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Abstract: Most of our knowledge about forest responses to global environmental changes is based
on experiments with seedlings/saplings grown in artificially controlled conditions. We do not know
whether this knowledge will allow us to upscale to larger and mature trees growing in situ. In the
present study, we used elevation as a proxy of various environmental factors, to examine whether
there are ontogenetic differences in carbon and nutrient allocation of two major treeline species (Pinus
cembra L. and Larix decidua Mill.) along elevational gradients (i.e., environmental gradient) in the
Swiss alpine treeline ecotone (~300 m interval). Young and adult trees grown at the same elevation
had similar levels of non-structural carbohydrates (NSCs), total nitrogen (TN), and phosphorus (TP),
except for August leaf sugars and August leaf TP in P. cembra at the treeline. We did not detect any
interaction between tree age and elevation on tissue concentration of NSCs, TN, and TP across leaf,
shoot, and root tissues for both species, indicating that saplings and mature trees did not differ in their
carbon and nutrient responses to elevation (i.e., no ontogenetic differences). With respect to carbon
and nutrient allocation strategies, our results show that young and adult trees of both deciduous
and evergreen tree species respond similarly to environmental changes, suggesting that knowledge
gained from controlled experiments with saplings can be upscaled to adult trees, at least if the light
is not limited. This finding advances our understanding of plants’ adaptation strategies and has
considerable implications for future model-developments.

Keywords: altitude; non-structural carbohydrates; nutrients; ontogeny; Pinus cembra L.;
Larix decidua Mill

1. Introduction

Anthropogenic drivers of global change have been increasingly evident during the last
centuries, which include rising atmospheric concentrations of CO2 and other greenhouse gases
and associated changes in the climate, nitrogen deposition, biotic invasions, and land-use change [1].
These environmental pressures greatly challenge performance and persistence of forest species around
the world, which provide abundant products and services to support human society [2]. Therefore,
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understanding forest responses under global change is of fundamental and practical value for predicting
the potential and limitations of forest productivity, and for defining mitigation and adaptation policies.

In the field, forest trees are often exposed to a myriad of single and combined stresses with
varying strength and duration, the effects of which on plant performance are difficult to predict by
solely manipulative experiments. For example, a meta-analysis covering 1634 plant species spanning
four continents indicated that warming experiments (average experimental duration of 3.8 years)
strongly underestimated advances in flowering and leafing, compared to long-term observations
(average duration of 31.0 years) [3]. On the other hand, stress sensitivity, tolerance, and resistance
of forest species vary with ontogenetic stage, making it challenging to analyze or identify the key
environmental stressors driving plant performance throughout their life histories. Compared to adult
trees, early life stages (e.g., seedlings or saplings) of trees are more sensitive to environmental variation
or stress [4]. Numerous studies have reported wide ontogenetic variations in carbon assimilation and
allocation [5,6], differing resource use strategies [7–9] and stress tolerances [4,10]. For example, Bansal
and Germino [11] found that needles in transplanted saplings of two evergreen conifers, Abies lasiocarpa
(Hook.) Nutt. and Pseudotsuga menziesii (Mirb.) Franco, had higher soluble sugar content than
established adults at timberline in the Rocky Mountains during late seasons. Hence, to predict the
responses of tree species to climate change, disentangling ontogenetic variations along synthesized
environmental gradients is indispensable for a more profound understanding of differing adaptation
and acclimation strategies between different life stages.

Among environmental gradients, increasing elevation is characterized by decreasing temperature
interacting with other factors, such as soil water content, precipitation, season length, atmospheric
pressure, and nutrient availability [12,13], and offer a natural laboratory to predict vegetation dynamics
under climate change in recent decades [13–16]. To our knowledge, however, only a few studies have
investigated the discrepancies between seedlings (saplings or juveniles) and adult trees along field
environmental gradients, elevation transects, respectively. Among these are studies on A. lasiocarpa
and P. menziesii [11], A. faxoniana Rehder & E.H.Wilson [17], and Picea crassifolia Kom. [18] and they
generally found differing performances between seedlings and adults. Nevertheless, they are mostly
restricted to the leaf level, while a whole-tree approach would be more appropriate to properly address
the discrepancies between various life stages along environmental gradients. Furthermore, apart from
ontogenetic differences for the same species, evergreen vs. deciduous tree species may vary in their
response to environmental gradients in terms of carbon balance. So far, most studies have found
higher non-structural carbohydrate concentrations (NSC) in deciduous compared to evergreen tree
species [19–21]. However, whether this holds true when integrating ontogenetic variance is still unclear
because different plant responses between life stages to climate warming have been found by other
studies [22–24].

Pinus cembra L. (evergreen) and Larix decidua Mill. (deciduous) are two co-occurring treeline
species growing in the Swiss Alps. In the present study, we aimed to answer the questions of whether
the responses of carbon and nutrient allocation to environmental changes (i.e., using elevation as a
proxy for changes in environmental factors) vary with ontogenetic stages of trees, and with leaf habits
(evergreen vs. deciduous). We hypothesize that different life stages of both deciduous and evergreen
trees lead differing carbon and nutrient allocation responses to elevational changes, because seedlings
and saplings may be more sensitive to environmental changes than adult trees [4,25,26]. Our study
could provide field data that reveal ontogenetic variation in response to environmental gradients and
fill the gap where most predictions are restricted to manipulative experiments with young trees in
early life stages.
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2. Materials and Methods

2.1. Description of Sites and Species

Our study was conducted on Pinus cembra and Larix decidua, two native treeline species growing
in the Swiss Alps. One transect was established within the alpine treeline ecotone in Chandolin,
LaTzoumaz, Moosalp, and Sievz, respectively, in southern Switzerland (Figure 1, Table S1). In each
transect, four sampling plots (n = 4) were designed at the alpine treeline (H) and the timberline (L) with
~300 m elevational difference between H and L, respectively (Table S1). The two species were selected
because they have different leaf habits (evergreen vs. summergreen) and they co-exist in the Swiss
alpine treeline ecotone. The four transects were selected for the present study because where every
individual of both adult trees and saplings of the two species co-occurred is isolated, and thus no light
effects on any individual sampled need to be considered. Each transect has a relatively homogeneous
gentle slope (~30◦) from the timberline to the alpine treeline, and hence, we can assume that the growth
condition including temperature, water availability, and soil chemical and physical properties changes
gradually with increasing elevation. This means that the present study uses elevation as a proxy for
the whole of all growth-related factors, to study the ontogenetic responses of C-, N-, and P-allocation
to combined environmental changes rather than to changes in any single factor.
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2.2. Sampling Protocol

In each plot (mixed stand for the two targeted species), two age classes (saplings of <1.5 m in
height, and adult trees of >5 m in height) per species were selected in the mid- and late-growing season
(20 August and 17 October 2014) (Tables S1 and S2). Twice samplings accounted for seasonal transition
which could bring variations in NSCs or nutrient status in tree species [25,27,28]; and the sampling
dates selected were the time when the phenological difference among populations or individuals along
elevational gradients is negligible [29–31]. For each age class, 3~5 isolated individuals with no signs of
browsing or other damage were selected, with a minimum distance of 10 m from each other. The height
(m) and diameter (cm) (10 cm aboveground diameter for saplings, and diameter at breast height for
adults) of sampled individuals were carefully recorded. The individuals from the same age class from
the same plot were mixed as one replicate and we had thus four replicates in total for each age class
and each species.

From each targeted individual, we cut three or four upper and outermost sun-exposed branches.
From these branches, current-year needles (~50 g) and shoots (~50 g) were collected. Fine roots (<5 mm
in diameter, without bark) (~50 g) attached to coarse roots of each sample tree were manually excavated
using a mini-spade and carefully collected. All samples were stored in a cool box for transportation
after bagging and labeling. All samples were heated in a microwave oven at 600 W for 60 s to minimize
the enzymic and physiological activity to reduce the respiration carbon loss of tissues [32,33] and then
dried at 65 ◦C for 72 h and ground to pass a 0.15 mm sieve for further analyses.

2.3. Plant Analysis

2.3.1. Non-Structural Carbohydrates

The powdered material (~0.1 g) was put into a 10 ml centrifuge tube, where 5 mL of 80% ethanol
was added. The mixture was incubated at 80 ◦C in a water bath shaker for 30 min, and then centrifuged
at 4000 rpm for 5 min. The pellets were extracted two more times with 80% ethanol. Supernatants were
retained, combined and stored at−20 ◦C for soluble sugar determinations. The ethanol-insoluble pellets
were used for starch extraction. Glucose was used as a standard. Soluble sugars were determined using
the anthrone method [34]. The starch concentration was measured spectrophotometrically at 620 nm
using anthrone reagent and was calculated by multiplying glucose concentrations by the conversion
factor of 0.9 [35]. The concentration of sugars and starch was described on a dry matter basis (% DW),
and NSC was the sum of total soluble sugar and starch, and NSCs include NSC, soluble sugars,
and starch.

2.3.2. Nitrogen and Phosphorus Concentrations

For the determination of tissue nitrogen (N) and phosphorus (P) concentrations (mg g−1 DW), finely
ground material (~50 mg) was first digested with H2SO4 and H2O2 for further analysis. The nitrogen
concentration was then measured applying the Kjeldahl method (Kjeltec 2200, FOSS, Hoganas, Sweden),
while the phosphorus concentration was determined with the molybdenum blue spectrophotometric
procedure (6505 UV spectrophotometer, Essex, UK) [36].

2.3.3. Carbon and Nitrogen Isotopic Abundance

The abundance of stable carbon (δ13C) and nitrogen (δ15N) isotopes in current needles was
determined as described by Gebauer and Schulze [37]. To avoid tissue age-effects on δ13C and δ15N,
we analyzed them in the current-year needles only. Aliquots (1.2~1.5 mg) of ground material were
weighed into tin capsules, and then analyzed in an elemental analyzer (Euro EA; Hekatech GmbH,
Wegberg, Germany) coupled inline with an isotope ratio mass spectrometer (DELTA V Advantage;
Thermo Scientific, Bremen, Germany). The carbon and nitrogen isotopic abundance is expressed
as δ13C and δ15N, respectively, and was calculated as follows: δ %� = [(Rsample/Rstandard) − 1) ×
1000], where R is the 13C/12C or the 15N/14N ratio of the sample and the correspondent standard, i.e.,
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Vienna Pee Dee Belemnite for C and atmospheric N2 for N. The overall precision of the delta values
was 0.1%�, as determined by repetitive measurements of standard material.

2.4. Statistical Analyses

All statistical analyses were conducted using R statistical software (RStudio 1.1.463 with R version
3.5.2). Shapiro–Wilk and Bartlett’s tests were first used to test for normality and homogeneity of
variances respectively, and all variables met the assumption for further variance analysis. We applied
linear mixed-effects models (R package nlme) with species (P. cembra and L. decidua), tree age (sapling
and adult tree), altitude (timberline and treeline), and season (mid-growing season: August; late-season:
October) as fixed effects and transects as a random effect to account for variances between transects.
The Wilcoxon tests for means were further conducted to analysis differences between fixed factors
(age and altitude) with the ggpubr package. Since we focused on ontogenetic- or species-variations,
or both, of the detected variables along altitudinal gradients, the effects of season transition were not
presented in the following part.

3. Results

The levels of tissue NSCs (with the exception of shoot starch), C:N, and shoot N concentration,
as well as leaf δ13C and δ15N differed significantly between the two species (Tables S2–S3, Figure 2).
Pinus cembra had lower levels of NSCs than Larix decidua, e.g., NSC in leaves, shoots, roots of P. cembra
was 12.12% ± 0.36%, 7.39% ± 0.19% and 5.51% ± 0.21%, but 15.27% ± 0.46%, 8.13% ± 0.29% and
7.04% ± 0.27% in L. decidua, respectively. Tissue C:N ratio in P. cembra was also lower than that in
L. decidua, e.g., C:N in leaves, shoots, roots of P. cembra was 7.78 ± 0.32, 3.69 ± 0.19, 4.41 ± 0.23, but
9.96 ± 0.39, 4.51 ± 0.21, 5.55 ± 0.21 in L. decidua, respectively. Shoot N in L. decidua was 18.60 ± 0.66
mg/g, which was significantly lower than that in P. cembra (21.05 ± 0.74 mg/g) (F = 7.50, p < 0.01).
With very few exceptions (e.g., August leaf sugars and TP, and October leaf C:N in P. cembra at the
treeline), tree age did not influence tissue NSCs (Figure 2), total N and P (Figure 3), leaf δ13C and
δ15N values (Figure 4), and C:N and N:P ratios (Figure 5) within each species at the same elevation.
Most importantly, there were no interactions between age and altitude on concentrations of tissue
NSCs (soluble sugars, starch, and NSC), nutrients (TN, TP), and the stoichiometric ratios (C:N and
N:P), as well as on leaf δ13C values (Tables S2–S3), with the exception of leaf δ15N (F = 5.01, p =

0.030). For saplings, leaf δ15N increased from −2.22%� ± 0.31%� (timberline) to 0.34%� ± 0.52%�

(treeline) when combining both species (p < 0.001); for adult individuals, leaf δ15N also increased from
−1.57%� ± 0.31%� (timberline) to −0.22%� ± 0.49%� (treeline) (p < 0.01) (Figure 4). Here, the interaction
occurred due to different magnitudes of increasing leaf δ15N from timber to treeline between the
age classes.

Only leaf δ15N (F = 13.31, p < 0.001), root TN (F = 13.28, p < 0.01), and root C:N (F = 6.21, p < 0.05)
were affected by species × altitude (Tables S2–S3). For L. decidua, leaf δ15N was −1.25%� ± 0.27%�

(timberline) and 1.69%� ± 0.29%� (treeline) (p < 0.001, Table S5), while for P. cembra, leaf δ15N was
−2.54%� ± 0.28%� (timberline) and −1.58%� ± 0.28%� (treeline) (p < 0.05, Table S4) (Figure 4). Similarly,
this interaction seems to be caused by different magnitudes of increasing leaf δ15N from timberline
to treeline between the two species studied (Figure 4). However, root TN of the two species showed
opposite trends along elevational transects: for L. decidua, root N increased from 11.71 ± 0.60 mg g−1

at timberline to 14.75 ± 1.12 mg g−1 (p < 0.01) at the alpine treeline, whereas, for P. cembra, root
TN decreased from 14.07 ± 0.78 mg g−1 at timberline to 11.93 ± 0.48 mg g−1 (p < 0.05) at the alpine
treeline. Consequently, root C:N in L. decidua slightly decreased from 5.70 ± 0.26 at the timberline to
5.40 ± 0.33 (p > 0.05) at the treeline, while for P. cembra, root C:N increased from 3.86 ± 0.31 (timberline)
to 4.96 ± 0.28 (treeline) (p < 0.05) (Figure 5).
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starch (% DW) (c) (mean ± SE, n = 4) of different species (Pinus cembra L. and Larix decidua Mill.), age 
(sapling and adult tree), altitude (L for timberline and H for treeline), season (Aug for mid-growing 
season and October for late season) and tissues (current-year leaf, shoot, and fine root). Asterisks or 
“ns” at the bottom of subplot indicate significant (p < 0.05) or non-significant (p > 0.05) differences 
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the subplot denote mean value and grey point for outlier. 

Figure 2. Non-structural carbohydrate concentration (% DW) (a), soluble sugar (% DW) (b), and starch
(% DW) (c) (mean ± SE, n = 4) of different species (Pinus cembra L. and Larix decidua Mill.), age (sapling
and adult tree), altitude (L for timberline and H for treeline), season (Aug for mid-growing season
and October for late season) and tissues (current-year leaf, shoot, and fine root). Asterisks or “ns” at
the bottom of subplot indicate significant (p < 0.05) or non-significant (p > 0.05) differences between
saplings and adults within the same altitude and season, and the p-value at the top of subplot denote
significance level by the Wilcoxon’s mean test between L and H. The red points in the subplot denote
mean value and grey point for outlier.
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Figure 3. Total nitrogen (TN) (a) and phosphorus (TP) (b) concentrations (mg/g DW) (mean ± SE,
n = 4) of different species (Pinus cembra L. and Larix decidua Mill.), age (sapling and adult trees), altitude
(L for timberline and H for treeline), season (August for mid-growing season and October for late
season), and tissues (current-year leaf, shoot, and fine root). Asterisks or “ns” at the bottom of subplot
indicate significant (p < 0.05) or non-significant (p > 0.05) differences between saplings and adults
within the same altitude and season, and the p-value at the top of subplot denote significance level by
the Wilcoxon’s mean test between L and H.



Forests 2019, 10, 394 7 of 12

Forests 2019, 10, 394 7 of 12 

 

 
Figure 4. Leaf stable isotopes (δ13C‰; δ15N‰) (mean ± SE, n = 4) of different species (Pinus cembra L. 
and Larix decidua Mill.), age (sapling and adult tree), altitude (L for timberline and H for treeline), 
season (August for mid-growing season and October for late season). Asterisks or “ns” at the 
bottom of subplot indicate significant (p < 0.05) or non-significant (p > 0.05) differences between 
saplings and adults within the same altitude and season, and the p-value at the top of subplot 
denote significance level by the Wilcoxon’s mean test between L and H. 

  

(a) (b) 

Figure 5. The ratio of N to P (a) and the ratio of C to N (b) (mean ± SE, n = 4) across tissues of the 
two species (Pinus cembra L. and Larix decidua Mill.), age (sapling and adult trees), altitude (L for 
timberline and H for treeline), season (August for mid-growing season and October for late season) 
and tissues (current-year leaf, shoot, and fine root). Asterisks or “ns” at the bottom of subplot 
indicate significant (p < 0.05) or non-significant (p > 0.05) differences between saplings and adults 

Figure 4. Leaf stable isotopes (δ13C%�; δ15N%�) (mean ± SE, n = 4) of different species (Pinus cembra
L. and Larix decidua Mill.), age (sapling and adult tree), altitude (L for timberline and H for treeline),
season (August for mid-growing season and October for late season). Asterisks or “ns” at the bottom
of subplot indicate significant (p < 0.05) or non-significant (p > 0.05) differences between saplings and
adults within the same altitude and season, and the p-value at the top of subplot denote significance
level by the Wilcoxon’s mean test between L and H.

Forests 2019, 10, 394 7 of 12 

 

 
Figure 4. Leaf stable isotopes (δ13C‰; δ15N‰) (mean ± SE, n = 4) of different species (Pinus cembra L. 
and Larix decidua Mill.), age (sapling and adult tree), altitude (L for timberline and H for treeline), 
season (August for mid-growing season and October for late season). Asterisks or “ns” at the 
bottom of subplot indicate significant (p < 0.05) or non-significant (p > 0.05) differences between 
saplings and adults within the same altitude and season, and the p-value at the top of subplot 
denote significance level by the Wilcoxon’s mean test between L and H. 

  

(a) (b) 

Figure 5. The ratio of N to P (a) and the ratio of C to N (b) (mean ± SE, n = 4) across tissues of the 
two species (Pinus cembra L. and Larix decidua Mill.), age (sapling and adult trees), altitude (L for 
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Figure 5. The ratio of N to P (a) and the ratio of C to N (b) (mean ± SE, n = 4) across tissues of the two
species (Pinus cembra L. and Larix decidua Mill.), age (sapling and adult trees), altitude (L for timberline
and H for treeline), season (August for mid-growing season and October for late season) and tissues
(current-year leaf, shoot, and fine root). Asterisks or “ns” at the bottom of subplot indicate significant
(p < 0.05) or non-significant (p > 0.05) differences between saplings and adults within the same altitude
and season, and the p-value at the top of subplot denote significance level by the Wilcoxon’s mean test
between L and H.
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4. Discussion

We found that there was no interaction between age and elevation on tissue NSCs (except for leaf
sugars for the two species and leaf NSC for L. decidua) and nutrients (TN, TP) for both P. cembra and
L. decidua (Tables S4 and S5). These findings suggest that saplings and adults respond consistently to
combined environmental changes in terms of carbon and nutrient allocation, which does not support
our hypothesis of different life stages leading to differing carbon and nutrient allocation responses
along elevational changes. Niinemets [4] presented a comprehensive review which emphasized that
forest trees’ physiological responses to key environmental stressors and their combinations varied
throughout ontogeny. The discrepancy between this review and our results may be attributed to
the fact that most reviewed studies came from closed forests, where sapling and adults, due to their
different ecological niches in a community, are subjected to different light, water, and temperature
and nutrient regimes [38]. For elevation-driven changes in plant nutrients, Mayor et al. [39] found
that declining temperatures with increasing elevation did not affect tree leaf nutrient concentrations,
implying an adaptation strategy of trees growing in a harsh environment. Deciduous species tend to
store N in the wood and bark of roots [30], while evergreen species store N in the youngest age class of
foliage [40,41].

We found no age effects on leaf δ15N for both species grown at a given altitude (timberline or
treeline) (Tables S4 and S5, Figure 4), which indicates no distinct differences in nitrogen uptake and
metabolism between two life stages for both species. This finding is consistent with Pardo et al. [42].
Our study found also that tree age did not affect tissue N concentration for both species (Tables S4
and S5), except for a significant age effect on leaf N in P. cembra (Figure S4). Previous studies [43,44],
have suggested that differences in N uptake and metabolism with ontogenetic stage occur in some
species and environmental conditions but not in others. Nevertheless, leaf N in both species showed
an increasing trend with altitude from timberline to treeline, which corresponds with the findings from
Körner [12]. There have been two main explanations for such altitudinal trends in plant N: firstly,
low temperature and short growing season at higher altitude reduce growth and might consequently
have an effect on leaf N contents [12]. Another cause might be the high N supply from atmospheric N
deposition, due to winter snow accumulation, at the treeline [12,45] leading to higher N availability
and consequently higher N uptake with increasing elevation.

Similar to leaf N content, leaf δ15N was lower at the timberline than at the treeline for both species.
The positive correlation between leaf N and leaf δ15N was confirmed by previous studies [46–49], where
leaf N was considered an index for soil N availability [50,51]. The increasing trend in leaf δ15N along
altitude in the present study was in line with results reported by [48] (above 1,350 m), but in contrast to
other studies. For example, leaf δ15N exhibited a decreasing trend with altitude in plants collected from
the Kathmandu valley in Nepal [52] and from Mt. Schrankogel in Austria [53], but differences might
be attributed to variations in soil 15N and its drivers. For example, with increasing elevation, organic
forms of N became the dominant source of N taken up by hardwood and coniferous tree species, and
that variation in natural abundance foliar δ15N with elevation was consistent with increasing organic N
uptake [54]. Although we found similar trends along our altitudinal transect, the two species exhibited
significant differences in leaf δ15N, with higher leaf δ15N in L. decidua than in P. cembra (Figure 4) across
ontogeny and elevations. The lower leaf δ15N in P. cembra might be associated with a higher rate
of root colonization with mycorrhizal fungi [55], because mycorrhizal fungi are mainly transferring
15N-depleted ammonium or amino acids to plants [56,57].

Our results showed that no significant ontogenetic differences in non-structural carbohydrates
and nutrients (nitrogen and phosphorus) across leaf, shoot, and root tissues of both species grown
along elevational gradients are present. However, due to the limited number of tree species growing in
the alpine treeline ecotone in the Swiss Alps, we investigated only one deciduous and one evergreen
tree species with four replicates. Further studies are needed to cover more tree species with more
replicates for different life stages in a wider geographical range, to improve our understanding of
ontogenetic effects on tree physiology.
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5. Conclusions

This paper presents, to the best of our knowledge, the first field evidence to elucidate how
different species integrated over different life stages cope with synthetic environmental changes
(altitude) from the perspective of carbon and nutrient allocation strategies. Our results demonstrate
that both deciduous and evergreen trees in their early life stage perform similarly compared to
their adult individuals along an environmental gradient (from the timberline to the alpine treeline).
Our results indicate that most of our knowledge of forest responses, especially shoot and root
responses, to global environmental changes gained from experiments with seedlings/saplings growing
in artificially controlled conditions could, to some extent, upscale to larger and mature trees growing
in situ. This finding advances our understanding of plants’ adaptation strategies and has considerable
implications for future model-developments.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/5/394/s1.
Table S1: Description of sampling transects and plots for Pinus cembra L. and Larix decidua Mill. in the South Swiss
Alps, Table S2: LMM results for the effects of species (Pinus cembra L. and Larix decidua Mill.), altitude (timberline
and treeline), tree age (sapling and adult tree), sampled season (mid-growing season: August; and late-season:
October) on NSCs, nutrients, and stable isotope over tissues. The interactions were retained in the models only
when significant. df : degrees of freedom. Significant p-values are in bold face, Table S3: LMM results for the
effects of species (Pinus cembra L. and Larix decidua Mill.), altitude (timberline and treeline), tree age (sapling
and adult tree), sampled season (mid-growing season: August; and late-season: October) on the stoichiometric
ratios (C:N and N:P). The interactions were retained in the models only when significant. df : degrees of freedom.
Significant p-values are in bold face, Table S4: LMM results for the effects of altitude (timberline and treeline), tree
age (sapling and adult tree), sampled season (mid-growing season: August; and late-season: October) and their
interactions on NSCs, nutrients and stable isotope over tissues of Pinus cembra L. The interactions were retained
in the models only when significant. df : degrees of freedom. Significant p-values are in bold face, Table S5:
LMM results for the effects of altitude (timberline and treeline), tree age (sapling and adult tree), sampled season
(mid-growing season: August; and late-season: October) and their interactions on NSCs, nutrients and stable
isotope over tissues of Larix decidua Mill. The interactions were retained in the models only when significant. df :
degrees of freedom. Significant p-values are in bold face.
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