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Abstract: Aleppo pine (Pinus halepensis Mill.) is widespread in most countries of the Mediterranean 

area. In Greece, Aleppo pine forms natural stands of high economic and ecological importance. 

Understanding the species’ ecophysiological traits is important in our efforts to predict its responses 

to ongoing climate variability and change. Therefore, the aim of this study was to assess the seasonal 

dynamic in Aleppo pine gas exchange and water balance on the leaf and canopy levels in response 

to the intra-annual variability in the abiotic environment. Specifically, we assessed needle gas 

exchange, water potential and δ13C ratio, as well as tree sap flow and canopy conductance in adult 

trees of a mature near-coastal semi-arid Aleppo pine ecosystem, over two consecutive years 

differing in climatic conditions, the latter being less xerothermic. Maximum photosynthesis (Amax), 

stomatal conductance (gs), sap flow per unit leaf area (Ql), and canopy conductance (Gs) peaked in 

early spring, before the start of the summer season. During summer drought, the investigated 

parameters were negatively affected by the increasing potential evapotranspiration (PET) rate and 

vapor pressure deficit (VPD). Aleppo pine displayed a water-saving, drought avoidance (isohydric) 

strategy via stomatal control in response to drought. The species benefited from periods of high 

available soil water, during the autumn and winter months, when other environmental factors were 

not limiting. Then, on the leaf level, air temperature had a significant effect on Amax, while on the 

canopy level, VPD and net radiation affected Ql. Our study demonstrates the plasticity of adult 

Aleppo pine in this forest ecosystem in response to the concurrent environmental conditions. These 

findings are important in our efforts to predict and forecast responses of the species to projected 

climate variability and change in the region. 

Keywords: Aleppo pine; Greece; photosynthesis; water potential; δ13C; sap flow; canopy 

conductance; climate 
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1. Introduction 

Aleppo pine (Pinus halepensis Mill.) is widespread in most countries of the Mediterranean area 

[1,2]. In Greece, Aleppo pine forms forests of economic importance (e.g., wood, resin, medicinal, and 

honey products) [1], comprising 26% of the coniferous forests in the country.  

Aleppo pine can reach heights of 10–20 m, depending on the precipitation regime in the area, 

and has relatively shallow roots, usually not exceeding depths of 5 m [3]. The species is adapted to 

the xerothermic conditions (high temperatures and droughts) of the Mediterranean, due to its 

drought avoidance strategy of reducing stomatal conductance under water shortage [4]. This 

isohydric response allows Aleppo pine to limit the reduction of needle water potential and xylem 

cavitation, to which it is quite vulnerable [5,6]. Moreover, Aleppo pine has adapted its physiological 

activity to the seasonally changing climatic regime in the region. It actively grows during two periods 

of the growing season (spring and autumn) when temperatures are favorable and water is available. 

This behavior is more pronounced in the coastal regions than in continental forest sites [7]. On the 

other hand, extreme winter and summer temperatures and intensive summer droughts may cause 

growth activity to cease [8] and lead to extensive dieback and growth declines in Aleppo pine forests 

[9]. 

Improving our understanding of the driving factors that control Aleppo pine responses to 

climatic conditions is important for managing the species and forecasting its responses to climate 

variability, extremes, and change. Relationships between various physiological traits and the abiotic 

environment have been reported in the literature for Aleppo pine [10–12]. Studies have demonstrated 

a strong stomatal regulation in the species and coordination between foliage water potential and 

stomatal conductance to balance water loss [13]. However, needle and canopy stomatal responses to 

changes in evaporative demands, especially in combination with high temperatures remain unclear. 

Aleppo pine populations vary greatly in their response to extreme weather events across their 

distribution range [9,14]. Populations growing under the driest environments seem to be most 

impacted by extreme droughts and are prone to growth decline, but recover quickly. It is, however, 

unknown how the species will respond to the drier and hotter conditions forecasted for the 

Mediterranean basin under climate change [15], particularly in the eastern part [16]. Studying the 

seasonal dynamics of physiological traits in Aleppo pine in response to the concurrent climatic 

conditions will advance our understanding of the drivers that control growth and performance in 

the species and resilience of these forests. Few studies on the ecophysiological responses of Aleppo 

pine to drought regimes included Greek provenances and have focused on ecotypic variability 

assessed in plantations [17–20], not on adult trees of natural Aleppo pine forests. Thus, information 

on the ecophysiological responses of natural Aleppo pine forests in Greece is scarce. 

In the present study, we assessed the seasonal dynamics of physiological traits of a mature near-

coastal Aleppo pine ecosystem in Sani, Chalkidiki, northern Greece, over two consecutive years. We 

measured foliage gas exchange, water potential and stable carbon isotopic ratio, and tree sap flow 

rate and canopy conductance to characterize water balance dynamics of the species in response to 

climatic variability. Our specific aims were to (a) describe the seasonal variation in the physiological 

traits of Aleppo pine trees and (b) determine the climatic factors that control the observed seasonal 

trends. The combination of selected complementary techniques provides vital information from the 

needle to the stand level for assessing the performance of this dominant Mediterranean forest species 

under the prevailing climate change. 

2. Materials and Methods  

2.1. Site Description 

The study was conducted at the peninsula of Kassandra, Chalkidiki, Greece. The experimental 

site is located at the Stavronikita forest (latitude: 40°06’22” N, longitude: 23°18’80” E, altitude 15 

m.a.s.l., slope 1%, c. 300 m distance from the coast). The site is in a natural Aleppo pine (Pinus 

halepensis) stand with a mean tree height of 16 m, a mean diameter at breast height of 45 cm, a mean 

tree basal area of 0.19 m2, and a stand basal area of 23.68 m2ha−1. The understorey consists of a maquis 
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shrub vegetation, dominated with Pistacia lentiscus L., Phyllirea media L., and Quercus coccifera L. The 

soil has a high pH (7.5–8.2) and, according to European soil classification, it lies at the boundary 

between Calcari-chromic Vertisols and Chromic Luvisols [21,22]. 

2.2. Environmental Conditions 

The climate on site is Mediterranean (Csa), according to Köppen-Geiger’s classification, and is 

characterized by rainy winters and semi-arid growing seasons [23]. Micrometeorological data are 

available for the period 1978–1997 and from 2007 to present, from a fully automated weather station 

operating at a c. 50 m distance from the forest stand. Air temperature and air relative humidity 

(RHT2nl, Delta-T Devices Ltd., Cambridge, UK), photosynthetically active radiation (SKP215; Skye 

Instruments Ltd., Llandrindod Wells, UK), solar radiation (SKS1110, Skye Instruments, UK), wind 

speed (model 4.3515.30.000, THIES CLIMA, Göttingen, Germany), wind direction (WD4, Delta-T 

Devices Ltd, UK), precipitation (AR100 and RGB1, EM UK), and soil temperature at a depth of 15 cm 

(ST1, Delta-T Devices Ltd, UK) were continuously recorded. All parameters were data-logged on a 

1-h basis (DL2e Delta-T Logger, Delta-T Devices Ltd., Cambridge, UK). Missing data due to a short-

term malfunction of the meteorological station were completed after extrapolation from the 

respective data from the closest meteorological station of Loutra Thermis (latitude 40°30’Ν, longitude 

23°04’E, 30 m.a.s.l.). The filling of the missing data gaps was performed by using the double-mass 

curve technique [24] followed by a t-test [25]. Moreover, vapor pressure deficit (VPD) was estimated 

using the RayMan model [26,27], while potential stand evapotranspiration (PET) and available soil 

water capacity (aSWC) of the study site were calculated with the water balance model WBS3. WBS3 

is a forest–hydrological model that requires daily mean values of air temperature and daily total 

precipitation as meteorological inputs [28] and takes into account several forest stand parameters as 

input, as described in detail in a previous study [29].  

An aridity index (AI) [30] was selected to estimate aridity conditions prevailing at the study 

area. A number of aridity indices have been proposed; these indicators serve to identify, locate, or 

delimit regions that suffer from a deficit of water availability [31]. The aridity index is estimated as 

follows (Equation (1)): 

AI = P / PET, (1) 

where P is precipitation (mm), which in our study is equal to rainfall, and PET is potential 

evapotranspiration (mm). The boundaries that define the various degrees of aridity are shown in 

Table S1 [32]. 

2.3. Measurement Campaigns  

Four dominant, non-neighboring Aleppo pine trees were selected for measurements and needle 

collection. Attention was paid to choosing healthy individuals, since infestation by the insect 

Marhalina hellenica (Genn.) is spread in Pinus halepensis forests of Chalkidiki. Three sun-exposed 

branches of the lower canopy (approximately three meters above ground) were marked and were 

thereafter used for measurements of gas exchange and midday water potential. After completion of 

each set of gas exchange measurements, the needles were sampled for carbon isotopic ratio analysis, 

as described below. Neighboring needles of the same branches were used for water potential 

measurements.  

Measurements were conducted over two consecutive years on a monthly basis; gas exchange 

was measured from December 2007 to November 2009, while needle midday water potential was 

measured from January 2008 to October 2009. Needle δ13C was determined from January 2008 to May 

2009 due to technical limitations.  

2.4. Gas Exchange and Needle Water Potential 

For gas exchange measurement, we used the Li-6400 open path infra-red gas analyzer with a Li 

6400-40 fluorescence chamber (Li-Cor, Lincoln, NE, USA). Maximum photosynthesis (Amax) and 

stomatal conductance (gs) measurements were conducted on current year, fully expanded, and sun 
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exposed needles between 10:00 and 13:00. The needles were carefully arranged in the 2-cm2 cuvette 

in a way to exclude overlapping and to fully cover the area of the cuvette and they were acclimated 

for c. 10 min in the chamber at a CO2 concentration of 400 ppm, under a photosynthetically active 

radiation (PAR) level of 1000 μmolm−2s−1 from November to March and 1500 μmolm−2s−1 from April 

to October. CO2 flow rate was set to 300 μmols-1 and temperature inside the chamber was controlled 

within the range of 17–28 °C, depending on the seasonal fluctuation of ambient air temperature.  

Midday water potential (midday Ψ) measurements were conducted between 13:00 to 14:00 

using a portable pressure chamber (model PMS 1003, PMS Instruments, Corvallis, OR, USA). The 

needles’ water potential was measured after gas exchange measurements. 

2.5. Needle δ13C Signature 

At the study site, new needles were fully expanded until the end of May each year. New needles 

(<1 year old), fully developed from the preceding May, were collected on a monthly basis from the 

same dominant Aleppo pine trees for the determination of the needle carbon isotopic ratio (δ13C). 

Samples were oven-dried at 65 °C until at a constant weight and then sent to the University of 

Nebraska Water Sciences Laboratory for analysis (https://watersciences.unl.edu/). Samples were 

finely ground and δ13C was determined using mass spectrometry. The carbon isotope ratio (δ13C) of 

each sample was then determined as 13C (‰) = [(Rsample/Rstandard) – 1] × 1000, where Rsample is 

the 13C/12C of the sample and Rstandard is the 13C/12C ratio of the Vienna Pee Dee Belemnite (VPDB) 

standard.  

2.6. Tree Sap Flow and Canopy Stomatal Conductance  

Xylem sap flux was monitored using the thermal dissipation method [33,34]. In July 2008, 2-cm 

long Granier-type sensors and measurements were taken until early November 2009. Probe pairs 

were inserted radially into the stem of five dominant Aleppo pine trees averaging 43.5 cm diameter 

at breast height (DBH) with a vertical separation between the probes of approximately 12.0 cm. 

Probes were installed in the outer sapwood of the north-facing side of the stem and both probes and 

stems were insulated to minimize natural temperature gradients.  

The temperature difference between the Granier-type probes was recorded at 10 second 

intervals and stored as 15 minute averages on a data logger (CR10X Campbell Scientific, Logan, UT, 

USA) and used to obtain sap flux density by means of the equation derived empirically by Granier 

[33]. The daily maximum temperature difference was used as an estimate of the temperature 

difference under zero flow conditions. This variable was approximately constant over the study 

period (average coefficient of variation ± SE = 1.24% ± 0.04%).  

Natural temperature gradients in the stem can interfere with sap flow measurements. These 

were measured over 60 days, but as values were consistently <5.2% of the sap flow signal, no 

corrections were applied [35]. 

The thickness of active sapwood was estimated using an allometric relationship obtained from 

a close by Aleppo pine site (in Peukochori, Chalkidiki; Radoglou K, unpublished data). For this 

purpose, 20 wood slices were used to estimate sapwood and heartwood areas. The equation best 

fitted to our data (r2 = 0.999) was As = 0.077 × (DBH1.9905), where As stands for sapwood area (in m2) 

and DBH for diameter at breast height (in m). Allometric relationships were also applied to estimate 

total tree leaf area [36] and used to calculate sap flow per unit leaf area (Ql; kgm–2day–1).  

Canopy stomatal conductance (Gs; mms-1) was derived from sap flow measurements as 

described by [37].  

Mean daily values of Ql and Gs corresponding to days with mean daily values of VPD <0.1 kPa 

were excluded [38]. 

2.7. Statistical Analysis  

Statistical analysis was performed with SPSS 23.0 (IBM Corp., SPSS for Windows, NY, USA) and 

OriginPro 8.0 (OriginLab Corp., Northampton, MA, USA). Relationships between physiological 
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traits, as well as between physiological and single or combined environmental parameters, were 

examined using linear and non-linear regression analyses and coefficients of determination (adjusted 

R2). The physiological traits tested were Amax, gs, Ψmid, needle δ13C, Ql, and Gs, while the respective 

environmental parameters were rainfall, air relative humidity, VPD, mean, maximum and minimum 

air temperature (Tmean, Tmax and Tmin, respectively), PET, net radiation, daytime net radiation, and 

aSWC of the actual day the physiological parameters were measured, or averaged over (a) the 

respective month, (b) the preceding month, (c) one week prior to measurements, and (d) two weeks 

prior to measurements. For the regression model between Ql, VPD, and net radiation, mean hourly 

values for the wetter period (November to March of each study year, when data were available) were 

considered after excluding the ones corresponding to VPD <0.1 KPa. For all analyses, the 

environmental parameter(s) having an insignificant effect on each regression model (p > 0.05) were 

excluded from the model. When the combined effect of more than one environmental parameter on 

physiological traits was tested, only the independent environmental parameters were entered into 

the regression model. All tested significant regression models are presented in Table S2. The 

regression models with the highest adjusted R2 and the highest significance level are presented in 

figures. The level of significance of each relationship (p < 0.05, p < 0.01, p < 0.001) is given in the 

respective plot.   

3. Results 

3.1. Climatic Conditions 

The seasonal fluctuation of Tmean cumulative precipitation, mean aSWC, and mean VPD during 

the two-year study is presented in Figure 1. On average, 2009 was characterized by a combination of 

both higher average air temperatures and rainfall relative to 2008, resulting in lower VPD, higher 

aSWC, and higher aridity index (less xerothermic conditions) in 2009 compared to 2008 and to 

averages from the previous decade (Table 1).  
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Figure 1. Daily values of: (a) Mean air temperature (Tmean) and rainfall and (b) available soil water 

capacity (aSWC) and vapor pressure deficit (VPD) during the study period. 
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Table 1. Annual cumulative rainfall and mean annual  aridity index,  aSWC and   VPD during the 

study years and the previous decade. 

Period Rainfall (mm) Aridity Index aSWC (%) VPD (KPa) 

2008 542.1 0.77 36.9 0.55 

2009 680.2 1.16 46.6 0.46 

2008–2017 544.9 0.84 37.5 0.48 

 

3.2. Seasonal Patterns of Gas Exchange, Needle Water Potential, and δ13C Composition 

Gas exchange rates were high at the beginning of April in both years of measurements (Figure 

2a,b). In 2008, a second pick in gas exchange was recorded in early July, before the summer drought 

was intensified, whereas in 2009 a second pick was evident in early October, after the completion of 

the drought season. 
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Figure 2. Seasonal pattern of monthly (a) maximum photosynthesis (Amax), (b) stomatal conductance 

(gs), (c) δ13C ratio, and (d) midday water potential (Ψ) during two consecutive years (2008 and 2009). 

n = 4 trees ± SE. 

The combined effects of daytime net radiation and Tmean on sampling dates largely explains the 

variation in Amax between October and March (Radj2 = 0.62, p < 0.05; Figure 3). The particularly low 

Amax values observed in October and November 2008, compared to the same period in 2009, could be 

due to the substantially lower air temperatures of the former period compared to the latter. Tmean 

ranged from 8.5 to 15.5 °C in October–November measuring days of 2008 vs. 19.6 to 21.7 °C in 2009, 

while the Tmin of the preceding nights was, similarly, lower in these measuring days of 2008 (5.4–11.2 

°C) vs. 2009 (15.7–18.4 °C).On the other hand, the higher Tmean, increased aSWC, and decreased VPD 

during October–December of 2009, compared to the same period in 2008, resulted in a substantial 
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increase in gas exchange, which reached values comparable to those observed during the spring in 

Aleppo pine. The strong and significant relationship between Amax and gs (Radj2 = 0.59, p < 0.01; Figure 

4a) indicated a close stomatal regulation of photosynthesis during the study period. 
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Figure 3. Regression model describing the combined effect of net radiation [kWm−2] and mean air 

temperature [°C] on needle Amax during the period October–March. Mean daily values of net 

radiation and air temperature corresponding to the days of Amax measurements were used. For net 

radiation, only daytime values were used. RSPV stands for regression standardized predicted value. 

The confidence levels of the models are depicted by grey upper and lower bands. 

The δ13C ratio and midday Ψ of the current year needles displayed seasonal variability (Figure 

2c,d) that was more pronounced in 2008 than 2009, consistent with the observed lower VPD and 

higher aSWC in 2009 vs. 2008 (Figure 1; Table 1). A significant negative linear relationship was 

recorded between δ13C and Ψ (Radj2 = 0.38, p < 0.05; Figure 4b), with the highest δ13C and the lowest 

midday Ψ values reported in August. Among all tested environmental parameters, the average VPD 

over two weeks period prior to sampling had the strongest effect on the δ13C ratio of the needles (Radj2 

= 0.64, p < 0.001; Figure 4a). The PET of the day of measurements was found to be the strongest 

predictor of midday Ψ (Radj2 = 0.72, p < 0.001; Figure 5b). 
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Figure 4. Regression models describing the relationship between needle (a) Amax and gs and (b) δ13C 

and midday Ψ. The confidence levels of the models are depicted by grey upper and lower bands. 
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Figure 5. Regression models describing the relationship between (a) needle δ13C and mean vapor 

pressure deficit (VPD) averaged over the preceding two weeks prior to measurements and (b) needle 

midday Ψ and potential stand evapotranspiration (PET) of the current day of measurements. The 

confidence levels of the models are depicted by grey upper and lower bands. 

3.3. Seasonal Patterns of Sap Flow and Canopy Conductance 

In 2009, maximum Ql values were reached early in the growing season, when mean daily aSWC 

was still quite high (Figure 6a). Comparison with the same period in 2008 was not possible, since sap 

flow measurements were initiated in July 2008. In addition, datalogger malfunctioning resulted in 

missing values in April 2009, thus, not allowing comparison with the gas exchange maximum values 

in April. During the dry months, from July to September of both study years, similar declining trends 

were apparent in Ql, with higher overall rates in less xerothermic 2009 compared to 2008 (Figure 6a). 
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Ql increased in October 2008, with the increase in aSWC, from 13% (in the second half of September) 

to 49% (first half of October), while mean daily values of VPD and net radiation were still not limiting. 

Ql declined until December 2008, before increasing again to reach maximum values in March 2009 

(Figure 6a), when VPD started to increase and aSWC was still very high (>85%). The combined effect 

of net radiation and VPD during the wet season (November–March) of the study period largely 

explained the variation in Ql (Radj2 = 0.64, p < 0.001; Figure 7). Thus, when water availability was not 

a limiting factor, Ql was mainly controlled by VPD and net radiation. 

To investigate the causes of the drought-induced decrease in Ql, canopy stomatal conductance 

(Gs) was derived from Ql. The seasonal pattern of Gs was strongly controlled by PET (Radj2 = 0.69, p < 

0.001; Figure 8a) and VPD (R2 = 0.62, p < 0.001; Figure 8c) of the respective period, indicating increased 

stomatal control as drought progressed. Gs was also strongly related to aSWC (Radj2 = 0.72, p < 0.001; 

Figure 8b) and tracked its seasonal changes, which explains the high values in October and December 

2008, as well as in January 2009 (Figure 6b). 

0,0

0,2

0,4

0,6

0,8

1,0

(b)

Q
 l [

K
g

 m
-2
 d

-1
]

J
a
n

F
e
b

M
a
rc

h
A

p
ri

l
M

a
y

J
u
n
e
 

J
u
ly

A
u
g

S
e
p
t

O
ct

N
o
v

D
e
c

J
a
n

F
e
b

M
a
rc

h
A

p
ri

l
M

a
y

J
u
n
e

J
u
ly

A
u
g

S
e
p
t

O
ct

N
o
v

D
e
c

0

1

2

3

4

.

.

.

.

.

.

2009
 Month

(a)

G
s
 [
m

m
 s

-1
]

2008

 



Forests 2019, 10, 313 12 of 18 

 

Figure 6. Seasonal patterns of mean monthly values of: (a) Sap flow per unit leaf area Ql and (b) 

canopy stomatal conductance (Gs) measured over two consecutive years (2008 and 2009). n = 5 trees 

± SE. 
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Figure 7. Regression model describing the combined effect of vapor pressure deficit (VPD) [kPa] and 

net radiation [kWm−2] on Ql. Mean hourly values of VPD and net radiation corresponding to the days’ 

sap flow was monitored during the wet period (November to March) were used. RSPV stands for 

regression standardized predicted value. 
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Figure 8. Regression models describing the relationship between mean monthly canopy stomatal 

conductance (Gs) and (a) potential stand evapotranspiration (PET), (b) available soil water capacity 

(aSWC), and (c) vapor pressure deficit (VPD). The confidence levels of the models are depicted by 

grey upper and lower bands. 

4. Discussion 

The seasonal variation in key physiological traits as impacted by the environmental conditions 

were investigated in a mature near-coastal Aleppo pine forest in Sani, Chalkidiki, northern Greece. 

The study site is characterized by semi-arid growing seasons (mean aridity index of April to October 

during the last decade was 0.38) and compared to other Mediterranean Aleppo pine forests, it falls 

within the average rainfall range but has relatively high mean air temperatures (Table S3). 

Assessments were conducted during two consecutive years (2008 and 2009) differing in climatic 

conditions. The latter was characterized by considerably higher water availability, while the former 

was comparable or even drier than the last decade’s average (Figure 1; Table 1). This enabled 

monitoring of the ecophysiological responses of Aleppo pine under a wider range of climatic 

conditions. Within this frame, the effects of key environmental parameters on the gas exchange and 

water balance of Pinus halepensis were tested.  

Aleppo pine exhibited a bimodal pattern of Amax which peaked twice in each year, when 

conditions were favorable (Figure 2a), corresponding with the species growth activity in the spring 

and autumn [6]. Stomatal regulation over Amax was observed throughout the year (Figure 4a), which 

appeared to respond to the limiting environmental factors. During the xerothermic summer 

conditions, PET exceeded that of aSWC and caused a decline in midday Ψ to values comparable to 

those reported in adult Aleppo pine trees (c. −2.6 MPa) [6]. As a result, gs also declined, thus limiting 

Amax (Figure 2a,b), in line with the isohydric water-saving strategy of Aleppo pine [4,8,39]. This 

reduction of gs is probably a response to minimize conductivity loss. Similar midday Ψ levels caused 
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a c. 30% loss of conductivity in Aleppo pine seedlings subjected to drought [4], indicating its 

relatively high vulnerability to xylem embolism [6]  

Air temperature and net radiation appear to be key controllers of Amax during the period of 

October to March (Figure 3). High Amax rates were reached during the warm days of October–

November 2009, but not during the substantially colder measuring days between October 2008 and 

March 2009 (Figure 2a). It has similarly been reported [40] that the decrease of night temperatures 

below 10 °C, accompanied by a photoperiod below 12 h, results in low photosynthetic rates in 

seedlings of Pinus strobus during autumn. The Amax of Mediterranean pines was also found to be 

controlled by the preceding night temperatures and internal factors during autumn and winter 

months [41], as well as by extreme preceding summer droughts [10]. Any photoinhibition effects on 

Amax during the colder months of 2008 can be excluded since Fv/Fm values remained high (above 

0.84; data not shown) and the air temperature was not low enough to account for such a response 

[42].  

The quite xerothermic summer of 2008 resulted in a low midday Ψ (Figure 2d) that was reflected 

in the 13C isotopic ratio (Figure 2c), which increased linearly with decreasing midday Ψ (Figure 4b). 

This has been observed in other forest species during water deficits [43], owing to decreased Rubisco 

discrimination against 13C under stomatal closure due to abiotic stresses [44]. Midday Ψ was found 

to immediately respond to short-term changes in air evaporative demand, as similarly shown by [11], 

since current day evapotranspiration explains 72% of its variation (p < 0.001; Figure 5b). On the 

contrary, the air vapor pressure deficit over the last two weeks strongly affected the needle δ13C (R2 

adj = 0.64, p < 0.001, Figure 5a), while this effect was less pronounced when shorter or longer time 

intervals were examined (Table S2). Foliar δ13C being affected by recent environmental conditions 

has been previously reported [29,45] and may apply for Aleppo pine as well, as the isotopic signature 

of recently produced assimilates could be detected quicker in a conifer that maintains an active C 

metabolism through most of the year. 

Sap flow per unit leaf area (Ql) showed a seasonal water saving pattern, with maximum values 

in early spring and a gradual decline as summer drought progressed (Figure 6a) and stomatal control 

increased (Figure 2b) to prevent water loss. A second peak in Ql occurred in autumn 2008 (Figure 6a) 

associated with aSWC increase (from 13% in the last half of September to 49% in the first half of 

October). It is also evident that, when water availability was not a limiting factor, Ql was mainly 

controlled by VPD and net radiation (Figure 7). Our results indicate that, in accordance to the 

findings from other Mediterranean type ecosystems [37,46], interannual variability in sap flow of 

Aleppo pines can be substantial, to avoid periods of prolonged drought and high transpirational 

demands.  

Consistent with the patterns of leaf-level responses and sap flow, canopy conductance (Gs) 

decreased during the summer drought months (Figure 6b) being strongly affected by the gradual 

increases in PET, VPD (Figure 8a,c) and air temperature (Table S2), as similarly reported in numerous 

other studies [37,47]. As PET increased, midday Ψ decreased (Figure 5b) and gs followed the same 

pattern to prevent conductivity losses [48]. On the other hand, gs responded positively when water 

availability increased (Figure 8b), possibly due a gradual refill of previously cavitated tracheids [49].  

The studied Aleppo pine stand exhibited plasticity to environmental conditions and showed the 

ability to recover from the effects induced by drought when climatic factors were improved. A similar 

response is reported for Aleppo pine growth when precipitation is increased [9]. However, during 

the period of increased water availability (October to March), varying patterns may be observed on 

the leaf and on the canopy level, responding to different parameters that seem to have a limiting 

effect. Thus, photosynthesis at the level of the lower canopy was greatly affected by air temperature 

and net radiation and increased when temperature was optimal (in October–November 2009), while 

sap flow and conductance at the canopy level responded positively to the favorable VPD, net 

radiation, and evapotranspiration during the same period of both years. 

The results of the present study demonstrate the potential of this dominant Mediterranean forest 

tree species, to overcome the adverse conditions during summer droughts and to take advantage of 

more favorable water regimes occurring in early spring and occasionally also during autumn and 
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winter, if other environmental parameters are not limiting, in a semi-arid ecosystem in Chalkidiki, 

Greece. Furthermore, some light is shed on the environmental controls over key physiological traits 

at the leaf and the canopy level. 

5. Conclusions 

By assessing the ecophysiological responses of the studied Aleppo pine forest in Northern 

Greece within a range of varying climatic conditions during a two year period, different but 

complementary patterns were revealed. During xerothermic periods, a typical isohydric behavior 

was exhibited by Aleppo pine; Amax, Ql and gs declined through stomatal control to limit Ψ reduction 

and loss of conductivity. However, in periods when water availability was not a limiting factor, the 

species was able to maximize its carbon gain if other controlling parameters, such as air temperature 

and net radiation, simultaneously ensured a favorable environmental regime. In conclusion, a high 

plasticity of the Pinus halepensis at the studied forest site to concurrent environmental conditions is 

indicated. Continuing studies are needed across Aleppo pine locations in the Mediterranean, 

particularly at its eastern part which is expected to be more prone to climate change, to improve our 

understanding of the species responses to ongoing climate variability.  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Classification 

of aridity index (AI) categories; Table S2: Significant regression models describing the relationship between 

physiological and single or combined environmental parameters over different time intervals. The adjusted R2 

values and the levels of significance are presented. The models in bold are the most significant ones with the 

highest adjusted R2, explaining the variation in the respective physiological parameter, which are presented in 

figures; Table S3: Characterization of the study site, in comparison to other Aleppo pine sites of Mediterranean 

countries. 

Author Contributions:  Conceptualization, M.N.F. and E.K.; Formal analysis, M.N.F., E.K. and S.A.P.; 

Investigation, M.N.F. and E.K.; Methodology, M.N.F. and E.K.; Project administration, K.R. and T.A.; Resources, 

K.R. and T.A.; Validation, M.N.F., E.K. and S.A.P.; Writing – original draft, M.N.F. and E.K.; Writing – review 

& editing, M.N.F., E.K., S.A.P., K.R., T.A. and A.M.. 

Funding: This research was funded by the General Secretariat for Research and Technology, Greece, grant 

number 05ΝΟΝ-EU-230 and the FoResMit LIFE14 CCM/IT/000905 project. 

Acknowledgments: We wish to thank Gavriil Spyroglou and Nikolaos Fyllas for the biometrical 

characterization of the site, as well as George Halyvopoulos and Grigoris Morakis for their contribution in field 

measurements.  

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the 

study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to 

publish the results. 

References 

1. Chambel, M.R.; Climent, J.; Pichot, C.; Ducci, F. Mediterranean Pines (Pinus halepensis Mill. and brutiaTen.). 

In Forest Tree Breeding in Europe: Current State-of-the-Art and Perspectives; Pâques, L.E., Ed.; Springer: 

Dordrecht, The Netherlands, 2013; Volume 25, pp. 229–265, ISBN 978-2-11128054-0. 

2. Euro + Med PlantBase—The Information Resource for Euro-Mediterranean Plant Diversity. Available 

online: http://ww2.bgbm.org/EuroPlusMed/ (accessed on 12 February 2019). 

3. Dafis, S.; Moulopoulos, C. Einwirkung der Bodenfeuchtigkeit auf das Wachstum und Wurzelbildung von 

Samlingen der Aleppo und Hartkiefer (Pinus halepensis Mill und P. brutia Ten). Beih. Z. Schweiz. Forstver. 

1969, 46, 225–260. 

4. Klein, T.; Cohen, S.; Yakir, D. Hydraulic adjustments underlying drought resistance of Pinus halepensis. Tree 

Physiol. 2011, 31, 637–648, doi:10.1093/treephys/tpr047. 

5. Klein, T.; Cohen, S.; Paudel, I.; Preisler, Y.; Rotenberg, E.; Yakir, D. Diurnal dynamics of water transport, 

storage and hydraulic conductivity in pine trees under seasonal drought. iForest 2016, 9, e1–e10, 

doi:10.3832/ifor2046-009. 



Forests 2019, 10, 313 16 of 18 

 

6. Oliveras, I.; Martinez Vilalta, J.; Jimenez-Ortiz, T.; Lledo, J.; Escarre, A.; Piñol, J. Hydraulic properties of 

Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain. Plant Ecol. 2003, 

169, 131–141, doi:10.1023/A:1026223516580. 

7. Pacheco, A.; Camarero, J.J.; Ribas, M.; Gazol, A.; Gutierrez, E.; Carrer, M. Disentangling the climate-driven 

bimodal growth pattern in coastal and continental Mediterranean pine stands. Sci. Total Environ. 2017, 615, 

1518–1526, doi:10.1016/j.scitotenv.2017.09.133. 

8. Prislan, P.; Gričar, J.; de Luis, M.; Novak, K.; del Castillo, M.E.; Schmitt, U.; Koch, G.; Štrus, J.; Mrak, P.; 

Žnidarič, M.T.; et al. Annual cambial rhythm in Pinus halepensis and Pinus sylvestris as indicator for climate 

adaptation. Front. Plant Sci. 2016, 7, 1923, doi:10.3389/fpls.2016.01923. 

9. Gazol, A.; Ribas, M.; Gutiérrez, E.; Camarero, J.J. Aleppo pine forests from across Spain show drought-

induced growth decline and partial recovery. Agric. For. Meteorol. 2017, 232, 186–194, 

doi:10.1016/j.agrformet.2016.08.014. 

10. Schiller, G.; Cohen, Y. Water regime of a pine forest under a Mediterranean climate. Agric. For. Meteorol. 

1995, 74, 181–193. 

11. Klein, T.; Shpringer, I.; Fikler, B.; Elbaz, G.; Cohen, S.; Yakir, D. Relationships between stomatal regulation, 

water-use, and water-use efficiency of two coexisting key Mediterranean tree species. For. Ecol. Manag. 

2013, 302, 34–42, doi:10.1016/j.foreco.2013.03.044. 

12. Birami, B.; Gattmann, M.; Heyer, A.G.; Grote, R.; Arneth, A.; Ruehr, N.K. Heat Waves Alter Carbon 

Allocation and Increase Mortality of Aleppo Pine Under Dry Conditions. Front. For. Glob. Chang. 2018, 1, 8, 

doi:10.3389/ffgc.2018.00008. 

13. Anderegg, W.R.L.; Wolf, A.; Arango-Velez, A.; Choat, B.; Chmura, D.J.; Jansen, S.; Kolb, T.; Li, S.; Meinzer, 

F.C.; Pita, P.; et al. Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecol. Lett. 2018, 21, 

968–977, doi:10.1111/ele.12962. 

14. Del Castillio, J.; Voltas, J.; Ferrio, J.P. Carbon isotope discrimination, radial growth, and NDVI share 

spatiotemporal responses to precipitation in Aleppo pine. Trees Struct. Funct. 2015, 29, 223–233, 

doi:10.1007/s00468-014-1106-y. 

15. García-Ruiz, J.M.; López-Moreno, J.I.; Vicente-Serrano, S.M.; Lasanta-Martínez, T.; Beguería, S. 

Mediterranean water resources in a global change scenario. Earth-Sci. Rev. 2011, 105, 121–139, 

doi:10.1016/j.earscirev.2011.01.006. 

16. Sarris, D.; Christodoulakis, D.; Körner, C. Recent decline in precipitation and tree growth in the eastern 

Mediterranean. Glob. Chang. Biol. 2007, 13, 1187–1200, doi:10.1111/j.1365-2486.2007.01348.x. 

17. Grünwald, C.; Schiller, G. Needle xylem water potential and water saturation deficit in provenances of 

Pinus halepensis Mill. and P. brutia Ten. Forêt Méditerranéenne 1988, 10, 407–414. 

18. Michelozzi, M.; Loreto, F.; Colom, R.; Rossi, F.; Calamassi, R. Drought responses in Aleppo pine seedlings 

from two wild provenances with different climatic features. Photosynthetica 2011, 49, 564–572, 

doi:10.1007/s11099-011-0068-1. 

19. Klein, T.; Di Matteo, G.; Rotenberg, E.; Cohen, S.; Yakir, D. Differential ecophysiological response of a major 

Mediterranean pine species across a climatic gradient. Tree Physiol. 2012, 33, 26–36, 

doi:10.1093/treephys/tps116. 

20. David-Schwartz, R.; Paudel, I.; Mizrachi, M.; Delzon, S.; Cochard, H.; Lukyanov, V.; Badel, E.; Capdeville, 

G.; Shklar, G.; Cohen, S. Indirect Evidence for Genetic Differentiation in Vulnerability to Embolism in Pinus 

halepensis. Front. Plant Sci. 2016, 7, 768, doi:10.3389/fpls.2016.00768. 

21. European Soil Bureau Network—European Commission. Soil Atlas of Europe, 11th ed.; Office for Official 

Publications of the European Communities: Luxembourg, 2005; p. 128, ISBN 92-894-8120-X. 

22. Orfanoudakis, M. (Democritus University of Thrace, Nea Orestiada, Greece). Personal communication, 

2019. 

23. Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate 

classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644, doi:10.5194/hess-11-1633-2007. 

24. Dingman, S.L. Physical Hydrology, 2nd ed.; Prentice Hall: Upper Saddler River, NJ, USA, 2002. 

25. Paparrizos, S. The Effect of Climate on the Hydrological Regime of Selected Greek Areas with Different 

Climate Conditions. Ph.D. Thesis, Faculty of Environment and Natural Resources, Albert-Ludwigs-

University of Freiburg, Freiburg, Germany, 2016. 

26. Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments—

Application of the RayMan model. Int. J. Biometeorol. 2007, 51, 323–334, doi:10.1007/s00484-006-0061-8. 



Forests 2019, 10, 313 17 of 18 

 

27. Matzarakis, A.; Rutz, F.; Mayer, H. Modelling radiation fluxes in simple and complex environments: Basics 

of the RayMan model. Int. J. Biometeorol. 2010, 54, 131–139, doi:10.1007/s00484-009-0261-0. 

28. Matzarakis, A.; Mayer, H.; Schindler, D.; Fritsch, J. Simulation des Wasserhaushaltes eines Buchenwaldes 

mit dem forstlichen Wasserhaushaltsmodell WBS3. Bericht Des Meteorologischen Instituts der Universität 

Freiburg 2000, 5, 137–146. 

29. Fotelli, M.N.; Nahm, M.; Radoglou, K.; Rennenberg, H.; Matzarakis, A. Seasonal and interannual 

ecophysiological responses of beech (Fagus sylvatica) at its south-eastern distribution limit in Europe. For. 

Ecol. Manag. 2009, 257, 1157–1164, doi:10.1016/j.foreco.2008.11.026. 

30. United Nations Environment Programme (UNEP). World Atlas of Desertification; Edward Arnold: London, 

UK, 1992; p. 69, ISBN 0 340 55512 2. 

31. Paparrizos, S.; Maris, F.; Matzarakis, A. Integrated analysis and mapping of aridity over Greek areas with 

different climate conditions. Glob. NEST J. 2016, 18, 131–145. 

32. Food and Agriculture Organization (FAO). Forest Resources Assessment 1990: Tropical Countries; FAO-UN: 

Rome, Italy, 1993; ISBN 92-5-103390-0. 

33. Granier, A. A new method of sap flow measurement in tree stems. Ann. Sci. For. 1985, 42, 193–200. 

34. Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree 

Physiol. 1987, 3, 309–319, doi:10.1093/treephys/3.4.309. 

35. Do, F.; Rocheteau, A. Influence of natural temperature gradients on measurements of xylem sap flow with 

thermal dissipation probes. 1. Field observations and possible remedies. Tree Physiol. 2002, 22, 641–648, 

doi:10.1093/treephys/22.9.649. 

36. Mitsopoulos, I.D.; Dimitrakopoulos, A.P. Allometric equations for crown fuel biomass of Aleppo pine 

(Pinus halepensis Mill.) in Greece. Int. J. Wildland Fire 2007, 16, 642–647, doi:10.1071/WF06038. 

37. Martínez-Vilalta, J.; Mangirón, M.; Ogaya, R.; Sauret, M.; Serrano, L.; Peñuelas, J.; Piñol, J. Sap flow of three 

co-occurring Mediterranean woody species under varying atmospheric and soil water conditions. Tree 

Physiol. 2003, 23, 747–758, doi:10.1093/treephys/23.11.747. 

38. Phillips, N.; Oren, R. A comparison of daily representations of canopy conductance based on two 

conditional time-averaging methods and dependence of daily conductance on environmental factors. Ann. 

For. Sci. 1998, 55, 217–235, doi:10.1051/forest:19980113. 

39. Salazar-Tortosa, D.; Castro, J.; Rubio de Casas, R.; Viñegla, B.; Sánchez-Cañete, E.P.; Villar-Salvador, P. Gas 

exchange at whole plant level shows that a less conservative water use is linked to a higher performance 

in three ecologically distinct pine species. Environ. Res. Lett. 2018, 13, 045004, doi:10.1088/1748-9326/aab18f. 

40. Chang, C.Y.; Unda, F.; Zubilewich, A.; Mansfield, S.D.; Ensminger, I. Sensitivity of cold acclimation to 

elevated autumn temperature in field-grown Pinus strobus seedlings. Front. Plant Sci. 2015, 6, 165, 

doi:10.3389/fpls.2015.00165. 

41. Awada, T.; Radoglou, K.; Fotelli, M.N.; Constantinidou, H.-I.A. Ecophysiology of three Mediterranean pine 

species under contrasting light regimes. Tree Physiol. 2002, 23, 33–41, doi:10.1093/treephys/23.1.33. 

42. Pflug, E.; Brüggemann, W. Frost-acclimation of photosynthesis in overwintering Mediterranean holm oak, 

grown in Central Europe. Int. J. Plant Biol. 2012, 3, e1, doi:10.4081/pb.2012.e1. 

43. Fotelli, M.N.; Geβler, A.; Peuke, A.D.; Rennenberg, H. Drought affects the competition between Fagus 

sylvatica L. seedlings and an early successional species (Rubus fruticosus): Growth, water status and δ13C 

composition. New Phytol. 2001, 151, 427–435, doi:10.1046/j.1469-8137.2001.00186.x. 

44. Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon isotope discrimination and photosynthesis. Annu. 

Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 503–537, doi:10.1146/annurev.pp.40.060189.002443. 

45. Keitel, C.; Matzarakis, A.; Rennenberg, H.; Geßler, A. Carbon isotopic composition and oxygen isotopic 

enrichment in phloem and total leaf organic matter of European beech (Fagus sylvatica L.) along a climate 

gradient. Plant Cell Environ. 2006, 29, 1492–1507, doi:10.1111/j.1365-3040.2006.01520.x. 

46. Sánchez-Costa, E.; Poyatos, R.; Sabaté, S. Contrasting growth and water use strategies in four co-occurring 

Mediterranean tree species revealed by concurrent measurements of sap flow and stem diameter 

variations. Agric. For. Meteorol. 2015, 207, 24–37, doi:10.1016/j.agrformet.2015.03.012. 

47. Oren, R.; Phillips, N.; Ewers, B.E.; Pataki, D.E.; Megonigal, J.P. Sap- flux scaled transpiration response to 

light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest. Tree Physiol. 

1999, 19, 337–347, doi:10.1093/treephys/19.6.337. 

48. Sperry, J.S. Hydraulic constraints on plant gas exchange. Agric. For. Meteorol. 2000, 104, 13–23, 

doi:10.1016/S0168-1923(00)00144-1. 



Forests 2019, 10, 313 18 of 18 

 

49. Tognetti, R.A.; Michelozzi, M.; Giovanelli, A. Geographical variation in water relations, hydraulic 

architecture and terpene composition of Aleppo pine seedlings from Italian provenances. Tree Physiol. 1997, 

17, 271–250, doi:10.1093/treephys/17.4.241. 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


