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Abstract: We present diameter distribution models for black alder (Alnus glutinosa (L.) Gaertn.)
derived from diameter measurements made at breast height in 844 circular sample plots set in 163
managed stands located in south-eastern Poland. A total of 22,530 trees were measured. Stand age
ranged from six to 89 years. The model formulation was based on the two-parameter Weibull function
and a non-parametric percentile-based method. Weibull function parameters were recovered from the
first raw and second central moments estimated using the stand quadratic mean diameter. The same
stand characteristic was used to predict values of 12 percentiles in the percentile-based method.
The model performance was assessed using the k-fold cross-validation method. The goodness-of-fit
statistics include the Kolmogorov–Smirnov statistic, mean error, root mean squared error, and two
variants of the error index introduced by Reynolds. The percentile model developed, accurately
predicted diameter distributions in 88.4% of black alder stands, as compared to 81.9% for the
Weibull model (Kolmogorov–Smirnov test). Alternative statistical metrics assessing goodness-of-fit
to empirical distributions suggested that the non-parametric percentile model was superior to the
parametric Weibull model, especially in stands older than 20 years. In younger stands, the two
models were accurate only in 57% of the cases, and did not differ significantly with respect to
goodness-of-fit measures.

Keywords: stand structure; Wiebull distribution function; percentile-based model; parameter
recovery method

1. Introduction

The natural range of the black alder (Alnus glutinosa (L.) Gaertn.) extends through most of Europe,
from central Scandinavia to the southern coast of the Mediterranean Sea [1,2]. In Poland, the black
alder is widespread in the lowlands, especially in the northern and central parts of the country; in
the south it is less common and generally does not occur above 500 m above sea level [3]. The black
alder is an economically important species in Poland, covering 522,000 ha (5.7%) with a growing stock
estimated at 137 million m3 (263 m3

·ha−1), which accounts for 5.3% of the country’s overall growing
stock [4]. In wet soils with high groundwater levels, it mostly forms pure, even-aged, one-storey stands.
On mesic sites, in mixed deciduous forests, the black alder may be used as a valuable admixture
for improving timber production or for biocenotic considerations. Due to its robust root system
and symbiosis with bacteria of genus Frankia, which produce nitrogen-fixing nodules on fine roots,
it actively transforms its habitats [3]. In addition, as a result of open mineral metabolism, black alder
leaf fall contributes 30–130 kg·ha−1

·year−1 of nitrogen to the soil [1], and increases the availability of
phosphorus, magnesium, manganese, and zinc [1]. These ecological properties of the black alder make
it suitable for reclamation of post-industrial sites [5,6]. In addition to providing valuable timber, black
alder stands for unique niches, offering habitats to riverine and riparian flora and fauna.
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The implementation of economic and non-economic forest functions requires efficient forest
management planning that provides reliable and detailed information about forest resources.
The optimum level of detail required for economic decision-making includes data about the distribution
of stand characteristics by tree-size classes [7]. Diameter distribution defined as the number of trees
within a certain diameter range at breast height (DBH) [8,9], is crucial for the determination of stand
volume and value [8], biodiversity [10], stability [11], development stage [12], and for predicting
growth dynamics [13].

Accurate determination of diameter distribution entails substantial costs associated with measuring
DBH for a large number of trees while conducting an inventory [14,15]. In practice, in order to reduce
survey costs, only selected stand features are measured; these include quadratic mean diameter (QMD),
mean tree height, basal area (BA), etc. Diameter distribution models can be used to estimate the
number of trees falling into different DBH classes. The application of diameter distribution models in
conjunction with stand characteristics generates results convergent with actual DBH measurements [16].

Diameter distribution modeling may also improve the utility of existing growth models. While
complex individual tree-level models, which account for interactions between trees and their
environment, accurately describe tree growth processes, they are impracticable due to the prohibitive
costs of acquiring the necessary input data [17]. Diameter distribution models can be used with
individual tree-level or taper models and can minimize the measurement work needed for their
implementation [16–18]. The combination of diameter distribution models and individual tree-level
or stand models gives rise to an integrated system that not only enhances the accuracy of stand
characteristics assessment, but also ensures a convergence of estimates made at different levels of
prediction [19].

Diameter distribution models are typically constructed using various theoretical distributions,
including normal [20,21], log-normal [20,21], double normal [21,22], Weibull [8,23–31], Johnson
SB [32–35], and beta [16,18]. From among the above, the Weibull function is most often used for
modeling unimodal diameter distributions, as it has a simple form of the cumulative function [7,8,36]
and due to its flexibility in fitting distributions of various shapes and degrees of skewness and ease
of parameter estimation. The parameters of the probability density function may be estimated using
two methods—the parameter prediction method (PPM), in which they are predicted directly from
stand characteristics, and the parameter recovery method (PRM), in which they are computed from the
moments or percentiles of diameter distribution predicted from stand characteristics [37].

An alternative approach to the widely used parametric distributions is the percentile-based
method, in which diameter distribution is defined by 12 percentiles estimated directly from stand
characteristics [38]. The method has been applied in practice by Siipilehto [39], Kangas and
Maltamo [40,41], Mehtätalo [14], Stankova and Diéguez-Aranda [42], and Stankova and Zlatanov [43],
and has been deemed appropriate for describing multimodal distributions and those with irregular
probability density functions [38,43].

The objective of the study was to develop a diameter distribution model for black alder stands using
a two-parameter Weibull function and a non-parametric percentile-based approach. The predictive
power of the resulting models was evaluated using a random sample of stands from the western part
of the Sandomierz Basin in southeastern Poland.

2. Materials and Methods

2.1. Data Collection

The study material consisted of DBH measurements from 844 circular sample plots in 163 managed
black alder stands, aged between 6 and 89 years, and located in southeastern Poland. Regularly spaced
circular sample plots, numbering about 2 to 10, with area ranging from 100 to 1000 m2 (depending on
stand age) were established in each stand. In each plot, height (with an accuracy of 0.1 m) and DBH
(twice, at right angles, with an accuracy of 0.1 cm, with the arithmetic mean of the two measurements
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adopted as the actual DBH) were measured for all living alders. A total of 22,530 trees were measured.
An empirical diameter distribution for a given stand was obtained by combining the measurements
from all sampled plots in that stand [21].

The collected data were used to calculate the basic stand variables widely used for the construction
of diameter distribution models, that is, quadratic mean diameter (QMD; cm), stand density (SD;
trees·ha−1), Reineke stand density index (SDI; trees·ha−1), Lorey’s mean height (HL; m), and basal area
(BA; m2

·ha−1). Furthermore, site index (SI; m) was estimated by means of a formula developed for
alder stands in Poland, assuming a base age of 100 years [44].

The parameters of diameter distribution models were developed for the entire set of 163 empirical
diameter distributions. The predictive accuracy and precision of the models were evaluated by the
k-fold cross-validation method [45–47]. To that end, the set of observations was divided at random
into 10 parts; nine of them constituted a training dataset. The remaining one was a testing dataset.
The procedure was repeated 10 times, so that each group of stands was used as a testing dataset once.
The basic statistics for the studied stands and trees are given in Table 1.

Table 1. Descriptive statistics for stand and tree variables.

Statistics
Stand Variable Tree Variable

QMD Age SD SDI HL SI BA DBH TH BA

Mean 21.99 44 1020 528 20.49 32.4 25.21 20.3 18.9 0.04120
StDev 9.44 23 885 129 6.37 2.4 9.11 10.6 6.8 0.03951
Min. 4.47 6 223 212 6.28 26.5 5.48 1.0 2.8 0.00008
Max. 42.95 89 4360 873 32.75 40.2 49.79 67.0 36.6 0.35257

QMD (cm), quadratic mean diameter; SD (stems·ha−1), stand density; SDI (stems·ha−1), Raineke stand density index;
HL (m), Lorey’s mean height; SI (m), site index (base age 100 years), BA (m2

·ha−1), basal area; DBH (cm), diameter
at breast height; TH (m), tree height; StDev, standard deviation.

2.2. Diameter Distribution Models

The diameter distribution of the studied black alder stands was described using a two-parameter
Weibull distribution and a non-parametric percentile-based method.

The probability density function f (x) of a two-parameter Weibull distribution is given as [8]:

f (x) =
( c

b

)(x
b

)c−1
exp

{
−

(x
b

)c}
; x ≥ 0; b, c > 0, (1)

with its cumulative distribution function F(x) being:

F(x) = 1− exp
{
−

(x
b

)c}
; x ≥ 0; b, c > 0, (2)

were x is DBH (cm) and b and c are the scale and shape parameters, respectively.
Among the many ways of estimating the parameters of a Weibull distribution, the moment method

is deemed superior due to its simplicity and accuracy [48–50]. Moreover, if parameters are calculated
based on the first raw moment (m1) and the second central moment (m2), the results are unbiased
estimations of these moments from the sample which guarantees agreement of statistics between the
empirical and fitted distributions. The parameters b and c of the Weibull distribution were estimated
based on the first raw moment and the second central moment according to the formulas:

m1 = b · Γ
(
1 +

1
c

)
, (3)

m2 = b2
·

(
Γ
(
1 +

2
c

)
− Γ2

(
1 +

1
c

))
, (4)

where Γ(·) is the gamma function.
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Transforming Equation (3) in terms of parameter b and substituting the result into Equation (4)
gives:

b =
m1

Γ
(
1 + 1

c

) , (5)

m2 =
m2

1

Γ2
(
1 + 1

c

) · (Γ(
1 +

2
c

)
− Γ2

(
1 +

1
c

))
, (6)

When the first raw moment and the second central moment are known, Equation (6) depends only on
parameter c and may be solved iteratively after being transformed to:

m2
1

Γ2
(
1 + 1

c

) · (Γ(
1 +

2
c

)
− Γ2

(
1 +

1
c

))
−m2 = 0, (7)

Parameter b may be then calculated directly from Equation (5).
In the PRM, moments, m1 and m2 are estimated from the stand characteristics recorded in the

inventory. The first raw moment m1, being the (arithmetic) mean diameter, may be expressed as a
linear function of the QMD [42,43]:

m1 = a + b ·QMD, (8)

where a and b are the equation coefficients.
The second central moment m2, which is the variance of diameters, is calculated according to the

formula [42,43]:
m2 = QMD2

−m2
1, (9)

The other approach to constructing a diameter distribution model is the percentile method
proposed by Borders et al. [38], which defines the PDF by means of 12 percentiles, that is, 0th, 5th, 15th...
85th, 95th, and 100th. These percentiles are determined using empirical regression equations based on
the actual stand characteristics. In the original version of the method, the percentile predicted with the
greatest confidence, based on preliminary regression equations, is selected as a “driver percentile”. This
work uses a version of the percentile method modified by Stankova and Zlatanov [43], without a driver
percentile, in which the 12 percentiles are determined solely from stand characteristics. Preliminary
analysis showed, that QMD was the best performing stand feature to predict values of the required
percentiles. The parameters of the system of equations describing the empirical relationship between
the 12 percentiles and the QMD of the stand were determined using seemingly unrelated regressions:

P0 = a0 + b0QMD
P5 = a5 + b5QMD
P15 = a15 + b15QMD
.
.
.
P100 = a100 + b100QMD

, (10)

where P0, P5, P15, ..., P100 are percentiles of the empirical diameter distribution (cm), and a0, a5, a15, ...,
a100 and b0, b5, b15, ..., b100 are equation coefficients.

2.3. Model Evaluation and Validation

At the stage of model parameterisation, goodness-of-fit to empirical data was evaluated using the
adjusted coefficient of determination (R2

adj), the mean squared error (MSE), and the significance levels
of regression models (F-test), and their coefficients (t-test).
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The predictive performance of the models developed was estimated using the k-fold
cross-validation method. The fit of the models to data from the actual stands (testing dataset)
was evaluated by comparing empirical F and predicted F̂ CDFs. The Kolmogorov–Smirnov statistic
Dn was calculated to measure the maximum absolute distance between the observed and predicted
CDFs [7,36,43]:

Dn = sup
d

∣∣∣F(di) − F̂(di)
∣∣∣, (11)

The average distances between the compared CDFs, expressed by means of the mean error (ME)
and the root mean squared error (RMSE), were calculated for each stand from the following formulas:

ME =

n∑
i=1

(
F̂(di) − F(di)

)
n

, (12)

RMSE =

√√√√ n∑
i=1

(
F̂(di) − F(di)

)2

n
, (13)

where di is the DBH of i-th tree in the stand and n is the number of trees.
In the case of diameter distribution modeling, it is important to not only determine differences

between empirical and predicted CDFs, but also to find in which part of the distribution those
differences occur. Practical implications of an error of one tree will substantially differ depending on
whether that error arose in a small or large DBH class. A statistic which accounts for this additional
criterion is the error index e, proposed by Reynolds et al. [36], which is the weighted sum of absolute
differences between predicted and observed trees per hectare in all DBH classes [51]:

e = N
m∑

k=1

∣∣∣∣∣∣∣∣∣
Udk∫

Ldk

w(d)dF̂(d) −

Udk∫
Ldk

w(d)dF(d)

∣∣∣∣∣∣∣∣∣ (14)

where N is the number of trees per unit of area (trees·ha−1), w(d) is the weight assigned to a tree
with a DBH of d, Ldk and Udk are the lower and upper limits of k-th DBH class respectively, and m
is the number of DBH classes. If the weight w(d) corresponds to tree volume, then the expression

N
∫

Udk

Ldk
w(d)dF̂(d) is the predicted volume per hectare in the k-th DBH class, while N

∫
Udk

Ldk
w(d)dF(d) is

the observed volume per hectare in that DBH class. If the effect of weights is eliminated, that is w(d) =

1, the above expressions correspond to the predicted and observed number of trees per hectare for the
k-th DBH class [36]. This study used two variants of the error index, eN and eG, as calculated from the
formulas below:

eN =
m∑

k=1

∣∣∣N̂k −Nk
∣∣∣, (15)

eG =
m∑

k=1

∣∣∣Ĝk −Gk
∣∣∣, (16)

where N̂k and Nk correspond to the predicted and observed number of trees per hectare for the k-th
DBH class, Ĝk and Gk are the predicted and observed BAs (m2

·ha−1) for the k-th DBH class.
In the case of the Weibull distribution, the predicted number of trees in a given DBH class N̂k was

calculated as the product of the overall number of trees per hectare (N) determined on the basis of field
measurement and the probability pk of the presence of trees in the k-th DBH class calculated from the
difference in the CDF between the upper Udk and lower Ldk DBH limits:

N̂k = N · pk, (17)
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pk = F̂(Udk) − F̂(Ldk) (18)

In the case of the percentile method, the predicted number of trees in a given DBH class N̂k was
determined from the following formula [38]:

N̂k =

{
Pi − Ldk
Pi − Pi−1

(ti − ti−1) +
(
t j − ti

)
+

(
t j+1 − t j

) Udk − P j

P j+1 − P j

}
·N (19)

in which:
Pi−1 ≤ Ldk < Pi (20)

P j < Udk ≤ P j+1 (21)

where: Pi, Pj are values of the r-th percentile, ti, tj are the order of the r-th percentile expressed as (ti =

r/100), where {i – 1, i, j, j + 1} ∈ r; r{0, 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 100}.
The predicted BA Ĝk in the k-th DBH class was calculated from the formula:

Ĝk = N̂k ·
π ·Md2

k
40000

(22)

where Mdk is the middle DBH of the k-th DBH class.
Models were finally compared based on the differences revealed by the goodness-of-fit statistics

for the 163 stands comprising the testing dataset in the cross-validation step. As the distributions of
differences for all the analyzed statistics were not normal, they were compared using the Wilcoxon
signed rank–test. At a significance level of α = 0.05, the null hypothesis (H0: Median(differences) = 0)
was tested against the alternative hypothesis (HA: Median(differences) , 0).

All calculations and analyses were performed in the R statistical software [52], using the following
packages: base, caret [53], stats, and systemfit [54].

3. Results

3.1. Parametrization of the Diameter Distribution Models

The value of the first raw moment m1, required to determine the scale parameter b and the shape
parameter c of the two-parameter Weibull distribution (Equation (1)), was calculated from the empirical
formula:

m1 = −0.1695 + 0.9847 ·QMD, (23)

The relationship between the first raw moment m1 and the QMD was statistically significant
(F(1,161) = 554072.2; p < 0.0001), with the values of the constant term (t = −5.36; p < 0.0001) and slope
(t = 744.36; p < 0.0001) being significantly different from 0 (Figure 1a). The adjusted determination
coefficient was 0.9997. After substituting the above equation (Equation (23)) into the empirical formula
(Equation (9)) for the second central moment m2, the latter assumes the following form:

m2 = QMD2
− (−0.1695 + 0.9847 ·QMD)2, (24)

with its graphical interpretation shown in Figure 1b.
Relationships between the 12 percentiles and the QMD in the stands studied are given in Figure 2.

The fit of the developed system of seemingly unrelated equations assessed by McElroy’s R2 is 0.9994,
with R2

adj ranging from 0.850 to 0.998 for individual equations (Table 2). The lowest goodness-of-fit,
as expressed by the adjusted determination coefficient and mean squared error (MSE), was found
for the extreme percentiles P0 (R2

adj = 0.850; MSE = 4.70) and P100 (R2
adj = 0.934; MSE = 13.27).

Goodness-of-fit increased for percentiles closer to the center with the best fit obtained for P55 (R2
adj =

0.998; MSE = 0.15).
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Figure 2. Relationship between percentiles (P0, P5, P15, ..., P100) and the quadratic mean diameter
(QMD) of black alder stands.

Table 2. Parameters and goodness-of-fit statistics for equations describing relationships between
percentiles and the quadratic mean diameter (QMD) of black alder stands.

Percentiles Parameters a0–100 Parameters b0–100 R2
adj MSE

P0 = a0 + b0 QMD 0.000 0.534 *** 0.850 4.70
P5 = a5 + b5 QMD −0.663 *** 0.690 *** 0.949 2.34

P15 = a15 + b15 QMD −1.039 *** 0.810 *** 0.985 0.89
P25 = a25 + b25 QMD −0.929 *** 0.872 *** 0.992 0.56
P35 = a35 + b35 QMD −0.714 *** 0.918 *** 0.996 0.32
P45 = a45 + b45 QMD −0.451 *** 0.958 *** 0.997 0.21
P55 = a55 + b55 QMD −0.155 * 0.996 *** 0.998 0.15
P65 = a65 + b65 QMD 0.000 1.048 *** 0.998 0.17
P75 = a75 + b75 QMD 0.284 *** 1.101 *** 0.998 0.23
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Table 2. Cont.

Percentiles Parameters a0–100 Parameters b0–100 R2
adj MSE

P85 = a85 + b85 QMD 0.681 *** 1.164 *** 0.996 0.53
P95 = a95 + b95 QMD 1.186 *** 1.280 *** 0.988 1.76

P100 = a100 + b100 QMD 2.574 *** 1.468 *** 0.934 13.27

Significance levels: *** p < 0.001, * p < 0.05; R2
adj, adjusted coefficient of determination; MSE, mean squared error.

3.2. Evaluation and Comparison of the Distribution Models

The Kolmogorov–Smirnov test used for comparing empirical and predicted distributions, revealed
that the percentile and the Weibull models accurately reflected diameter distributions in 88.4% and
81.9% of black alder stands, respectively, at a significance level of α = 0.05. The share of cases in which
the null hypothesis was not rejected depended on stand age, and in consecutive 20-year age classes
amounted to 57.1%, 95.1%, 95.3%, and 90.2% for the percentile model and 57.1%, 77.1%, 90.2%, and
90.2% for the Weibull model. Both models poorly predicted diameter distributions for the youngest
stands (1–20 years), with the proportion of poor fits significantly declining with stand age. In the
second and third age classes, the percentile model was clearly superior to the Weibull model. Figure 3
shows the examples of best and worst fitted distributions in the various age classes.

The mean Kolmogorov–Smirnov statistic Dn was 0.0786 and 0.0919 for the overall set of studied
stands, for the percentile and Weibull models, respectively (Table 3). The Wilcoxon signed-rank test
revealed that the two models differed significantly in terms of that criterion (Z = 7.097; p < 0.05; Table 4).
In both models, the highest Dn statistic was found for stands in the first age class (Table 3), without
significant differences between the models (Table 4). In subsequent age classes, the mean Dn statistic
decreased, especially for the percentile model (Table 3, Figure 4), with the differences between the
models being significant (Wilcoxon test, Table 4).

Table 3. Goodness-of-fit statistics for Weibull and percentile diameter distribution models for different
stand age classes.

Distribution
Models

Age Classes
of Stands

Dn Statistic ME RMSE

Mean SD Mean SD Mean SD

Weibull 1–20 years 0.0977 0.0308 −0.0147 0.0175 0.0505 0.0180
21–40 years 0.0937 0.0299 −0.0248 0.0162 0.0491 0.0181
41–60 years 0.0881 0.0240 −0.0206 0.0099 0.0444 0.0133
>60 years 0.0900 0.0277 −0.0209 0.0125 0.0456 0.0163
All stands 0.0919 0.0279 −0.0207 0.0142 0.0471 0.0164

Percentile 1–20 years 0.0978 0.0368 −0.0018 0.0214 0.0473 0.0209
21–40 years 0.0785 0.0259 −0.0122 0.0188 0.0384 0.0151
41–60 years 0.0726 0.0282 −0.0063 0.0125 0.0331 0.0143
>60 years 0.0717 0.0316 −0.0051 0.0155 0.0336 0.0177
All stands 0.0786 0.0315 −0.0067 0.0171 0.0372 0.0175

ME, mean error; RMSE, root mean squared error; SD, standard deviation.

Table 4. Results of the Wilcoxon signed-rank test for comparison of goodness-of-fit statistics for the
Weibull and percentile diameter distribution models.

Age Classes of
Stands

Dn Statistic ME RMSE

Z Statistic p-Value Z Statistic p-Value Z Statistic p-Value

1–20 years 0.257 0.7971 4.741 0.0000 1.512 0.1310
21–40 years 4.130 0.0000 5.711 0.0000 5.204 0.0000
41–60 years 4.622 0.0000 5.841 0.0000 5.401 0.0000
>60 years 4.656 0.0000 5.841 0.0000 5.108 0.0000
All stands 7.097 0.0000 11.070 0.0000 8.936 0.0000

ME, mean error; RMSE, root mean squared error.
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Figure 3. Examples of the best (a, b, c, d) and worst (e, f, g, h) fit of developed percentile (solid line) 
and Weibull (dotted line) models for test data in subsequent age classes (from top to bottom). Dn(W) 
and Dn(P) are the Kolmogorov–Smirnov statistics for Weibull and percentile models, respectively. 

The mean Kolmogorov–Smirnov statistic Dn was 0.0786 and 0.0919 for the overall set of studied 
stands, for the percentile and Weibull models, respectively (Table 3). The Wilcoxon signed-rank test 
revealed that the two models differed significantly in terms of that criterion (Z = 7.097; p < 0.05; Table 
4). In both models, the highest Dn statistic was found for stands in the first age class (Table 3), 

Figure 3. Examples of the best (a–d) and worst (e–h) fit of developed percentile (solid line) and Weibull
(dotted line) models for test data in subsequent age classes (from top to bottom). Dn(W) and Dn(P) are
the Kolmogorov–Smirnov statistics for Weibull and percentile models, respectively.

The mean difference (ME) between predicted and empirical CDFs was −0.0067 for the percentile
model and −0.0207 for the Weibull model (Table 3). The observed absolute average differences were
significantly smaller for the percentile models in all stand age classes (Tables 3 and 4; Figure 4). RMSE
differences between the predicted and empirical CDFs were 0.0372 and 0.0471 for the percentile and
Weibull models, respectively (Table 3; Figure 4), and were statistically significant (Z = 8.936; p < 0.05;
Table 4). For both models, RMSE was the highest in the first age class and generally decreased with
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stand age (Table 3; Figure 4). In the youngest stands (1–20 years), RMSE differences between the two
models were not significant (Z = 1.512; p > 0.05; Table 4), in contrast to all other age classes, where
statistical significance was obtained (Table 4).
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Figure 4. Distributions of goodness-of-fit statistics: (a) and (b) Kolmogorov–Smirnov Dn statistic, (c) 
and (d) mean error (ME), (e), and (f) root mean squared error (RMSE) for the fitted Weibull and 
percentile models in black alder stands. 

Figure 4. Distributions of goodness-of-fit statistics: (a,b) Kolmogorov–Smirnov Dn statistic, (c,d) mean
error (ME), (e,f) root mean squared error (RMSE) for the fitted Weibull and percentile models in black
alder stands.

The distribution of the error index eN was similar for both diameter distribution models (Figure 5).
The index ranged from 83.0 to 1677.4 trees·ha−1 for the Weibull model and from 78.8 to 1997.3 trees·ha−1

for the percentile model, with the mean values being 315.0 trees·ha−1 and 314.0 trees·ha−1, respectively
(Table 5). Despite these similar results, the Wilcoxon signed-rank test for all stands revealed significant
differences between the median values of eN for the two models (Z = 4.499; p < 0.05; Table 6). Significant
differences between the Weibull and percentile models were found in stands older than 20 years,
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whereas in the youngest group of stands (1–20 years), the two models revealed similar eN (Table 6;
Figure 5). The same pattern was found for the error index eG, which was calculated using the BAs of the
various DBH classes as weights. Also in this case, the mean error index for the percentile model was
lower than for the Weibull model, both, for all stands as a whole and for individual age classes (Table 5;
Figure 5). Statistically significant differences were again found for stands older than 20 years, while in
the youngest ones the null hypothesis could not be rejected (Wilcoxon signed-rank test; Table 6).
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percentile models in black alder stands. 
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models in black alder stands.

Table 5. Error indexes eN and eG for the Weibull and percentile diameter distribution models for
different stand age classes.

Distribution
Models

Age Classes of
Stands

eN eG

Mean SD Mean SD

Weibull 1–20 years 675.7 378.6 4.10 2.17
21–40 years 352.3 144.8 7.74 3.72
41–60 years 207.4 70.3 10.24 3.67
>60 years 146.5 34.6 13.04 3.42
All stands 315.0 261.4 9.22 4.58

Percentile 1–20 years 749.1 483.7 3.92 1.59
21–40 years 322.2 132.5 6.86 3.08
41–60 years 194.3 66.0 9.50 3.55
>60 years 136.0 29.6 11.74 2.91
All stands 314.0 309.4 8.39 4.05
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Table 6. Results of the Wilcoxon signed-rank test for comparison of error indexes eN and eG for Weibull
and percentile diameter distribution models.

Age Classes of
Stands

eN eG

Z Statistic p-Value Z Statistic p-Value

1–20 years 1.100 0.2712 0.566 0.5717
21–40 years 3.345 0.0008 4.371 0.0000
41–60 years 3.347 0.0008 3.979 0.0001
>60 years 4.306 0.0000 5.017 0.0000
All stands 4.499 0.0000 7.557 0.0000

4. Discussion

The study led to the development of two diameter distribution models, which in conjunction
with the previously proposed generalized height-diameter model for black alder [55] may serve as a
useful tool supporting the management of alder stands. In the earlier models, the frequency of trees
in the various DBH classes is predicted only from the QMD, which is a commonly used measure in
forestry [56]. Borders and Patterson [26] emphasize that parsimony is a desirable feature of empirical
models. A similar view is expressed by the authors, the more so as the constructed models of diameter
distribution will be used mainly for practical applications rather than in scientific research. That is
why, a simpler two-parameter form of the Weibull distribution was applied, especially, as it often gives
better results as compared to the three-parameter form [18], and excludes the problem associated with
the risk of obtaining a negative scale parameter as stated by Lei [57], and also by the present authors in
a previous paper [21]. To prevent a negative value for this parameter, it is often arbitrarily fixed as
half of the smallest DBH in a given stand [19,28,30,58,59]. On the other hand, the act of adopting an
arbitrary value for a parameter describing the PDF remains controversial and theoretically unjustified.

The other approach to modeling diameter distributions was the non-parametric percentile-based
method [38], in which it is not necessary to adopt a priori any theoretical function form, and so it can
be used for modeling distributions of any shape. Maltamo et al. [18] pointed out, that there are no
mathematical, and especially, no biological grounds for assuming any theoretical distribution for tree
diameters. Furthermore, according to Zhang et al. [51] and Palahí et al. [16], the final evaluation of a
given density function often depends on the applied method of estimation of its coefficient. In the
case of the method proposed by Borders et al. [38], some objections may be raised as to the selection
of a given number of percentiles and the assumption as to the existence of a relationship between
percentile values and stand characteristic(s). Thus, for the sake of parsimony, the present study adopted
12 percentiles describing the distribution function, but without the application of a driver percentile,
especially as Stankova and Zlatanov [43] reported that the simplified method was more accurate.

The main challenge in constructing diameter distribution models for a stand, group of stands, or
another set of trees is to obtain the best possible approximation of their observed distributions using the
basic stand characteristics available from inventory data. The developed percentile model accurately
predicted diameter distributions in 88.4% of black alder stands as compared to 81.9% for the Weibull
model (Kolmogorov–Smirnov test). Similar models developed for black pine plantations in Bulgaria led
to 97% and 98% agreement for the percentile and Weibull models, respectively, but it should be noted
that those results were obtained with the teaching dataset, for which the models were constructed [43].
A comparison of the proposed models using other statistics evaluating goodness-of-fit to empirical
distributions indicated that the non-parametric percentile model was superior to the parametric
Weibull model, especially in stands older than 20 years. In the youngest stands, the two models were
accurate only in 57% of the cases and did not differ significantly with respect to goodness-of-fit. These
findings differ from the models developed by Stankova and Zlatanov [43] for Austrian black pine
plantations, where the two-parameter Weibull distribution was markedly better than the percentile
model, especially in the youngest stands. The two-parameter Weibull distribution was similarly
effective in characterizing DBH for young stands in a study by Bullock and Burkhart [60].
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Both models were assessed by means of different statistics including ME, RMSE and error indexes
eN and eG. While the first two rely only on differences in CDFs, the third requires information about the
number of trees per hectare. In our analysis, we obtain this characteristics based on field measurements
on sample plots of known area. There are also other ways like the application of existing whole stand
models [34] or using airborne laser scanning data [15]. It seems that, regardless of the method used to
determine the number of trees per hectare, the final conclusions regarding the comparison of our two
models should not be affected. However, it should be expected that the range and variability of eN
and eG will be larger compared to our results, especially when the stand density is predicted based on
whole stand models.

According to Nord-Larsen and Cao [17], the use of the basic stand characteristics to estimate the
frequency of trees in various DBH classes may be insufficient. This objection, in particular, pertains to
the fact that stands treated according to different thinning regimes may reveal similar characteristics,
while being completely different in terms of diameter distribution. Our study results, especially the
values of goodness-of-fit statistics and their variation, confirm that while the distribution models
generated accurate estimates for some stands, in other cases the predicted results were significantly
different from the observed values (Figure 3). Such a situation may be caused not only by thinning,
but also by natural factors affecting diameter distribution, such as heterogeneous site conditions and
irregular tree density caused by wind or snow damages. Von Gadow et al. [61] noted that a given
diameter distribution may correspond to many different spatial tree distributions, and so one should
incorporate information about tree location in the process of diameter distribution modeling [62].
While a greater number of factors included in a model may certainly improve prediction quality,
it may also decrease the application potential of the resulting solution, thus running contrary to the
parsimony principle.

While some of the latest works devoted to diameter distributions of stands have applied remote
sensing tools, such as airborne laser scanning [15], at the current stage of technological development,
it is still necessary to estimate those distributions indirectly by means of prediction models [15]. It seems
that the constructed models may provide valuable assistance to cutting-edge technologies in modeling
diameter distributions for black alder stands. Nevertheless, the primary application of the developed
models is the projection of future diameter distributions to optimize management processes in black
alder stands [63]. This task may be facilitated by inclusion of predicted changes in QMD over time into
elaborated distribution models.

5. Conclusions

Two diameter distribution models were developed for even-aged black alder stands in Poland
to estimate the frequency of trees in the various DBH classes exclusively on the basis of the QMD.
The percentile-based method was found to predict the diameter distribution very accurately and
was superior to the Weibull model, but its application should be limited to stands older than
20 years. In younger stands, diameter distribution was not predicted well either by the percentile or
Weibull models.
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48. Merganič, J.; Sterba, H. Characterisation of diameter distribution using the Weibull function: Method of

moments. Eur J. For. Res. 2006, 125, 427–439. [CrossRef]
49. Al-Fawzan, M. Methods for Estimating the Parameters of Weibull Distribution; King Abdulaziz City for Science

and Technology: Riyadh, Saudi Arabia, 2000.
50. Nanang, D. Suitability of the Normal, Log-normal and Weibull distributions for fitting diameter distributions

of neem plantations in Northern Ghana. For. Ecol. Manag. 1998, 103, 1–7. [CrossRef]
51. Zhang, L.; Packard, K.C.; Liu, C. A comparison of estimation methods for fitting Weibull and Johnson’s SB

distributions to mixed spruce-fir stands in northeastern North America. Can. J. For. Res. 2003, 33, 1340–1347.
[CrossRef]

52. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2018.

53. Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.;
Benesty, M.; et al. Caret: Classification and Regression Training. R package version 6.0-81. Available online:
https://CRAN.R-project.org/package=caret (accessed on 10 February 2019).

54. Henningsen, A.; Hamann, J.D. Systemfit: A Package for Estimating Systems of Simultaneous Equations in R.
J. Stat. Softw. 2007, 23, 1–40. [CrossRef]

55. Orzeł, S.; Pogoda, P.; Ochał, W. Stała krzywa wysokości dla olszy czarnej (Alnus glutinosa (L.) Gaertn.) z
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