 1955–1970 (21.49 ◦C), and 1975–1989 (20.97 ◦C),
while warm periods occurred in 1881–1888 (23.93 ◦C) (Figure 6d, Table 4). Furthermore, there are six
obvious processes of Tmax6–7 increasing in 1781–1791 (from 22.76 ◦C to 23.54 ◦C), 1800–1809 (from
22.72 ◦C to 23.44 ◦C), 1835–1845 (from 22.66 ◦C to 23.76 ◦C), 1900–1919 (from 21.47 ◦C to 22.30 ◦C),
1931–1942 (from 21.36 ◦C to 22.04 ◦C), and 1983–2004 (from 20.49 ◦C to 22.99 ◦C), and five obvious
processes of Tmax6–7 decreasing in 1790–1800 (from 21.89 ◦C to 22.98 ◦C), 1810–1835 (from 23.40 ◦C to
22.66 ◦C), 1880–1901 (from 23.83 ◦C to 21.25 ◦C), 1917–1931 (from 22.36 ◦C to 21.36 ◦C), and 1970–1983
(from 21.75 ◦C to 20.49 ◦C) (Figure 6d). In addition, the temperatures during 1780–1890 were much
warmer (average value was 23.35 ◦C) than the temperatures during 1900–2004 (average value was
21.65 ◦C) (Figure 6d).
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Table 4. Cold and warm periods based on the 11-year moving average June–July mean maximum
temperature in the CBM region during AD 1772–2004.

Cold Period Warm Period

Rank Period Year Mean (◦C) Period Year Mean (◦C)

1 1899–1913 15 21.41 1881–1888 9 23.93
2 1955–1970 16 21.49
3 1975–1989 15 20.97

3.5. The Result of Periodicity Analyses

The multi-taper method (MTM) spectral analysis revealed that the Tmax6–7 reconstruction had
69.7-, 29.1-, 17.9-, 15.5-, 11.1-, 9.7-, 4.09-, 3.58-, 3.37-, 3.19-, 3.02-, 2.84-, 2.74-, and 2.67-year quasi-cycles
over the past 233 years at the 95% confidence level (Figure 7).
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4. Discussion

4.1. Physiological Significance of June–July Maximum Temperature

The correlation analysis showed that the higher summer temperature in the previous year
(June–July) was the key factor limiting the radial growth of Picea jezoensis (PJ) in the Changbai Mountain
(CBM) area, which indicates that the previous summer has a significant hysteresis effect on the
radial growth of the PJ. The results of this study were consistent with the results of studies on Pinus
tabulaeformis Carr in the Taihe Mountain area [48] and Larix sibirica in the Altai region of Mongolia [49].
The hot summer temperatures might limit the growth of PJ, which may be due to the increased
forest respiration and/or evaporation of soil moisture [3]. During the high temperature period, the
evaporation of soil moisture was greater than the precipitation, resulting in a deficit in the soil moisture,
and thus the water requirements for the tree growth cannot be met [3,27]. The lack of water could
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lead to the closure of some stomata in the leaves, and then the photosynthetic activity would be
weakened [27]. Meanwhile, the respiration consumed more accumulated matter, leaving less nutrients
storing for the growth of the next growing season, which is then not available for the growth of trees in
the following year [3,50].

4.2. Temperature–Rainfall Relationships and Comparision with Historical Document Records in Jilin Province

Drought is caused not only by a decrease in precipitation but also by an increase in temperature.
Under normal precipitation conditions, high temperatures can cause severe droughts, while
precipitation is accompanied by low temperatures [27,51]. Historical documents showed that drought
or flooding events have occurred in Jilin Province since 1772 [46]. Extreme drought events were in
good agreement with seven high-temperature years (1811, 1812, 1860, 1865, 1885, 1919, and 1921), and
flooding disaster events were in good agreement with fifteen low-temperature years (1929, 1961, 1962,
1964, 1965, 1969, 1976, 1983–1985, and 1987–1991) in the reconstructed Tmax6–7 series (Figure 6b, Table
S2 of the Supplementary Materials) [46].

Two severely cold years in the periods from 1953–1974 and 1980–1993 in Heilongjiang Province
were captured in this reconstructed series (Figure 6d) [52]. The significantly low temperature years
from 1953 to 1974 coincided with a slight decrease in solar activity (Figure 6d) [53]. The warm periods
occurred from 1790–1800, 1845–1855, and 1857–1867 and were consistent with other results of tree-ring
reconstructions in northeast China [54–56]. In addition, from 1780 to 1890, the average maximum
temperature of June–July was higher compared to the period from 1900 to 1980. This temperature
change may be related to the precipitation in the growing season (GS). The flood disasters in the GS
of Jilin Province before 1800 were relatively small, occurring once every 5 years. The frequency and
severity of flooding in 1801–1900 increased, once every 3.5 years; the frequency of floods during the
period from 1901 to 1990 was 2.8 years [46]. Therefore, these results indicate that the reconstructed
Tmax6–7 data was consistent with the historical records of the past 233 years.

4.3. Regional- to Large-Scale Comparison

We compared the Tmax6–7 series in CBM with nearby tree-ring-based reconstruction temperature
series in Laobai Mountain (LBM) (Figure 8b) [36] and Hailar (HLE) (Figure 8c) [27] to further test the
validity of the reconstruction, and investigated the characteristics of climate variation in the study area
of the CBM region (all three sites shown in Figure 1). A significantly positive correlation (r = 0.50,
p < 0.01) between the reconstructed Tmax6–7 series (Figure 8a) and the reconstructed April–July
temperature series in LBM (Figure 8b) was found, while our reconstruction of the Tmax6–7 had
similar variations to the reconstructed April–September temperature series in HLE (r = 0.32, p < 0.01)
(Figure 8c). The trend of temperature changes for some time intervals (1774–1784, 1823–1842, 1845–1870,
1888–1900, 1925–1932, 1948–1982, and 1983–2005) in the three reconstruction series was the same
(Figure 8), indicating regional-scale climate change. In addition, the significantly positive correlations
between the reconstructed Tmax6–7 series and regional gridded temperatures (Figure 9a,b) showed
that the regional temperature variations were well captured by the reconstruction. Therefore, our
reconstruction preserved reliable information on regional climate variability, and provided a valuable
profile of past climatic variation in this area.
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4.4. Periodicities and Possible Climate Drivers

The results of spectral analysis [57] revealed that the Tmax6–7 series has specific cycles, indicating
that the Tmax6–7 in the CBM region may be affected by other factors. Significant peaks were observed
at 4.09, 3.58, 3.37, 3.19, 3.02, 2.84, 2.74, and 2.67 years (Figure 7). These values were within the range
of the ENSO cycle of 2–7 years [58–60]. A significant positive correlation between the Tmax6–7
series and sea surface temperatures (SSTs) of the western equatorial Pacific (Figure 9c) revealed a
possible association between the Tmax6–7 changes and ENSO. Earlier studies have shown that the
El Niño event was related to higher summer temperatures in China [27,33,61] and has already been
observed in temperature reconstructions that were based on tree ring data from Northeast China [28,50].
The Changbai Mountain (CBM) is located at the boundary zone of the East Asia summer monsoon
(EASM) [62,63]. The ENSO has a strong effect on the East Asian monsoon (EAM) and may cause
temperature changes in monsoon-affected areas [64–66]. The EAM climate regimes dominate the rise
and fall of the temperature, or the increase and decrease in the availability of water resources [60,67,68].

The cycles of 9.7 and 11.1 years may suggest the influence of solar effects, such as the amount
of solar irradiance [69–72]. Correlation analyses revealed that the Tmax6–7 series had a significant
positive correlation with the number of sunspots (http://www.sidc.be/silso/datafiles) from May to July
of the current year (n = 233, 1772–2004, r = 0.21, p = 0.011), indicating that the Tmax6–7 series was most
likely influenced by solar activity. An approximately 10-year cycle was detected from other works in
northern China and suggests the effects of solar activity [14,19,27].

The significant spectral peaks appearing in 15.5, 17.9, 29.1, and 69.7 years may be related to the
15–30 and 50–70 year periods of the Pacific decadal oscillation (PDO) [73–75], which was confirmed by
the significant positive correlation of the reconstructed Tmax6–7 series with the annual PDO (n = 225,
r = 0.37, p < 0.05; 1772–1996) [76] and with SSTs in the eastern Pacific Ocean (Figure 9c). Some
other works which were conducted near our study region discovered that the reconstructed climate
series based on the tree-ring widths of Hailar pine, Mongolian pine, and Pinus tabulaeformis were also
significantly correlated with the PDO [15,27,61].

As mentioned above, the complex connections between the solar activity, ENSO, and PDO
suggest that the temperature in the CBM area indicated local-regional climate signals and global-scale
climate changes.

5. Conclusions

A June–July mean maximum temperature reconstruction (1772–2004) was developed using
tree-ring data from the Changbai Mountain (CBM) in the northeast of China. The reconstructed and
observed temperature data showed coherence throughout the common periods. Compared with
historical records, the warm and cold periods of the reconstructed record usually corresponded to
temperature records in historical documents from Jilin Province of China. In addition, comparisons
with other reconstructed temperature series from different regions and spatial correlations between
the reconstructed Tmax6–7 series and gridded temperature record showed that the reconstructed
temperature from the CBM area might contain both local and large-scale regional temperature variability.
Some important cycles for temperature variability were exposed by the power spectrum analysis,
indicating the possible linkage of regional temperature variations to the solar activity, ENSO and PDO.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/5/416/s1,
Table S1: Years of extremely high (>23.84 ◦C) and low (<21.78 ◦C) reconstructed mean maximum temperatures
from June to July (Tmax6–7) from most extreme to least, Table S2: Flood and drought events recorded in historical
archives in Jilin Province since 1772 [52].
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