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Abstract: The main objectives of this paper are to demonstrate the results of an ensemble learning
method based on prediction results of support vector machine and random forest methods using
Bayesian average. In this study, we generated susceptibility maps of forest fire using supervised
machine learning method (support vector machine—SVM) and its comparison with a versatile
machine learning algorithm (random forest—RF) and their ensembles. In order to achieve this, first of
all, a forest fire inventory map was constructed using Serbian historical forest fire database, Moderate
Resolution Imaging Spectro radiometer (MODIS), Landsat 8 OLI and Worldview-2 satellite images,
field surveys, and interpretation of aerial photo images. A total of 126 forest fire locations were
identified and randomly divided by a random selection algorithm into two groups, including training
(70%) and validation data sets (30%). Forest fire susceptibility maps were prepared using SVM, RF,
and their ensemble models using the training dataset and 14 selected different conditioning factors.
Finally, to explore the performance of the mentioned models we used the values for area under the
curve (AUC) of receiver operating characteristics (ROC). The results depicted that the ensemble
model had an AUC = 0.848, followed by the SVM model (AUC = 0.844), and RF model (AUC = 0.834).
According to achieved AUC results, it can be deduced that SVM, RF, and their ensemble method had
satisfactory performance. The study was applied in the Tara National Park (West Serbia), a region of
about 191.7 sq. km distinguished by a very high forest density and a large number of forest fires.

Keywords: geographic information system; support vector machine; random forest; ensemble model;
hazard mapping

1. Introduction

Forest fires (also called wildfires) represent the uncontrolled movements of fire along the forest
surface and they are one of the most damaging natural disasters and forces [1]. According to
Chuvieco [2] and Zheng [3], forest fires have become increasingly widespread, partly due to global
warming; since summer periods have become hotter and drier than before, winds are getting stronger
and the stability of the rainy periods is disturbed, but above all the changes are a result of human
negligence and sometimes ulterior motives.

A forest fire turns out to be one of the most critical natural hazards in recent years, and results in a
serious loss of human life and terrific damage to the ecological environment and human infrastructure [4].
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Wildfires are natural causes for ecological change and a very destructive natural phenomenon the same
as earthquakes, landslides, and floods. Therefore, desertification and deforestation are ones of the
most important effects of wildfires [5].

Different methods and techniques for forest fire susceptibility mapping are introduced according
to the literature and can be classified into three groups: Probabilistic, statistical, and machine learning
methods [4].

Probabilistic (mechanistic) methods simulate and predict the possible behavior of forest fires
using specific mathematical functions and equations [6]. For this reason, these methods have the ability
to model and predict the behavior of fire in space and time. The most commonly used mechanistic
forest fire models described in the literature are BEHAVE [7], FIRETEC [8], Fire station [9], and
LANDIS-II [10].

Unlike probabilistic methods, the statistical method is a better way to model forest fires when the
research field is large, in particular, the combination of remote sensing (RS) technology and geographic
information systems (GIS). This is because the statistical method for modeling forest fires collects and
processes a large number of spatial data with different scales and resolutions covering large areas.
Furthermore, various statistical methods and techniques for forest fire modeling exist, such as logistical
regression [2,11–13], Monte Carlo simulations [14], weights-of-evidence [15], logistic generalized
additive model [16], evidential belief function [13], and geographically weighted regression [17].

Machine learning methods were proposed and introduced due to the critical accuracy of
forest fire evaluation, such as the support vector machine [18,19], random forest [17,20], kernel
logistic regression [4], maximum entropy [20], and artificial neural networks (ANN) [1,11,21].
Generally speaking, an evaluation assessment of the machine learning method is better than the
statistical method [22]. Indeed, according to Tien Bui [4], due to multiple and complex interactions
between conditioning and ignition factors for forest fires, it is still difficult to model and predict forest
fires on a regional scale. The objective of this research is, therefore, to evaluate forest fire susceptibility
maps using supervised and versatile machine learning algorithms and their ensemble and to compare
their performance in the Tara National Park, Republic of Serbia. In this research, 126 forest fire
occurrence locations have been identified from satellite images, aerial photo images, and extensive
field surveys, and they constitute the basic content of the fire inventory database. Of these, 88 (70%)
locations were indiscriminately identified as training data and the remaining 38 (30%) cases were used
for confirmation goals. These training datasets and 14 different conditioning factors were used as input
data for the application of machine learning algorithms in order to obtain wildfire susceptibility maps.

2. Materials and Methods

2.1. Study Area and Data

Forest area in the Republic of Serbia covers 27,200 sq. km, which is approximately 31.1% of the
country area. The study area includes the whole of Serbia’s Tara National Park, which approximately
covers 191.7 sq. km between latitudes of 43◦43′13” to 44◦01′09” N, and longitudes of 19◦13′51” to
19◦44′20” E. It is in the west of the Republic of Serbia (Figure 1). The study area's altitude varies
from 200 to 1591 m above mean sea level (m.s.l.). Tara National Park was founded in 1981. The Tara
National Park and the Mokra Gora Nature Park were nominated as potential biosphere reserves by
the UNESCO MAB Committee. Mount Tara belongs to the Dinaric Alps and is part of the Old Vlach
Mountains of Serbia. It is situated in the far west of Serbia, bordering the Drina River and next to the
state border. Mount Tara is a medium–high mountain with an average altitude of 1000–1200 m above
mean sea level (m.s.l.). The highest peak is Kozji rid at 1591 meters of altitude.
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Figure 1. Location of the study area.

The Emerald Network program established Tara National Park as a primary butterfly area (PBA),
an important bird area (IBA), and an important plant area (IPA). The Mount Tara area is a typical forest
area covered by Silver Fir, European Beech, and European Spruce mixed forests (over 85% of forest
area). The slope angles of the test area range from 0◦ to as much as 89◦. The total annual rainfall ranges
from 773 to 1038 mm/m2, in different parts of the study region. The maximum rainfall is between
March and June, based on records from the Republic Hydrometeorological Service of Serbia.

Producing forest fire inventory maps is an important step for forest fire susceptibility mapping.
The best technique for collecting data on forest fire inventory maps is still unknown. The most
common is an aggregation of data collected by a combination of remote sensing technology, geographic
information systems, and field work. Therefore, in this study, historical reports, field surveys,
high resolution Worldview-2 images, Landsat 8 OLI and MODIS satellite images, and aerial photo
interpretation were applied to prepare a forest fire inventory map. The acquisition period of satellite
images for the fire inventory map is between 2010 and 2016. The analyzed aerial photos are from
2015 and 2016, with a spatial resolution of 0.4 meters. Forest fire conditioning factor is another key
topic and has been researched by a lot of scientists [13,17,19–22]. Hence, different layers, including
altitude, aspect, slope degree, plan curvature, topographic wetness index (TWI), normalized difference
vegetation index (NDVI), distance from rivers, distance from roads, distance from urban area, annual
rainfall, land use/land cover, maximum annual temperature, wind power, and soil type, have been
used to analyze the forest fire susceptibility.

Topography data and digital elevation models are among the most important conditions for
forest fire sensitivity mapping [13]. In the literature, such as [23,24], the impacts of aspect, altitudes,
degree of slope, and curvature have been widely reported. In the current study, a digital elevation
model (DEM) with 20 m spatial resolution was developed using topography data contour lines.
Conditioning factors such as altitude, aspect, slope degree, plan curvature, and TWI have been created
using the mentioned DEM. The land use/land cover map was created using CORINE 2006 data, whereas
soil texture is extracted from national soil data. The acronym CORINE stands for Co-ORdination
of INformation on the Environment, an experimental programme of the Directorate-General for
Environment, Nuclear Safety and Civil protection of the Commission of the European Communities.
For assessment vegetation cover, the NDVI obtained from multispectral LANDSAT 8 OLI images.
The NDVI index is obtained as the mean value from the average monthly values calculated for 2016.
Distance from roads, distance from rivers, and distance from urban areas were prepared using a
digital topographic database at scale 1:25,000 produced in the Serbian Military Geographical Institute.
Maximum annual temperature, wind power, and annual rainfall were obtained using meteorological
data from the Republic Hydro-Meteorological Service of Serbia. The detailed information of data
sources for forest fire conditioning factors is shown in Table 1.
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Table 1. Data sources and associated factor classes for forest fire susceptibility mapping.

Sub-Classification Data Layers Source of Data GIS Data Type Derived Map Resolution

Fire Inventory Database Historical forest Fire
Worldview-2 images, Landsat 8 OLI images,
MODIS images, aerial photo, and National

fire inventory database
Point - -

Topography

Elevation DEM, contour lines with 20 m intervals GRID Elevation 20 m
Slope - GRID Slope degree 20 m

Aspect - GRID Aspect degree 20 m
Curvature - GRID Curvature 20 m

TWI - GRID TWI 20 m
Soil type Soil National soil data Polygon Soil 1:50,000

Land use/land cover Land use CORINE data ARC/INFO GRID Land use 30 m
NDVI NDVI Landsat 8 OLI images ARC/INFO GRID NDVI 30 m

Annual rainfall Rainfall Republic Hydro-Meteorological Service
http://www.hidmet.gov.rs/index_eng.php GRID Precipitation map

(mm/m2) 1:50,000

Annual temperature Max annual temperature Republic Hydrometeorological Service
http://www.hidmet.gov.rs/index_eng.php GRID Temperature map (◦C) 20 m

Wind power Wind power Republic Hydrometeorological Service
http://www.hidmet.gov.rs/index_eng.php GRID Wind power map

(m/s) 20 m

River Drainage network
MGI Digital topographic map

http://www.vgi.mod.gov.rs/english/index_
eng.html

Line Distance from rivers
(m) 1:25,000

Roads Road network
MGI Digital topographic map

http://www.vgi.mod.gov.rs/english/index_
eng.html

Line Distance from roads
(m) 1:25,000

Urban areas Urban areas
MGI Digital topographic map

http://www.vgi.mod.gov.rs/english/index_
eng.html

Polygon Distance from urban
areas (m) 1:25,000

http://www.hidmet.gov.rs/index_eng.php
http://www.hidmet.gov.rs/index_eng.php
http://www.hidmet.gov.rs/index_eng.php
http://www.vgi.mod.gov.rs/english/index_eng.html
http://www.vgi.mod.gov.rs/english/index_eng.html
http://www.vgi.mod.gov.rs/english/index_eng.html
http://www.vgi.mod.gov.rs/english/index_eng.html
http://www.vgi.mod.gov.rs/english/index_eng.html
http://www.vgi.mod.gov.rs/english/index_eng.html
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2.2. Methods

The flowchart of the method used in the research is shown in Figure 2. In the first step, the data
collection is presented, where all data are placed in the database. In the following, models of support
vector machine, random forest, and their ensemble were applied. The validation of the constructed
models was finally tested using receiver operating characteristic (ROC) curve.
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3. Input Variables

3.1. Conditioning Factors

The selection of criteria for assessing the forest fire and its mapping is an important step in
the analysis. To create a reliable forest fire susceptibility map, it is essential to identify forest fire
conditioning factors [25]. Based on experts’ opinions and longer field observations, this study adopted
fifteen criteria that are an important cause of susceptibility to forest fires in the Tara National Park
of Serbia. The selected criteria with a short description are given in Table 2, and they are shown in
Figures 3–6.
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Table 2. Conditioning factors for forest fire susceptibility model.

Category Description

Topography (Figure 3)

Altitude is an important forest fire conditioning factor. An altitude map is
prepared from the 20 × 20 m digital elevation model (1:25,000—scale with 20
m contour intervals).

The slope is the gradient of the land expressed as percentages or angle and it
has a great influence on fir behavior. Fires burn faster on a steeped slope due
to convection column flame front proximately to new fuels. Slope influences
the rate of speed and fire direction.

Aspect is the direction in which a slope faces. It has an effect on the climate of
the slope in terms of insolation, exposure of winds, etc. Therefore, the
opposite aspect tends to retain more moisture supporting greenish and
healthy vegetation.

The curvature is defined as the change rate of slope gradient or aspect, usually
in a particular direction. In addition, the curvature represents convergence or
divergence of water level concurrently with an activity of downhill flow.
Negative, zero, and positive curvature represent concave, flat, and
convex, respectively.

Topographic Wetness Index (TWI) describes the size of saturated areas of
runoff generation and the effect of topography on the location. It is defined as
[26]: TWI = ln (AS/tan β), where AS is the catchment area and β is the slope
angle in degrees.

Environmental (Figure 4)

Soil type reflects the affect of textures and compositions of soil materials on
fire occurrence. The soil map was constructed from the soil map of the state
and was classified into fine-silt, course-loamy, fine-loamy, mixed-loamy, and
skeletal-loamy.

Distance from river was created using a topographical map and it was
calculated based on the Euclidean distance method in ArcGIS 10.4 and were
classified into (<100), (100–200), (200–500), (500–1000), (1000–2000),
(2000–3000), (3000–4000), (4000-5000), and (>5000) meters classes

Normalized Difference Vegetation Index (NDVI). The NDVI map was created
using multispectral Landsat 8 OLI imagery showing the surface vegetation
coverage and density in an image.

Land use/land cover is considered as a factor in environmental protection.
Data on land use/cover were taken on the basis of the Corine Land Cover 2006
(CLC2006) database, collected in the framework of the European
Commission’s CORINE (Coordination of Information on the
Environment) programme.

Meteorological (Figure 5)

Wind power varies greatly, even at very short time scales (seconds to
minutes). Two wind characteristics are used in wildfire susceptibility
mapping: Wind speed and wind direction.

Annual temperature is a basic weather factor and should be taken into
account. The temperature influences the condition of forest fuel, as its main
effect is to dry the fuel.

Rainfall is the important effect that contributes to high fuel humidity and
therefore is a negative indicator of the spread of fire. The scale was reversed
to conform to the linear trend of other parameters. Annual rainfall values are
divided into nine classes: (773.6–801.6, 801.7–831.6, 831.7–863.8, 863.9–895.9,
896–925.9, 926–950.8, 950.9–973.6, 973.7–998.5, 998.6–1037.9 mm/m2)

Social (Figure 6)

Distance from roads was created using a topographical map, was calculated
based on the Euclidean distance method in ArcGIS 10.4, and was classified
into (<100), (100–200), (200-300), (300–500), (500–750), (750–1000), (1000–2000),
(2000–3000), and (>3000) meters classes

Distance from urban areas was created using a topographical map, was
calculated based on the Euclidean distance method in ArcGIS 10.4, and was
classified into (<1000), (1000–2000), (2000–3000), (3000–4000), (4000–5000),
(5000–6000), (6000–7000), and (>7000) meters classes.



Forests 2019, 10, 408 7 of 21
Forests 2019, 10, x FOR PEER REVIEW 7 of 22 

 

 
Figure 3. Topographical factors related to forest fire; (a) altitude, (b) slope degree, (c) aspect, (d) plan 
curvature, and (e) topographic wetness index (TWI). 

Figure 3. Topographical factors related to forest fire; (a) altitude, (b) slope degree, (c) aspect, (d) plan
curvature, and (e) topographic wetness index (TWI).



Forests 2019, 10, 408 8 of 21
Forests 2019, 10, x FOR PEER REVIEW 8 of 22 

 

 
Figure 4. Environmental factors related to forest fire; (a) soil type, (b) distance from rivers, (c) 
normalized difference vegetation index (NDVI), and (d) land cover/land cover. 

In addition, a description of the soil types based on codes is shown in Table 3. 

Table 3. Soil type classes. 

Number Code/Value Description 
1 Flca Calcaric Fluvisol  
2 CMcr Chromic Cambisol  
3 Cmdy Dystric Cambisol  
4 Cmeu Eutric Cambisol  
5 Lpha Haplic Leptosol  
6 LPrz Rendzic Leptosol  
7 Pldy Dystric Planosol  

A full description of the land use/land cover conditioning factor (Figure 4d) based on codes is 
shown in Table 4. 
  

Figure 4. Environmental factors related to forest fire; (a) soil type, (b) distance from rivers, (c)
normalized difference vegetation index (NDVI), and (d) land cover/land cover.

Weather patterns such as temperature, rainfall, and wind power are considered as principal
factors that strongly affect forest fire behavior, in which the forest fire is more likely to occur under hot,
windy, and dry weather conditions. For this study, the weather data in 2016 that were available at
the Republic Hydrometeorological Service of Serbia were used, including average maximum annual
climatic related data: Wind power, temperature, and the total sum of rainfall (Figure 5).

Table 3. Soil type classes.

Number Code/Value Description

1 Flca Calcaric Fluvisol
2 CMcr Chromic Cambisol
3 Cmdy Dystric Cambisol
4 Cmeu Eutric Cambisol
5 Lpha Haplic Leptosol
6 LPrz Rendzic Leptosol
7 Pldy Dystric Planosol
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In addition, a description of the soil types based on codes is shown in Table 3.
A full description of the land use/land cover conditioning factor (Figure 4d) based on codes is

shown in Table 4.
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Table 4. Land use/land cover.

Number Code/Value RGB Code Description

1 2 255,0,0 112 Discontinuous urban fabric
2 6 230,204,230 124 Airports
3 11 255,230,255 142 Sport and leisure facilities
4 12 255,255,168 211 Non-irrigated arable land
5 18 230,230,77 231 Pastures
6 20 255,230,77 242 Complex cultivation patterns

7 21 230,204,77 243 Land principally occupied by agriculture,
with significant areas of natural vegetation

8 23 128,255,0 311 Broad-leaved forest
9 24 0,166,0 312 Coniferous forest

10 25 77,255,0 313 Mixed forest
11 26 204,242,77 321 Natural grasslands
12 29 166,242,0 324 Transitional woodland-shrub
13 32 204,255,204 333 Sparsely vegetated areas
14 40 0,204,242 511 Water courses
15 41 128,242,230 512 Water bodies

3.2. Multi-Collinearity Test

In the current research, the multi-collinearity test was used to avoid the occurrence of collinearity
between the conditioning factors. Multi-collinearity is a phenomenon where one predictor variable
can be predicted from the other predictor variables with an extensive degree of accuracy in a multiple
regression model. To quantify the severity of multi-collinearity in an ensemble learning model,
tolerance and variance inflation factor (VIF) was used. Variance inflation factor contributes to a
measuring index that shows how much an estimated and collinearity effected regression coefficient
is increased.

A tolerance value less than 0.2 indicates multi-collinearity between independent variables, and
serious multi-collinearity occurs when the tolerance values are smaller than 0.1. If the VIF value
exceeds 10, it is often regarded as a multi-collinearity indication [27,28]. The tolerance and VIF values
in this study are estimated and shown in Table 5. The highest VIF and the lowest tolerance were 4.496
and 0.222, respectively, based on Table 5. There is, therefore, no multi-colinearity in current research
between independent factors. In the meantime, insolation had a tolerance of less than 0.1 and was
removed from the following analyses.

Table 5. Multi-collinearity test.

Model
Unstandardized Coefficients Standardized

Coefficients T Significant Collinearity
Statistics

B Standard Error Beta Tolerance VIF

(Constant) 1.674 1.726 0.970 0.334
Aspect 0.004 0.014 0.021 0.325 0.746 0.953 1.049

Altitude 0.000 0.000 0.182 2.088 0.038 0.510 1.961
NDVI 0.122 0.671 0.014 0.182 0.856 0.663 1.508

Plan curvature 0.039 0.048 0.052 0.808 0.420 0.947 1.056
Rainfall 0.000 0.001 −0.056 −0.700 0.485 0.610 1.640

Distance from rivers −3.372 × 10−5 0.000 −0.072 −0.950 0.344 0.671 1.491
Distance from roads 1.013 × 10−5 0.000 0.013 0.187 0.852 0.825 1.212

Soil type 0.007 0.037 0.016 0.184 0.854 0.541 1.850
Maximum annual

temperature −0.084 0.069 −0.155 −1.208 0.229 0.234 4.272

Distance from urban 6.978 × 10−6 0.000 0.017 0.233 0.816 0.712 1.404
Wind power −0.233 0.236 −0.130 −0.987 0.325 0.222 4.496

TWI 0.000 0.008 0.002 0.032 0.974 0.942 1.061
Slope 0.023 0.004 0.528 6.503 0.000 0.587 1.704

VIF = Variance Inflation Factor.
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4. Training Data Selection

In order to collect data for forest fire database, we use Moderate Resolution Imaging
Spectroradiometer (MODIS), Landsat 8 OLI and Worldview-2 satellite images, extensive field surveys,
and aerial photo images. In this research, a total of 126 forest fire occurrence locations were identified.
Locations of forest fires are mapped and analyzed as “points”. These points refer to the points located
on the center of gravity of the forest fire occurrence or centroids of the burned areas.

From a machine learning point of view of, mapping susceptibility to forest fire can be considered
as a binary classification problem with two classes: Forest fire and non-forest fire. Forest fire points are
coded as "1," while non-forest fire points are coded as "0" and the dependent variable is represented.
For this analysis, all 126 forest fire locations were randomly divided by a random selection algorithm
into two groups: Training 88 forest fire locations (70%) and validation data sets with remaining 38
forest fire hotspots (30%). The second validation dataset with the remaining 38 forest fires was used for
the model validation and to confirm the prediction accuracy.

We need positive and negative examples of fire occurrence in order to build predictive models
of forest fires. Positive examples were represented in the past by validation datasets of forest fire
sites where we noticed the occurrence of the fire along with the date and time. The same quantity of
non-forest fire points was randomly sampled from non-forest fire areas within the areas at least 15 km
away from any positive example detected in timestamp ± 5 days and they represent negative examples.

5. Machine Learning Applications

5.1. Support Vector Machine

The support vector machine (SVM) is a widely used statistical machine learning algorithm
proposed by Vapnik [29] based on the basic risk minimization principle. The support vector machine
algorithm separates the classes with a final surface (called an optimal hyper-plane) that optimizes the
margin among the classes in the dataset. The data points of these classes closest to the hyper-plane
were originally called support vectors. The main objective of SVM statistical learning algorithms is not
just to separate the two classes, but also to find an optimal hyper-plane separating the two classes (i.e.,
wildfires and no wildfires) and the training data set.

Training data are introduced by
{
xi, yi

}
, i = 1, . . . ..r, yi = {1, −1}, where r is a number of training

samples and the training vector consists of two classes yi = 1 for class α1 and yi = −1 for class α2.
If classes are linearly separable, it is possible to define at least one hyper-plane defined by vector w
with bias b, which can separate the classes properly (training error is 0) according to Equation (1):

w·x + b = 0 (1)

To find such hyper-plane, w and b are estimated in the way that yi(w·xi + b) ≥ 1 for yi = 1 (classα1)

and yi(w·xi + b) ≥ −1 for yi = −1 (classα2). These two can be associated based on Equation (2):

yi(w·xi + b) − 1 ≥ 0 (2)

There are many hyper-plane systems that can be used to separate two classes, but there is only
one optimal hyper-plane in n dimensions. The training points closest to the optimal hyper-plane and
located at the two boundaries, given with w·xi + b = ±1, are called support vectors and the center of
the margin is the optimal hyper-plane separation.

The optimal hyper-plane between two classes is defined by maximizing the gap between the
nearest classes. Mathematically, this means that we want to differentiate the two classes by their
maximum distance between support vectors. This distance is equal to 2

||w|| . This is expressed as follows:

min
1
2
||w||2 (3)



Forests 2019, 10, 408 12 of 21

subject to the following constraints: yi(w·xi + b) ≥ 1, where, |(|w|) | is the hyper-plane standard, b
is a scalar base, and (·) denotes the scalar product. The cost function can be defined by using the
Lagrangian multiplier as in Equation (4):

L =
1
2
||w||2 −

r∑
i=1

ai(yi((w·xi) + b) − 1) (4)

where, ai is the Lagrangian multiplier.
For non-linearly separable classes, the constraints can be changed by introducing slack variables

ξi [30].
Equation (3) becomes:

L = min
1
2
||w||2 + C

r∑
i=1

ξi (5)

where C is the constant or penalty parameter that determines the correlation between training error
and the complexity of the model [31].

In order to deal with the non-linearity of the classification or regression problem, the SVM
classification approach introduced certain classes of functions called kernels K

(
xi, xj

)
= φ(xi)φ

(
xj

)
.

The original input data can easily be transferred to high-dimensional function space with certain
non-linear kernel functions. The most commonly used SVM classification kernels are a radial basis
function (RBF), also known as Gaussian kernels, polynomial, linear, and sigmoid kernels [29].

In this study, the radial basis function (RBF) kernel is used to model forest fire using the SVM
model [32]. Since the performance of the SVM model depends on the kernel width (γ) and the
regularization constant (C), they should be carefully monitored. In this research, the R open source
software “rminer” package [33] was used for support vector machine modeling and optimal parameters
are provided. The tuning was done in a separate data set. Features of SVM applied for forest fire
modeling are:

• SVM type applied for model: Radial Basis function.
• Hyper-parameter: sigma = 0.054
• Number of Support Vectors: 34
• Objective Function Value: −93.072
• Training error: 0.160

The best values for kernel width and regularization parameter of the SVM were obtained using
the grid search method, and the optimal values were found as 0.125 and 7.95 for the kernel width and
regularization parameters, respectively.

To conclude, the forest fire hazard index is symbolized with four classes using Natural Breaks
classifications [31,32] and reclassified using the reclassify tool from Spatial Analyst Tools ArcGIS 10.4
software (ESRI, Redlands, California, CA, USA) release. Established on this, each cell is classified into
four categories and receives a new value, low, moderate, high, or very high, representing the forest fire
hazard index. The results of the forest fire susceptibility assessment using SVM model are given in
Figure 7. In general, a low value is an area with the least probability of forest fire occurrence, while the
very high value represents areas with the highest probability of forest fire susceptibility.
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5.2. Random Forests

The random forest (RF) algorithm is an influential method of collaborative learning developed
for classification, regression, and unsupervised learning [33]. Moreover, the random forest method is
widely used for data prediction and is suitable for high-dimensional non-linear modeling of forest fire
susceptibility. The objective of RF is to identify the appropriate model for analyzing the relationship
between independent variables and a dependent variable for weight determination for each factor.
In this research, training data set forest fire locations (i.e., 88 forest fire locations) and 15 forest fire
conditioning factors were used as dependent and independent variables.

The RF algorithm operates by building many classification trees during the training period [34] and
the final output of the model generation process is the average value of the results of all classification
trees [33].

In order to run the RF model, two main parameters of the random forest model must be defined a
priori: The square root of the number of factors (mtry) and the number of trees to run the model (ntree).
The above parameters should be optimized to minimize the generalization error. In general, the model
selects the best possible parameters for maximum accuracy [34].

Additionally, for tree learners, random forest training algorithm uses the regular technique of
bagging or boot-strap aggregating. The RF method uses the Gini Index as a measure for the best
split selection measuring the impurity of a given element in relation to the rest of the classes [35,36].
The Gini index is a measure of inequality of a distribution. The Gini index can be computed by
summing the probability pi of a single class with label i being chosen multiplies by the probability∑

k,i pk = 1 − pi of a mistake in categorizing that class i. The Gini Index can be expressed as the
following equation for a given training dataset T with j classes:

IT(p) =
j∑

i=1

pi

∑
k,i

pk = 1−
j∑

i=1

p2
i (6)
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where, i ∈ {1, 2, ..., j}. Therefore, a decision tree is made to grow to its maximum depth by using a given
combination of features.

In this research, the RF model was used to observe the link between forest fire conditioning
factors and the occurrence of forest fire and to predict the susceptibility of a forest fire. In this study,
we used the Random Forest package of R open source software [36] for RF modeling and then the
final produced map was added to ArcGIS 10.4 to visualize the forest fire susceptibility maps using
the Spatial Analyst Tools reclassification tool. The mtry parameter was regulated using the internal
random forest function. In order to obtain the values of the study area's forest fire susceptibility index,
the value of each wildfire environmental factor in each grid cell was calculated using a random forest
model and the parameter configuration with the highest prediction accuracy was determined and set to
mtry = 5. In addition, in this study, the number of trees (mtree) in RF was fixed to 250 after a preliminary
analysis and the number m of variables sampled at each node was selected to be 1. No calibration set
is needed to tune the parameters. In addition, two types of error were calculated in this model: A
mean decrease in accuracy and mean decrease in node impurity (mean decrease Gini). This different
importance measure can be used for ranking variables and for variable selection.

The big advantage of the RF model is that it allows investigation of the variable importance
(the contribution of each variable) measured by the mean reduction in prediction accuracy (Figure 8).
Consequently, according to Peters [36], mean decrease in cross-validation and prediction accuracy
assessment were used to examine the uncertainty propagation of conditioning factors for forest fire
and to evaluate the whole random forest model.
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We can see from Figure 8 that the most important conditioning factor in wildfires modeling is the
slope degree, followed by NDVI, soil type, and maximum annual temperature. Namely, the fire is
usually climbs uphill more easily than it descends downhill. The higher inclination effects a faster
spreading of the fire [17]. Moreover, the fire follows the direction of the surrounding wind, which
usually blows uphill. In addition, the smoke and heat generated by the fire, are able to heat the fuel
more than the fire itself.

Using a reclassification tool in the Spatial Analyst Tools ArcGIS 10.4 software, each final map
cell is classified into four categories (low, moderate, high, and very high) representing the forest fire
hazard index. The obtained results of the forest fire susceptibility assessment using the random forest
model are given in Figure 9. A low value (blue color) is the areas with the least probability of forest fire
occurrence, while the values of very high (red color) represent areas with the highest probability of
forest fire hazard.
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5.3. Ensemble Modeling

Ensemble prediction is a learning algorithm that combines multiple model predictions [37]
to reduce bias (boosting) and variance (bagging) or improve predictions (stacking). The Bayesian
averaging is an original ensemble method, but the most popular methods for combining the predictions
from different models are:

• Boosting, which is used to build multiple models (typically the same type) using previous chain
model prediction errors.

• Bagging, which is used to create multiple models from different training dataset subsamples.
• Stacking, which is used to build multiple models and the supervisor model that best combines the

predictions of the primary models.

In this research, we carefully combine mentioned machine learning models to get an ensemble
model using Bayesian averaging [38,39] with efficient feature selection to address these issues and
mitigate their effects on the defect classification performance. Multiple predictions are made for each
data point in Bayesian averaging. In this method, we take an average of predictions from all the models
and use it to make the final prediction. Bayesian averaging can be used for making predictions in
regression problems or while calculating probabilities for classification problems. Along with efficient
feature selection, a new ensemble learning algorithm is proposed to provide robustness to both data
imbalance and feature redundancy.

The achieved results of the forest fire susceptibility assessment using ensemble model are given in
Figure 10. A low value (blue color) is the areas with the lowest probability of forest fire, whereas the
very high values (red color) are the areas with the highest risk of a forest fire.
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6. Validation

The validation of susceptibility maps for a forest fire is an important step in the modeling process.
The capacity of support vector machine, random forests, and ensemble models was assessed using a
non-dependent threshold approach: The operating characteristic of the receiver (ROC). The area under
the curve (AUC) is a synthesized index calculated for ROC curves and it has been generally used in
several types of research to assess the accuracy of the forest fire susceptibility map [40]. The AUC value
is the probability that a positive event with the help of the test will be evaluated as positive. The ROC
curves are generated by SPSS 17 software (IBM, New York, NY, USA) and represent the evolution of
the proportion of genuine positive cases (also referred to as sensitivity) as a function of the proportion
of false positive cases (corresponding to minus specificity). Graphic representation with a diagram of
the pair (specificity, sensitivity) corresponds to the ROC curve for the numerous possible threshold
values [41–44]. The ROC curves for SVM, RF, and Ensemble models are shown in Figure 11 and Table 6.

Table 6. The area under the curve.

Models Area Standard
Error

Asymptotic
Significant

Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

RF 0.844 0.047 0.001 0.751 0.937
SVM 0.834 0.047 0.001 0.743 0.926

Ensemble 0.848 0.046 0.001 0.758 0.938

According to validation results, all three forest fire susceptibility maps are considered to have the
most acceptable and representable appearance (AUC > 0.8). In addition, both visual assessment and
quantitative validation, using ROC curve, agreed that SVM, RF, and their ensemble models are the
excellent performing model approaches with an AUC value shown in Table 6.
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7. Discussion

Machine learning algorithms specify computer-based tools that enable exploratory data and
statistical examination to detect unknown patterns and relationships of dataset values in advance.
In the current research, supervised and versatile machine learning algorithms and their ensemble
were used to investigate the spatial relationship between the occurrence of forest fires and different
environmental predictors [45]. The objective of this research was therefore to compare these statistical
and decision tree-based regression models for forest fire mapping in the Tara National Park, Republic
of Serbia. The results are presented and discussed in two important sections in the current research,
including the importance of the conditioning factors and the performance of the models in the forest
fire susceptibility mapping.

7.1. Importance of Conditioning Factors

Based on importance conditioning factor determination, the results of the current study showed
that the most important conditioning factor in wildfire modeling is the slope angle, followed by NDVI,
soil type, and the maximum annual temperature. Namely, the fire usually climbs uphill more easily
than it descends downhill. The higher inclination effects faster spreading of the fire. On the other
hand, the TWI and the distance from rivers were of the lowest importance in the occurrence of forest
fires. In another study [46], slope, NDVI, and maximum annual temperature were reported to be
more important in the occurrence of a forest fire, which is consistent with the results of the current
research. In addition, another the research confirmed that NDVI [47], land use, soil type, and the annual
temperature have a greater influence on the occurrence of the forest fire. In addition, researchers [48]
found that NDVI, distance from urban areas, and distance from roads have the highest predictive
values that indicate reasonable results in the forest fire susceptibility mapping.

7.2. Performance of the Used Models

The results show that the ensemble model had the highest AUC value (0.848), followed by the RF
model (0.844) and the SVM model (0.834). The best performance in the current study had the ensemble
method because that method combined the predictions of multiple different models together in order
to decrease variance or bias and take into account advantages of both used machine learning methods.
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In the ensemble method, we take and use an average of predictions from all models to make the
ultimate prediction. The Bayesian average can be used to predict problems of regression or to calculate
probabilities of classification issues. In addition to efficient feature selection, an ensemble learning
algorithm is introduced to provide robustness for both data imbalance and feature redundancy [37,48].

According to the achieved results, the support vector machine has about the same accuracy as
random forest method. SVM models have produced acceptable results in the mapping of susceptibility
to the forest fire. The non-linear mapping is one of the greatest advantages of the SVM model. For each
class of discrete covariates, a parametric model can, therefore, have different intercepts and coefficient
values. Furthermore, the SVM model is not excessively influenced by noisy data and is not very
likely to overfit. The SVM model has the advantage of complex, non-linear relationships and is highly
noise-resistant [49]. On the other hand, the greatest weakness of the SVM method is the fact that testing
different kernel combinations and model parameters requires finding the best model. In the meantime,
the results obtained are very difficult to interpret because they are part of a complex black box model.

Due to their power, versatility, and ease of use, random forests are quickly becoming one of
the most popular machine learning methods. The RF performance, in the current study, being
better than the SVM model could be due to its ability to run on large datasets with a large number
of predictors and its ability to handle thousands of input variables without variable deletion [19].
The random forest model uses regression trees to estimate an average of the dependent variable as
the final prediction results in an internally unbiased estimation of the classification error. The RF
algorithm has several advantages in relation to other machine learning methods. Firstly, RF method
can handle noisy or missing data as well as categorical or continuous features; secondly, it does not
require assumptions about the distribution of explanatory variables; and thirdly, it can deal with
interactions and non-linearities between efficient factors [50,51]. These are major advantages that limit
outlier generation, particularly when working with terrain variables with a high frequency of missing
data [19].

The random forests method takes advantage of the high diversity between particular trees and
operates by constructing many classification trees during the training period [52]. In addition, according
to Catani [52], random forests method increases variety between the classification trees by randomly
changing the predictive variable sets and by resampling the data with substitution over the various
tree processes of induction [17]. The result of the model construction process is the average results of
all trees, so cross validation is not necessary for this method. On the other hand, the biggest weakness
of RF model is the fact that, unlike a decision tree, the model is not easily interpretable. In addition, the
correct use of RF model might require some work to tune the model for the data.

8. Conclusions

Many countries have detailed programs for forest fire protection, which are based on prevention
and fire-fighting measures. A fire detection system is one of the most important aspects of forest
fire protection before the fire spreads over larger areas. Therefore, the main purpose of this paper
is to demonstrate the results of an ensemble learning method using a Bayesian average based on
predictive results from the support vector machine and random forest methods. In this paper, we
modeled and predicted suitable locations for the outbreak of forest fires using machine learning
algorithms. Regional forest fire modeling is a regular, nonlinear and complex issue that can not
be easily assessed and predicted. In the current research, we attempted to compare the results of
forest fire susceptibility maps using supervised and versatile machine learning algorithms (support
vector machine and random forest) and their ensemble in the Tara National Park, Serbia. Based on
the obtained area under the curve, all models had the most scientifically satisfactory reliability and
could be used at the regional level for forest fire susceptibility mapping. The results depicted that the
ensemble model using Bayesian average had the best performance. Finally, these maps can provide
very useful information for fire managers, decision makers, and foresters to locate potential fire hazard
areas spatially so that they can operate under conditions in fire prevention operations in the Tara
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National Park of Serbia. Moreover, in national parks where the absolute priority is the preservation of
natural features and endemic species, this kind of prevention from forest fires is justified and necessary.
In addition, we believe that the results presented in this study make a substantial contribution to the
literature on forest fire mapping.
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