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Abstract: Aquilaria sinensis (Lour.) Gilg is an economically important tree species that produce the
highly prized agarwood. In recent years, agarwood production has been seriously threatened by the
outbreak of Heortia vitessoides Moore, a leaf-eating pest that shows gregariousness during the larval
stage. However, little attention has been paid to the aggregation behavior of H. vitessoides larvae.
In the present study, we collected 102 cohorts of H. vitessoides larvae (13,173 individuals in total) in the
wild; 54 cohorts were comprised of the same-instar larvae, and 48 cohorts were comprised of larvae
with different developmental stages (instars). In general, young larvae (<third instar) tended to form
large aggregations, whereas older-instar larvae were either solitary or formed small aggregations.
Laboratory studies showed a strong aggregation tendency in the newly hatched and second-instar
larvae of H. vitessoides, whenever the individuals originated from the same or different sibling
cohorts. In addition, all newly hatched larvae died within two days after they were isolated. When
newly hatched larvae were initially assigned in 10-larvae cohorts (containing sibling individuals)
or 20-larvae cohorts (either containing individuals originating from the same or different sibling
cohorts), their larval survivorship, duration of larval stage, and adult emergence were not significantly
different. Interestingly, combining avermectin-treated larvae (donors) with untreated ones (receptors)
significantly decreased larval survivorship and adult emergence of receptors, indicating a horizontal
transfer of avermectin among H. vitessoides larvae. This study enhances our understanding of the
population ecology of H. vitessoides, and may bring novel insights into the management strategies
against this pest.

Keywords: Aquilaria sinensis (Lour.) Gilg; Heortia vitessoides Moore; gregarious larvae; horizontal
transfer; avermectin

1. Introduction

Aquilaria sinensis (Lour.) Gilg is a tree species distributed in southern China and Southeast Asia.
This tree is one of the main sources of the fragrant product “agarwood”, which has been widely used
in traditional medicines, fragrance industries, and religious ceremonies. As a result of the scarcity
and high demand of agarwood, the natural sources of A. sinensis trees have been seriously damaged
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by illegal logging and trade. Nowadays, A. sinensis and all other species in the genus Aquilaria are
classified as “Endangered” in Appendix II of the Convention on International Trade in Endangered
Species of Fauna and Flora [1], and the international trade of wild-originated agarwood is strictly
monitored and limited. To increase agarwood supply, A. sinensis trees have been planted on large scales
in many provinces (e.g., Guangdong, Guangxi, Hainan, and Fujian) in southern China. Meanwhile,
many efforts have been made to develop artificial agarwood-producing methods based on physical
wounding of the trunks or injecting agarwood-induced chemicals into the xylem [2–5].

The cultivation of A. sinensis trees and modern agarwood-inducing techniques not only conserve
wild A. sinensis resources but also increase the income of farmers [6]. However, the outbreak of a
lepidopteran pest, Heortia vitessoides Moore (Lepidoptera: Crambidae), has been reported in many
A. sinensis plantations, usually causing complete defoliation of the trees (Figure 1). Although the
majority of A. sinensis trees can survive after H. vitessoides damage, they will be too weak for farmers
to carry out agarwood-inducing operations [7]. In recent years, increasing attention has been paid
on the biology of H. vitessoides [8–16]. One interesting behavior of H. vitessoides larvae is that they
often form large aggregations to cooperatively feed on the leaves [10]. However, many aspects of the
aggregation behavior of H. vitessoides larvae remain unknown. In the present study, we conducted
field and laboratory studies to investigate: (1) the aggregation patterns of H. vitessoides larvae under
field and laboratory conditions; (2) the factors that affect the aggregation behavior of H. vitessoides
larvae; and (3) the biological significance of aggregation behavior on the survival and development of
H. vitessoides larvae.
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Figure 1. The outbreak of Heortia vitessoides Moore usually causes the complete defoliation of Aquilaria 
sinensis (Lour.) Gilg trees. The picture was taken in an Aquilaria sinensis plantation in Zhaoqin, 
Guangdong, China, on 13 November 2018 by Liping Tang. 

Many chemical pesticides such as avermectin, spinosad, and trichlorfon have been applied to 
control H. vitessoides in the field [17], which may cause pesticide residue in the agarwood. Therefore, 
it is important to reduce the use of pesticides. The horizontal transfer of chemical pesticides is a mode 
of action that requires a limited amount of pesticides, which can be transferred from pesticide-

Figure 1. The outbreak of Heortia vitessoides Moore usually causes the complete defoliation of Aquilaria
sinensis (Lour.) Gilg trees. The picture was taken in an Aquilaria sinensis plantation in Zhaoqin, Guangdong,
China, on 13 November 2018 by Liping Tang.

Many chemical pesticides such as avermectin, spinosad, and trichlorfon have been applied to
control H. vitessoides in the field [17], which may cause pesticide residue in the agarwood. Therefore, it
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is important to reduce the use of pesticides. The horizontal transfer of chemical pesticides is a mode of
action that requires a limited amount of pesticides, which can be transferred from pesticide-exposed
(treated) individuals to unexposed (untreated) individuals. This method has been widely applied
to control the gregarious insects such as termites [18,19], ants [20,21], and bed bugs [22]. Here we
hypothesized that the chemical pesticide (i.e., avermectin) can be horizontally transferred within the
aggregations of H. vitessoides larvae, and avermectin-transfer bioassays were conducted to verify this
under laboratory conditions.

2. Materials and Methods

2.1. Field Study

The egg clusters and larval cohorts of H. vitessoides were collected from Tianlu Lake Park
(113◦8′–113◦11′ E, 23◦12′–23◦14′ N), Guangzhou, China, from 15 October to 3 December, 2018.
The damaged branches of A. sinensis trees were searched and cut using hand-operated sheers or
clippers (an averruncator). A cohort of H. vitessoides larvae was defined as >3 larvae (commonly with
close body contact) found on the same leaf (Figure 2A), or on several adjacent leaves (Figure 2B). In the
latter case, large aggregations with a few sub-cohorts on different leaves can be observed (Figure 2B).
Each larval cohort was placed into a 300 mL plastic container (upper side: 8.6 cm in diameter; bottom
side: 6.6 cm in diameter; height: 6.2 cm). These larvae were brought to the laboratory within 3 h,
and then preserved in 75% alcohol. The developmental stages (instars) of larvae in each cohort were
determined using the methods provided by Qiao et al. [23], and counted. Egg clusters were also
brought to the laboratory, and a high-resolution picture was taken of each cluster for egg counting.

2.2. Laboratory Study

2.2.1. Insects

Each egg cluster collected in the field (as mentioned earlier) was placed in a Petri dish (9 cm in
diameter) with fresh A. sinensis leaves and sealed to prevent dehydration. The hatched larvae in each
Petri dish (considered as a sibling cohort because all individuals originated from the same egg cluster)
were then transferred to a 300 mL plastic container. These larvae (newly hatched to second-instar)
were used to set up laboratory experiments 1 and 2 (see below). Because H. vitessoides larvae from
non-sibling cohorts showed a strong aggregation tendency (see results), we combined and reared
third-instar larvae from different sibling cohorts together in 750 mL plastic containers (upper side:
14.1 cm in diameter; bottom side: 11.3 cm in diameter; height: 6.5 cm) to set up laboratory experiment 3.
Fresh A. sinensis leaves were added to the containers each day, and any feces and leaf debris were
removed regularly. Our previous studies indicated that A. sinensis leaves collected from different
trees may affect the feeding preference of H. vitessoides larvae [10]. As a result, the larvae used in
each experiment were fed on leaves collected from a single A. sinensis tree. All eggs and larvae were
maintained in an environmental chamber setting at 12:12 light: dark schedule and 25 ± 1 ◦C.

2.2.2. Experiment 1: Aggregation Tendency of H. vitessoides Larvae

Methods provided by Boulay et al. [24] were modified to investigate the aggregation tendency of
H. vitessoides larvae that originated from the same or different sibling cohorts. The bioassay arenas were
2000 mL plastic containers (upper side: 24.8 cm in diameter; bottom side: 20.8 cm in diameter; height:
6.3 cm). Twenty A. sinensis leaves were pasted onto the bottom of each container using double-faced
adhesive tape (Deli®, Ningbo, China), with each leaf contacted with the adjacent ones (Figure 2C).
Newly hatched or second-instar larvae from six sibling cohorts were used in this experiment. Two
treatments were set for the larvae of each instar: (1) 20 larvae from each sibling cohort were released
into the container (one larva was randomly placed on the center of each leaf); and (2) 10 larvae from
one sibling cohort and 10 from another (two cohorts were randomly selected from the 6 sibling cohorts)
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were randomly released onto leaves. Each treatment was repeated 6 times. The bioassay arenas were
kept at room temperature (24–26 ◦C), and the number of larvae aggregated on each leaf was recorded at
1, 3, 5, 24, and 48 h after release. The aggregation index (I) was calculated using the formula provided
by Boulay et al. [24] as follows:

Aggregation index (I) = (SD)2/mean number of larvae in each leaf
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Figure 2. The aggregation behaviors of Heortia vitessoides larvae were investigated under field and
laboratory conditions. In the field, a cohort of Heortia vitessoides larvae was defined as >3 larvae
(commonly with close body contact) found on the same leaf (A), or on the several adjacent leaves (B).
To investigate the aggregation tendency of Heortia vitessoides larvae, 20 Aquilaria sinensis leaves were
pasted onto the bottom of a container using the double-faced adhesive tape, and a newly hatched or
second-instar larva was placed onto each leaf (C). To evaluate the horizontal transfer of avermectin
among gregarious larvae of Heortia vitessoides, 10 untreated larvae (receptors) were released onto one
side of the container with six fresh Aquilaria sinensis leaves, and 10 donor larvae (previously released
onto the avermectin-treated surfaces for 30 min) were then placed on the other side of the container (D).
The first two pictures were taken by Zhijia Huang and the second two by Shiping Liang.
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2.2.3. Experiment 2: Effects of Aggregation on H. vitessoides Survivorship and Development

The survivorship and development of H. vitessoides larvae were detected throughout the larval
and early adult stages when they were assigned to different group sizes (1, 10, 20 larvae) and sibling
status (originating from the same or different sibling cohorts) just after hatching. Eight sibling cohorts
of newly hatched larvae were used in this experiment. The bioassays included 4 treatments: (1) single
larva from each sibling cohort was transferred to a 300 mL plastic container with fresh A. sinensis
leaves; (2) 10 larvae were randomly selected from each sibling cohort and transferred to a container;
(3) 20 larvae were randomly selected from each sibling cohort and then released into a container; and
(4) 10 larvae from one sibling cohort and 10 from another (two cohorts were randomly selected from the
8 sibling cohorts) were released into a container. Each treatment was repeated 8 times. Fresh A. sinensis
leaves were added to the containers, and any feces, dead larvae, and leaf debris were removed each
day. On day 11, larvae in each container were transferred to a bigger container (750 mL) because more
space and food were needed as a result of the growth of the larvae. On day 18, wet sand (12% moisture)
was added at the bottom of each 750 mL plastic container to a depth of 3 cm for the pupation of mature
larvae. The bioassays were maintained in an environmental chamber (12:12 light–dark schedule and
25 ± 1 ◦C) throughout the experiment. The survivorship and developmental stages (instars) of larvae in
each container were recorded daily until some individuals began to burrow into the sand for pupating
after day 18. The duration of the larval stage (between hatching and burrowing into the sand for
pupation) of each larva in each replication was recorded. We also recorded the number of emerged
adults each day after pupating (until no more adult emerged for a 15-day period), and the emergence
success was calculated as follows: emergence success (%) = (number of emerged adults/number of
larvae initially released) × 100%.

2.2.4. Experiment 3: Horizontal Transfer of Avermectin among H. vitessoides Larvae

This experiment was conducted to investigate whether the chemical pesticide would transfer
among gregarious larvae of H. vitessoides (transfer from treated larvae to untreated ones). Different
concentrations of avermectin (Dugao®, Shijiazhuang, Hebei, China) solutions (0 (control), 100, or
200 ppm) were prepared. Each solution was sprayed once on the inner surfaces of a Petri dish and
lid using a sprayer (Zhenxing Industrial Co., Ltd., Guangzhou, China)(0.92 ± 0.01 mL (mean ± SE,
n = 10) solution was sprayed on the Petri dish or lid). After the solutions were air-dried (~40 min),
80 third-instar larvae were randomly selected and marked with a red ink spot on the dorsum, and
then released onto the bottom of each Petri dish and covered. These larvae (donors) were allowed
to move on the avermectin-treated surfaces for 30 min, and then transferred to an untreated Petri
dish. The bioassay arenas were 1280 mL plastic containers (upper side: 19.1 cm in diameter; bottom
side: 16.2 cm in diameter; height: 4.5 cm) with six fresh A. sinensis leaves placed on one side of the
container (Figure 2D). Ten untreated larvae (receptors) were randomly selected and released onto
leaves and allowed to acclimate for 1 h. Ten donors were then placed on the other side of the container
(Figure 2D). Each of the three treatments (donor previously exposed to the Petri dish sprayed with
0, 100, or 200 ppm avermectin solutions) was repeated 7 times. The bioassays were prepared and
maintained in an environmental chamber setting at a 12:12 light–dark schedule and 25 ± 1 ◦C.

After 12 h, donors and receptors in each container were separated and each group was transferred
to a 450 mL plastic container (upper side: 11.2 cm in diameter; bottom side: 7.0 cm in diameter; height:
4.4 cm) with fresh A. sinensis leaves. Here we separated donors and receptors because the red ink spot
on the donors would disappear within 1–2 days due to molting, and therefore we would not be able
to distinguish donors and receptors. Larvae were reared as mentioned earlier. The survivorship of
donors and receptors was recorded every 24 h after initial combination. On day 7, living donors and
receptors were transferred to 750 mL plastic containers with fresh A. sinensis leaves and wet sand (12%
moisture) on the bottom (depth = 3 cm). Because mature larvae began to burrow into the sand for
pupating, we did not record larval survivorship after 7 days. The number of emerged donors and
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receptors were recorded until no new adults were observed for 15 days, and emergence success was
calculated as mentioned above.

2.3. Data Analysis

For the field study, one-way ANOVA (Proc Mixed, SAS 9.4, Cary, NC, USA) was conducted to
compare the number of individuals within egg clusters and the same-instar cohorts (comprised of
newly hatched, first-, second-, or third–fifth instar larvae) as well as different-instar mixed cohorts.
For experiment 1 (the laboratory study), the aggregation tendency was studied by comparing the
aggregation index of newly hatched or second-instar larvae using the mixed ANOVA (IBM SPSS
Statistics 24, Chicago, IL, USA), with time as the within-subjects factor and sibling status as the
between-subjects factor. To investigate the change of aggregation index through time, we performed
one-way repeated measures ANOVA (IBM SPSS Statistics 24) for each sibling status with time as the
within-subjects factor. For experiment 2, because all isolated larva died within two days (see results),
we only compared the survivorship of 10-sibling larvae, 20-sibling larvae, and 20-non-sibling larvae
using mixed ANOVA, with time as the within-subjects factor and treatment as the between-subjects
factor. For experiment 3, we compared survivorship of donors or receptors using the mixed ANOVA
(IBM SPSS Statistics 24), with time as the within-subjects factor and treatment as the between-subjects
factor. For both experiment 2 and 3, the one-way ANOVAs (IBM SPSS Statistics 24) were then used
to compare larval survivorship among treatments within each time point. The duration of the larval
stage (experiment 2) and emergence success of adults (experiment 2 and 3) were compared between
treatments using the one-way ANOVAs (Proc Mixed, SAS 9.4). The significance level was determined
at α = 0.05 for all tests.

3. Results

3.1. Field Study

In total, 58 egg clusters and 102 larval cohorts were obtained from the field (Table 1). Fifty-four
cohorts were composed of larvae with the same developmental stage (same-instar cohorts), while
48 cohorts were composed of larvae with different instars (different-instar mixed cohorts). The mean
number of individuals in the same-instar cohorts containing the first-instar larvae was significantly
higher than the mean number of eggs in the egg clusters, and both were not significantly different
from the mean number of individuals in the same-instar cohorts containing newly hatched larvae
(Figure 3). The number of individuals in the same-instar cohorts containing third-, fourth-, or fifth-instar
larvae and different-instar mixed cohorts was similar, and all were significantly lower than that in the
same-instar cohorts containing newly hatched or first-instar larvae (F = 14.84, df = 5, 154, p < 0.0001;
Figure 3). The number of larvae in different-instar mixed cohorts was quite variable, ranging from
several to hundreds of individuals (Table 2). Interestingly, 70.8%, 77.1%, and 52.1% of different-instar
mixed cohorts contained second-, third-, and fourth-instar larvae, respectively, whereas only a few
different-instar mixed cohorts contained newly hatched and first-instar larvae (Table 2).

Table 1. Number of egg clusters and larval cohorts collected in each collection date.

Collection Date Egg Clusters Same-Instar Cohorts Different-Instar Mixed Cohorts

15 October 2018 1 26 38
29 October 2018 0 4 7

21 November 2018 2 0 0
24 November 2018 2 0 0
27 November 2018 42 7 0
3 December 2018 11 17 3

Total 58 54 48
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Figure 3. The number of Heortia vitessoides individuals (mean ± SE) in egg clusters and in the cohorts
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Table 2. The number of larvae in each different-instar mixed cohort.

Cohort Newly Hatched
Larvae

First-Instar
Larvae

Second-Instar
Larvae

Third-Instar
Larvae

Fourth-Instar
Larvae

Fifth-Instar
Larvae Total

1 411 276 687
2 174 161 335
3 68 216 284
4 20 224 8 252
5 27 171 198
6 59 82 141
7 140 1 141
8 72 58 130
9 52 77 129

10 2 118 120
11 83 28 111
12 68 1 69
13 5 50 55
14 5 31 12 48
15 47 1 48
16 4 42 46
17 4 39 1 44
18 6 19 13 38
19 1 23 5 29
20 8 7 14 29
21 6 21 27
22 13 13 26
23 2 23 25
24 2 17 2 21
25 3 17 20
26 2 5 10 2 19
27 1 15 3 19
28 13 6 19
29 2 10 6 18
30 12 6 18
31 2 6 7 1 16
32 2 6 7 1 16
33 6 8 1 15
34 6 8 1 15
35 8 6 14
36 2 12 14
37 10 3 13
38 1 4 7 12
39 3 8 11
40 8 3 11
41 3 6 2 11
42 2 3 4 9
43 2 7 9
44 3 6 9
45 4 3 7
46 1 5 6
47 4 1 5
48 2 1 3
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3.2. Laboratory Study

3.2.1. Experiment 1: Aggregation Tendency of H. vitessoides Larvae

The H. vitessoides larvae showed a strong aggregation tendency, regardless of developmental stages
(newly hatched or second-instar) and sibling status (originated from the same or different sibling
cohorts) (Figure 4). The effect of sibling status (newly hatched larvae: F = 0.353, df = 1, 10, p = 0.566;
second-instar larvae: F = 2.210, df = 1, 10, p = 0.168) and interaction effect between sibling status and
time (newly hatched larvae: F = 0.312, df = 1.904, 19.039, p = 0.725; second-instar larvae: F = 1.372,
df = 3.020, 30.201, p = 0.270) were not significant, but the aggregation index significantly increased
with time for both newly hatched (F = 34.443, df = 1.904, 19.039, p < 0.001) and second-instar larvae
(F = 10.975, df = 3.020, 30.201, p < 0.001; Figure 5; Supplementary Materials: Tables S1 and S2).Forests 2019, 10, 331 9 of 18 
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Figure 5. (A) Aggregation index of newly hatched or (B) second-instar larvae of Heortia vitessoides
in the arena containing sibling individuals (20 larvae originated from the same sibling cohort), or
non-sibling individuals (10 larvae originated from one sibling cohort and 10 from another sibling
cohort). Different lower-case letters indicate significant differences in aggregation index of sibling
individuals compared among the five time points (p < 0.05). Different capital letters indicate significant
differences in aggregation index of non-sibling individuals compared among the five time points
(p < 0.05).

3.2.2. Experiment 2: Effects of Aggregation on H. vitessoides Survivorship and Development

All newly hatched larvae died within two days after they were isolated (Figure 6A). No evidence
of leaf consumption was observed before these larvae died. The effect of time (F = 19.272, df = 2.560,
46.080, p < 0.001) and the interaction effect of time and treatments (F = 2.647, df = 5.120, 46.080,
p = 0.034) were significant, but there was no significant difference in larval survivorship between
10-larvae cohorts (containing sibling individuals) and 20-larvae cohorts (either containing individuals
from the same or different sibling cohorts) (F = 1.312, df = 2, 18, p =0.294; Figure 6A; Supplementary
Material: Table S3). In addition, the duration of the larval stage (F = 0.95; df =2, 21; p = 0.4031) and
emergence success of adults (F = 2.39; df =2, 291; p = 0.0936) were similar when compared between
10-larvae cohorts and 20-larvae cohorts (either containing individuals from the same or different sibling
cohorts) (Figure 6B,C). Interestingly, the development of larvae in some replications was asynchronous
(Supplementary Materials: Table S4), even for the larvae originating from the same sibling cohorts
(hatched from the same egg cluster at the same time) (Table 3).
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Figure 6. (A) Larval survivorship, (B) duration of larval stage, and (C) emergence success of adults of
Heortia vitessoides individuals in the treatments containing: (1) single larva originated from each sibling
cohort; (2) 10 larvae originated from the same sibling cohort; (3) 20 larvae originated from the same
sibling cohort; and (4) 10 larvae originated from one sibling cohort and 10 from another. Since all newly
hatched larvae died within two days after they were isolated, the comparisons were conducted for the
latter three treatments. Data were presented as mean ± SE, and different letters indicate significant
differences (p < 0.05).

Table 3. The developmental stages (I: first instar; II: second instar; III: third instar; IV: fourth instar; V:
fifth instar; P: pupae) of Heortia vitessoides individuals during the whole larval stage after the newly
hatched larvae were initially assigned into 20-larvae cohorts (containing sibling individuals). Note that
the larvae of different developmental stages (instars) can be observed within the same sibling cohort at
the same period.

Day
Replication

1 2 3 4 5 6 7 8

2 19 I 18 I 18 I 19 I 16 I 20 I 20 I 20 I
4 19 II 18 II 15 II 19 II 4 I 20 II 20 II 20 I
6 18 II 17 II 14 II 19 II 3 II 19 II 18 II, 2 III 20 II
8 18 III 17 III 13 III 18 III 3 II 18 III 3 II, 17 III 20 III
10 18 IV 6 IV, 10 III 3 III, 10 IV 17 IV 3 III 18 IV 20 IV 1 III, 19 IV
12 18 IV 16 IV 3 III, 10 IV 17 IV 3 III 18 IV 20 IV 20 IV
14 18 IV 16 IV 2 III, 11 IV 17 IV 3 III 18 V 20 IV 20 IV
16 18 V 16 V 2 IV, 11 V 17 V 3 IV 18 V 19 V 20 V
18 18 V 16 V 13 V 17 V 3 V 18 V 19 V 19 V
20 3 V, 15 P 16 V 4 V, 9 P 17 P 3 V 18 P 4 V, 15 P 5 V, 15 P
22 3 V, 15 P 16 V 3 V, 10 P 17 P 3 V 18 P 4 V, 15 P 5 V, 15 P
24 18 P 16 P 3 V, 10 P 17 P 1 V, 1 P 18 P 19 P 3 V, 17 P
26 18 P 16 P 1 V, 11 P 17 P 1 V, 1 P 18 P 19 P 1V, 19 P
28 18 P 16 P 11 P 17 P 2 P 18 P 19 P 19 P

3.2.3. Experiment 3: Horizontal Transfer of Avermectin among H. vitessoides Larvae

For larval survivorship of both donors and receptors, the effect of time (donors: F = 273.676,
df = 3.258, 58.652, p < 0.001; receptors: F = 16.452, df = 1.353, 24.349, p < 0.001) and treatment (donors:
F = 332.512, df = 2, 18, p < 0.001; receptors: F = 5.664, df = 2, 18, p = 0.012) and the interaction between
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time and treatment (donors: F = 73.615, df = 6.517, 58.652, p < 0.001; receptors: F = 4.650, df = 2.705,
24.349, p = 0.012) were significant. Comparisons within each time point showed that the donors
previously exposed to the Petri dish sprayed with 100 or 200 ppm avermectin solution had significantly
lower survivorships compared with control donors (previously exposed to the Petri dish sprayed with
distilled water) (Figure 7A, Supplementary Materials: Table S5). The receptors combined with donors
previously exposed to the Petri dish sprayed with 100 ppm avermectin solution had significantly lower
survivorship compared with control receptors after day 4 (Figure 7B, statistic results are shown in
Supplementary Materials: Table S6). While larval survivorship of receptors combined with donors
previously exposed to the Petri dish sprayed with 200 ppm avermectin solution was lower than the
control on days 4 and 5; it did not significantly differ from either the control or 100 ppm avermectin
treatments on days 6 and 7 (Figure 7B). The emergence success of receptors combined with donors
previously exposed to the Petri dish sprayed with 100 ppm avermectin solution was significantly lower
than that of the control receptors (F = 29.71; df =5, 36; p < 0.0001) (Figure 7C).
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4. Discussion

Compared to adults, animals in larval stages are vulnerable because of their limited mobility and
foraging abilities. Social aggregation is one of the strategies that provide protective and facilitation
effects aiding the survival and development of larvae [25], and has arisen independently in diverse
animal taxa [26–30]. The majority of insects have immature stages, and the aggregation behaviors
of larvae have been reported in many lineages including true flies [24,31–33], sawflies [34–37], and
beetles [38–40].

Although many lepidopteran adults lay single eggs and their larvae are solitary [41], some species
lay eggs in clusters and the larvae show gregarious behavior. For example, Stamp [42] estimated that
5%–15% of butterfly species have gregarious larval stages. Larvae of some serious agricultural and
forestry lepidopteran pests, such as Spodoptera litura (Fabr.) (Lepidoptera: Noctuidae), Malacosoma
americanum (Fabr.) (Lepidoptera: Lasiocampidae) and Hemileuca Lucina Hy. Edw. (Lepidoptera:
Saturniidae), are also gregarious [43–45]. Most of these species show gregariousness during first third
or fourth instars with the last one or two instars being solitary [46], and the number of individuals
in each aggregation was usually low [47]. Our field study also showed that H. vitessoides larvae are
gregarious during early instars, and later instar larvae are largely solitary, though some of them still
formed small aggregations. Some H. vitessoides aggregations can be very large in the wild, usually
containing hundreds of individuals (Figure 3), which may be a result of cohort merging because: (1) the
mean number of individuals in the first-instar cohorts was significantly higher than that of the eggs in
the clusters; and (2) larvae of different developmental stages were usually observed within the same
cohort (though this also can be caused by the asynchronous development of larvae within the same
cohorts, as shown in Table 3). We believe that the aggregation behaviors of H. vitessoides larvae are an
important reason accounting for the severe defoliation caused by this pest. Since the early instar larvae
are highly concentrated, we suggest artificially removing H. vitessoides aggregations from A. sinensis
trees before the dispersing of later instar larvae.

The group-size effects on the survival and development of gregarious larvae and the related
potential mechanisms have been investigated in many lepidopteran species. For example, Clark and
Faeth [48] reported that the larvae of Chlosyne lacinia (Geyer) (Lepidoptera: Nymphalidae) developed
faster when the group size was bigger, because individuals in larger groups found it easier to overcome
the physical toughness of host plant leaves. Santana et al. [28] reported that isolated larva of Ascia
monuste (Godart) (Lepidoptera: Pieridae) showed lower permanency on the host plant than that
of aggregations, and large aggregations had a lower predation rate by natural enemies compared
with small ones. In addition, Klok and Chown [49] reported that group living of second- and
third-instar larvae of Imbrasia belina (Westwood) (Lepidoptera: Saturniidae) helped to maintain the
body temperature of individuals due to “the accumulation of higher heat loads by the larger masses of
large aggregations”. Interestingly, Inouye and Johnson [41] found that the feeding rate of first-instar
larvae of Chlosyne poecile (Felder) (Lepidoptera: Nymphalidae) significantly increased with group size,
whereas the opposite trend was observed in second-instar larvae. Since large groups of second-instars
larvae of C. poecile are commonly found in the field [41], benefits other than feeding simulation should
exist. Similar to many previous studies, our study showed that isolated larva of H. vitessoides did
not feed on leaves and eventually died within a short period, indicating that gregariousness may
play a critical role in facilitating feeding for newly hatched larvae. However, we found that group
size did not affect survivorship and development of H. vitessoides larvae under laboratory conditions
(Figure 6). Future field studies are needed to investigate if the group size affects predation risks and
thermoregulation of H. vitessoides larvae under natural conditions.

Many larval aggregations of lepidopteran species are composed of sibling individuals [48]. In a
few species such as Euselasia chrysippe Bates (Lepidoptera: Riodinidae), non-sibling cohorts sometimes
merge to form bigger aggregations, indicating that “benefits of living in large groups outweigh the
costs of intra- or inter-specific competition in this species” [47]. Likewise, our studies showed that
H. vitessoides larvae had a strong tendency to form the aggregations, whether they initially originated
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from the same or different sibling cohorts. This result probably showed that the larval gregariousness
of H. vitessoides was not kin-selected. The developmental stage is another factor that might affect
larval aggregation. For example, Cornell et al. [44] reported that the first-instar larvae of H. lucina
barely aggregated, whereas older instar larvae can quickly form aggregations. Although our study did
not compare the aggregation index between newly hatched and second-instar larvae of H. vitessoides,
larvae in both stages successfully formed the aggregations during the experiment (Figures 4 and 5).

Our study showed the horizontal transfer of avermectin among H. vitessoides larvae. To our
best knowledge, this is the first report on pesticide horizontal transfer among gregarious larvae of
a lepidopteran pest. To separate donors and receptors, previous studies on social insects, such as
termites, commonly fed donors with dyes including Nile blue A and Sudan Red 7B [50–52]. However,
marking the donors of H. vitessoides larvae would be challenging. Our preliminary studies showed
that H. vitessoides larvae that fed on leaves treated with low concentrations of Nile blue A or Sudan
Red 7B showed high mortality and limited mobility. Marking the body with inks did not affect moving
and aggregation behaviors of H. vitessoides larvae; however, the ink spots easily faded after a short
period. As a result, in the present study, donors were only allowed to combine with receptors for 12 h.
The limited combining duration may to some extent reduce the effectiveness of avermectin transfer.

The horizontal transfer of pesticides among termites and ants can be caused by trophallaxis,
grooming, and body contact among donors and receptors, as well as contact between receptors
and pesticide-contaminated areas [53,54]. Since trophallaxis and grooming behaviors have not
been observed in the gregarious larvae of H. vitessoides, contacting may account for the horizontal
transfer of avermectin in this species. Here, donor larvae exposed to the Petri dish sprayed with the
high concentration (200 ppm) of avermectin solution showed reduced movement and aggregation
behaviors, which might reduce the chance of contact between donors and receptors. Therefore, donors
treated with a high concentration of avermectin did not cause significantly lower larval survivorship
and adult emergence of receptors as compared to the controls (Figure 7). This result showed that
high concentrations of pesticide might negatively affect the effectiveness of horizontal transfer, and
should be avoided in H. vitessoides management. It is important to note that this experiment is
somewhat preliminary. Future studies are needed to investigate the factors (e.g., larval instars,
donor–receptor ratio) that may influence horizontal transfer of various pesticides among gregarious
larvae of H. vitessoides.

5. Conclusions

Our field study showed that H. vitessoides larvae are gregarious during early instars, and later instar
larvae are largely solitary, though some of them still formed small aggregations. Some H. vitessoides
aggregations can be very large in the wild, usually containing hundreds of individuals. In the laboratory,
H. vitessoides larvae had a strong tendency to form the aggregations, whether they initially originated
from the same or different sibling cohorts. When newly hatched larvae were isolated, they did not feed
on leaves and eventually died within a short period. However, group size and sibling status did not
affect survivorship and development of H. vitessoides larvae. In addition, our study is the first to show
the horizontal transfer of avermectin among H. vitessoides larvae.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/4/331/s1,
Table S1: Statistics Analysis for Figure 5A, Table S2: Statistics Analysis for Figure 5B, Table S3: Statistics Analysis
for Figure 6A, Table S4: The developmental stages (I: first instar; II: second instar; III: third instar; IV: fourth instar;
V: fifth instar; P: pupae) of Heortia vitessoides individuals during the whole larval stage after the newly hatched
larvae were initially assigned into 10 or 20-larvae cohorts, Table S5: Statistics Analysis for Figure 7A, Table S6:
Statistics Analysis for Figure 7B.
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