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Abstract: Research Highlights: this study developed additive biomass equations respectively from
nonlinear regression (NLR) on original data and linear regression (LR) on a log-transformed scale by
nonlinear seemingly unrelated regression (NSUR). To choose appropriate regression form, the error
structures (additive vs. multiplicative) of compatible biomass equations were determined on the
use of the multivariate likelihood function which extended the method of likelihood analysis to the
general occasion of a contemporaneously correlated set of equations. Background and Objectives: both
NLR and LR could yield the expected predictions for allometric scaling relationship. In recent studies,
there are vigorous debates on which regression (NLR or LR) should apply. The main aim of this
paper is to analyze the error structure of a compatible system of biomass equations to choose more
appropriate regression. Materials and Methods: based on biomass data of 270 trees for three tree species,
additive biomass equations were developed respectively for NLR and LR by NSUR. Multivariate
likelihood functions were computed to determine the error structure based on the multivariate
probability density function. The anti-log correction factor which kept the additive property was
obtained separately using the arithmetic and weighted average of basic correction factors from each
equation to assess two model specifications on the comparably original scale. Results: the assumption
of additive error structure was well favored for an additive system of three species based on the joint
likelihood function. However, the error structure of each component equation calculated from the
conditional likelihood function for compatible equations might be different. The performance of
additive equations corrected by a weighted average of basic correction factor from each component
equation performed better than that of the arithmetic average and held good property of compatibility
after corrected. Conclusions: NLR provided a better fit for additive biomass equations of three tree
species. Additive equations which confirmed the responding assumption of error structure performed
better. The joint likelihood function on the use of the multivariate likelihood function could be used to
analyze the error structure of the additive system which was a result of a tradeoff for each component
equation. Based on the average of correction factors from each component equation to correct the
bias of additive equations was feasible for the hold of additive property, which might lead to a poor
correction effect for some component equation.

Keywords: additive biomass equations; error structure; multivariate likelihood function; correction
factor

1. Introduction

Allometric research characterizes the scaling relationship between various response variables and
different measures of body size, which has been dominant for many years in a variety of different
areas, such as physiology, numerical ecology, and morphology [1–3]. Kittredge (1944) [4] described
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the biomass of tree components with tree dimension variables based on an allometric equation to
quantify the tree biomass in the form of Y = aXb, where Y is tree component biomass, X is tree
dimension variable and a, b respectively represents allometric coefficient and exponent. Up to date,
thousands of biomass equations have been developed for various tree species and regions all over the
world for the purpose of accurate quantification of forest biomass dealing with carbon reduction and
climate change [5–7]. However, researchers witness a heated issue recently regarding fitting methods
which concentrate largely on the topic, linear regression on log-transformed data (hereafter, LR) with a
multiplicative error in arithmetic domain or nonlinear regression on original scale (hereafter, NLR)
with an additive error.

For decades, LR was the most commonly adopted pattern in allometric research. The conventional
practice is to fit a straight line from log-transformed data using ordinary least square and then to
back-transform the resulting equation to yield the estimate on the arithmetic scale [8–11]. Nonetheless,
the effectiveness and accuracy of applying LR have been subject to criticism mainly because of
the following aspects: (1) Back-transformation from a straight line fitted to logarithm obtained the
geometric means for prediction values instead of arithmetic means, which decreased the estimation on
the original scale using direct back-transformation [12–14]. Although this bias from anti-logarithm
could be modified by a certain form of correction factor [8,11,15], some research argued that using
anti-log correction factor might cause overestimation [16,17]. (2) While log-transformation could
stabilize the variance, it produced an insidious rotational distort for allometric equations which created
a new distribution that differed in a fundamental way from the original scale [18,19]. (3) This nonlinear
distort unduly emphasized on small values but compressed large-individual values which led to a
poor fit for the end of the curve graphically [20–22]. (4) The artificial transformation might cause
outliers undetected which made the data favorable [19,22,23]. Generally, the focus of controversy for
allometric equations fitted by LR lied in the injudicious use of log-transformation [14,22,24].

NLR, directly fitted to the original data by iteration method for allometric equations, has been
broadly used by more and more researchers because of convenient and user-friendly statistical
software [25–27]. However, heteroscedasticity of arithmetic values fitted by NLR directly is of general
occurrence which may fail to satisfy statistical assumptions [13,24]. Nonetheless, researches have
shown that heteroscedasticity of observations does not necessarily invalidate the deterministic equation
fitted by NLR [28] and even the failure of satisfying the constancy of variance, it performed better than
LR which yielded more accurate estimates on the original scale [22,29]. It was worthily noted that
a weight factor could address the problem of heteroscedasticity by generalized least square as well
as the log-transformation of LR [26]. Nonetheless, the debate on which fitting method (NLR or LR)
performs better and which error structure confirms the statistical assumption more appropriately has
not subsided.

Xiao et al. [30] and Ballantyne [31] proposed the approach of likelihood analysis to determine
the error structure (multiplicative vs. additive) for allometric equations so that the suitable fitting
procedure (LR or NLR) could be adopted. Recently, the likelihood analysis has come to be applied in
the area of forestry and ecology. Lai et al. [32] used the likelihood analysis to compare the allometry of
coarse root biomass from LR and NLR for Castanopsis eyrei (Champ. ex Benth.) Tutch., Schima superba
Gardn. et Champ., Pinus massonoana Lamb., and mixed species and concluded the empirical data
supported a multiplicative error. Ma and Jiang [33] applied the likelihood analysis to determine
the error structure of individual tree volume model for Larix gmelinii (Ruprecht) Kuzeneva. and
Pinus sylvestris Linn. var. mongolica Litv. which supported the multiplicative error, but the comparison
of model assessment indicated NLR performed better than LR. Dong et al. [34] adopted the likelihood
analysis to determine the error structure of compatible or additive biomass equations for three conifer
species in Northeast China, which favored the multiplicative error. However, the proposed approach
of determination on error structure by Xiao et al. [30] and the following application including additive
equations developed by Dong et al. [34] were all based on the one-dimension likelihood function which
was considered only appropriate for a single allometric equation. For a compatible system of several
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equations, there were significant contemporaneous correlations when it was simultaneously estimated.
Therefore, the analysis based on the one-dimension likelihood function seems to be unreasonable
when it applies to determine the error structure for additive biomass equations.

An additive system of biomass equations ensures the logically equal relationship that the
predictions for the components sum to the predictions from a total equation. To achieve the
additivity property, there are different methods to develop compatible equations. At first, the total
predictions could be obtained simply from the sum of components equations developed independently
to ensure the additivity [35–37]. Up to date, simultaneous estimation for a system of equations
widely known as seemingly unrelated regression (SUR) has been broadly used for a compatible
system of biomass equations [26,34,37,38]. Back-transformation from a straight line (LR) that fits the
logarithm to the original scale could introduce the systematic bias. To remove and reduce this bias,
researchers have computed different forms of correction factors and compared the corrected effects.
However, little information could be provided when the additive biomass equation was developed
by LR. Dong et al. [34] used the correction factor separately from each equation to correct the bias
of each component, which did not take the additivity property into account. To our knowledge, the
correction factor for additive biomass equation has not been reported, which corrects the bias from
anti-log transformation and ensures the additivity property at the same time.

Cinnamomum camphora (L.) Presl, Schima superba Gardn. et Champ. and Liquidambar formosana
Hance are widely distributed in Southeastern China and are also the dominant broad-leaved tree
species in Guangdong province. There are many differences in morphology and physiology between
broad-leaved and conifer tree species. But researches on the biomass equations centered mostly on the
conifer species while there are limited studies on broad-leaved tree species [6,27,34,39]. The purpose
of our study is (1) to develop a compatible system of biomass equations between branch, foliage,
stem wood, stem bark and total aboveground for three broad-leaved tree species separately based on
NLR and LR by SUR, (2) to compute the multivariate likelihood function for determination on the
error structure of additive biomass equations which extend the method of likelihood analysis to the
general situation of a contemporaneously correlated set of equations, (3) to formulate the correction
factor for a compatible system of biomass equations to correct the bias introduced by anti-logarithm
transformation and ensure the additivity property at the same time, (4) to compare the fitting result
of two procedures based on NLR and LR on the same arithmetic scale and evaluate the effect of
assumption for different error structures on the result of model fitting.

2. Material and Methods

2.1. Data Collection

Tree dimension variable and biomass data, including Cinnamomum camphora, Schima superba and
Liquidambar formosana covering whole Guangdong province in Southeastern China with 90 trees for
each species, were sampled in 2013 by Guangdong Forestry Survey and Planning Institute (Figure 1).
The sample trees were classified by the diameter class of 2 cm, 4 cm, 6 cm, 8 cm, 12 cm, 16 cm, 20 cm,
26 cm, 32 cm and 38 cm (above 38 cm). Among them, 60 trees were evenly distributed following above
10 diameter classes with six trees for each class and the remaining 30 trees were chosen based on the
actual distribution of diameter class and the number of trees from the 8th National Forest Inventory in
Guangdong province.

The destructive sampling procedure was processed for the living sample trees avoiding severe
defects. Before the tree was felled at the ground level height, the diameter at breast height (D, at 1.3 m
aboveground) was measured. After felled, the living crown was evenly marked into three parts (top,
middle, and bottom) and weighted separately, then the branches and leaves from each part summing to
about 500–1000 g of fresh mass was randomly sampled and placed in a labeled bag for moisture content
determination. The stem was also marked into three sections including 0–2/10, 2/10–5/10 and above
5/10 tree height and weighed separately. At each section of the stem, a 2–3 cm thick disk separately
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from the upper and lower part was cut and weighed, then taken to the laboratory for moisture content
determination. All samples were dried at 85 ◦C to constant weight. The dry biomass of each component
was calculated by multiplying the fresh weight of each component by the dry/fresh ratio of each
component sample. The total foliage biomass was the sum of foliage dry biomass. The total stem
wood biomass was the sum of all stem wood’s sections dry mass. The total stem bark biomass is the
sum of all stem bark dry mass. The aboveground biomass was the sum of branch, foliage, stem wood,
and stem bark dry biomass. The above procedure of moisture content determination was conducted
by the laboratory center of College of Forestry and Landscape Architecture, South China Agriculture
University according to the related technical regulations [40]. The data statistics were summarized for
90 sampling trees of each broad-leaved species in Table 1.Forests 2018, 9, x FOR PEER REVIEW  4 of 20 

 

 
Figure 1. The locations of trees for three broad-leaved tree species. 
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Architecture, South China Agriculture University according to the related technical regulations [40]. 
The data statistics were summarized for 90 sampling trees of each broad-leaved species in Table 1.  

Table 1. The descriptive statistics for 90 sampling trees of each broad-leaved tree species. 

Variable 
Cinnamomum camphora (L.) 

Presl 
Schima superba Gardn. et 

Champ. 
Liquidambar formosana 

Hance. 
Range Mean SD Range Mean SD Range Mean SD 

Diameter/cm 1.9–41.0 14.5 10.5 1.7–51.5 14.4 10.9 1.8–43.5 14.4 10.6 
Branch/kg 0.1–547.0 44.8 105.1 0.1–371.0 36.3 65.9 0.1–468.7 30.0 62.4 
Foliage/kg 0.1–89.8 5.8 12.5 0.1–45.7 5.7 8.7 0.1–46.4 4.6 9.6 

Stem wood/kg 0.2–519.7 62.1 100.1 0.3–570.7 69.2 110.5 0.2–569.9 81.5 127.8 
Stem bark/kg 0.1–75.5 10.5 16.1 0.1–89.0 12.6 19.5 0.1–121.6 13.1 20.5 

Aboveground/kg 0.4–1016.9 123.1 221.7 0.6–897.4 123.8 192.2 0.3–955.5 129.2 206.1 
Note: SD was standard deviation. 
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Figure 1. The locations of trees for three broad-leaved tree species.

Table 1. The descriptive statistics for 90 sampling trees of each broad-leaved tree species.

Variable
Cinnamomum camphora (L.)

Presl
Schima superba Gardn. et

Champ.
Liquidambar formosana

Hance.

Range Mean SD Range Mean SD Range Mean SD

Diameter/cm 1.9–41.0 14.5 10.5 1.7–51.5 14.4 10.9 1.8–43.5 14.4 10.6
Branch/kg 0.1–547.0 44.8 105.1 0.1–371.0 36.3 65.9 0.1–468.7 30.0 62.4
Foliage/kg 0.1–89.8 5.8 12.5 0.1–45.7 5.7 8.7 0.1–46.4 4.6 9.6

Stem wood/kg 0.2–519.7 62.1 100.1 0.3–570.7 69.2 110.5 0.2–569.9 81.5 127.8
Stem bark/kg 0.1–75.5 10.5 16.1 0.1–89.0 12.6 19.5 0.1–121.6 13.1 20.5

Aboveground/kg 0.4–1016.9 123.1 221.7 0.6–897.4 123.8 192.2 0.3–955.5 129.2 206.1

Note: SD was standard deviation.

2.2. Model Specification and Estimation

To fit the allometric equation, either NLR on the arithmetic scale or LR on the logarithmic scale
could yield the estimation values. The fundamentally substantial difference between these two
approaches largely relies on the assumption of how error term manifests in the equation, which is
known as the error structure (Xiao et al., 2011) [30]. NLR assumes the equation with the normally
additive error on the arithmetic scale such that:

Y = axb + ε, ε ∼ N
(

0, σ2
)

(1)

In contrast, LR assumes that the error is normally distributed and additive on the logarithmic
scale such that:

logY = loga + blogx + ε, ε ∼ N
(

0, σ2
)

(2)
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which corresponds to log-normally distributed, multiplicative error on the arithmetic scale,

Y = axb × exp(ε), ε ∼ N
(

0, σ2
)

(3)

To determine which model specification was the most appropriate for a compatible system of
biomass equations for three broad-leaved tree species in this study, two model forms that correlated
with additivity among four component biomass equations and total aboveground biomass equation
were specified as follows with cross-equation constraints on the structural parameters:

(1) The first model specification assumes the error structure is additive (Equation (1)) and a
compatible system of five biomass equations as follows:

WBR = a1·Db1 + ε1

WFL = a2·Db2 + ε2

WSW = a3·Db3 + ε3

WSB = a4·Db4 + ε4

WAB = a1·Db1 + a2·Db2 + a3·Db3 + a4·Db4 + ε5

(4)

(2) The second model specification assumes the error structure is multiplicative on the arithmetic
scale (Equation (3)) and logarithmic transformation was taken on both sides of equations (Equation (2))
such that

logWBR = loga1 + b1logD + ε′1
logWFL = loga2 + b2logD + ε′2
logWSW = loga3 + b3logD + ε′3
logWSB = loga4 + b4logD + ε′4

logWAB = log
(

a1·Db1 + a2·Db2 + a3·Db3 + a4·Db4
)
+ ε′5

(5)

where WBR, WFL, WSW , WSB and WAB represent branch biomass, foliage biomass, stem wood biomass,
stem bark biomass and the aboveground biomass in kg, respectively, D is the diameter at breast height
in cm, log denotes natural logarithm, ai and bi are regression coefficient for Equation (4), log ai is the
intercept and bi is the regression coefficient for Equation (5), εi and ε′i are the equation error terms for
NLR and LR additive model, respectively.

Above two model specifications for additive biomass equations were estimated using nonlinear
seemingly unrelated regression generally known as NSUR. The logarithmic transformation tends to
balance the heteroscedastic variance. For comparison, Equation (4) was fitted to data using weighted
NSUR as demonstrated by Parresol (2001) [26] to stabilize the variance. The weight of each component

equation was obtained by the weight function w =
√

f (D)−1, where f (D) was the prediction value
for estimated equation [26,41,42].

2.3. Multivariate Likelihood Function to Analyze Error Structure

Xiao et al. [30] outlined the approach of likelihood analysis to facilitate the objective determination
of the error structure based on the single one-dimension likelihood function. When applied to the
additive biomass model with cross-equation correlation, it seems. Considering that, in this study,
we computed the multivariate likelihood function including the joint likelihood function and the
conditional likelihood function to respectively analyze model system and each component equation
for the correlated error structure of additive biomass equations. Based on the joint probability density
function, the joint likelihood function can be calculated by:

(1) For the p components system of NLR (Equation (4)), the joint likelihood function that the
data are generated from a normal distribution with additive error is calculated as follows:

L(p)
NLR = ∏ n

j=1

[
1

(2π)p/2|ΣNLR|1/2 exp [−1
2
(wij·(Yij − aNLRXbNLR

ij ))
′
ΣNLR

−1(wij·(Yij − aNLRXbNLR
ij ))]

]
(6)



Forests 2019, 10, 298 6 of 20

(2) For the p components system of LR (Equation (5)), the joint likelihood function that the data
are generated from a lognormal distribution with multiplicative error on the arithmetic scale:

L(p)
LR = ∏ n

j=1

[
1

yi·(2π)p/2|ΣLR|1/2 exp [−1
2
(log Yij − log(aLRXbLR

ij ))
′
ΣLR

−1(log Yij − log(aLRXbLR
ij ))]

]
(7)

where L(p)
NLR, L(p)

LR are the joint likelihood function of NLR and LR for p component equations,
respectively. Where n is the sample size. Xij, Yij (i = 1, . . . , p; j = 1, . . . , n) are the jth value for
predictor and response variable of the ith component equation, respectively. ΣNLR, ΣLR are the
error variance-covariance matrix of NLR and LR, respectively. |ΣNLR|, |ΣLR| are the determinant of
responding matrix respectively, wij is the weight of the jth predicted value of the ith component
equation. aNLR, bNLR, bNLR and bLR are the responding regression coefficient for NLR and
LR, respectively.

According to the definition of conditional distribution for the multivariate probability density
function [43], the conditional likelihood function for ith component equation can be defined as follows:

LNLR

(
L(i)

NLR

∣∣∣L(p−i)
NLR

)
= L(p)

NLR/L(p−i)
NLR (8)

LLR

(
L(i)

LR|L
(p−i)
LR

)
= L(p)

LR /L(p−i)
LR (9)

where LNLR

(
L(i)

NLR

∣∣∣L(p−i)
NLR

)
, LLR

(
L(i)

LR|L
(p−i)
LR

)
is the conditional likelihood function for ith component

equation of NLR and LR respectively, L(i)
NLR, L(i)

LR is the likelihood function for ith component equation

of NLR and LR respectively. L(p−i)
NLR , L(p−i)

LR is the value of the joint likelihood function calculated from
(p − i) components without the use of ith component equation for NLR and LR, respectively.

To compare different candidate models fitted to the same dataset statistically, Akaikes’s
Information Criterion (AIC) can be used to evaluate the goodness-of-fit of a model by involving both
the likelihood and a penalty for extra parameters. The lowest value for AIC identifies the candidate
model conveying the most information about the relationship between predictor and response. AICc

which is a second-order variant of AIC for small sample size is computed as

AICc = 2k− 2logL +
2k(k + 1)
n− k− 1

(10)

where k is the number of parameters. L is the joint likelihood function for the model system (Equation (6)
for NLR and Equation (7) for LR) or the conditional likelihood function for each component equation
(Equation (8) for NLR and Equation (9) for LR). If AICc−norm − AICc−logn < −2, the assumption
of additive error is favored and the result from Equation (4) should be processed. If AICc−norm −
AICc−logn > 2, the assumption of multiplicative error is favored and the result from Equation (5)

should be processed [44]. If
∣∣∣AICc−norm − AICc−logn

∣∣∣ ≤ 2, neither of these two error structures is
appropriate and model averaging is suggested. Besides the difference of AIC respectively from
NLR and LR, evidence ratio (ER) (see Appendix A) was also taken to provide the evidence for the
appropriate model selection [44].

2.4. Back-Transformed Correction Factor for Additive Equations

To obtain the arithmetic value of prediction, a correction factor (hereafter, CF) is commonly used
to correct the systematic bias introduce by anti-log transformation from a straight line (Equation (2))
fitted to logarithmic data. For the additively log-transformed biomass equations (Equation (5)), not
only the systematic bias should be corrected, but also the additivity property of the value of prediction
from back-transformation need to be satisfied. Thus, based on the basic CF, we formulated the specific
correction factor for a compatible system of biomass equations. The two basic CFs for ith component
can be calculated as follows [8,15]:



Forests 2019, 10, 298 7 of 20

CFi1 = exp
(

δ2
ii/2

)
(11)

CFi2 = ∑ n
j=1yij/ ∑ n

j=1ŷij (12)

where δ2
ii is the ith diagonal element of the error variance-covariance matrix, yij is the jth observed

value for ith component, ŷij is the predicted value of the jth observed value for ith component. Then,
the arithmetic and weighted average CF for the compatible system can be respectively obtained by

CFat =
1
p ∑ p

i=1CFit t = 1, 2 (13)

CFwt =
1
2 ∑ p

i=1Wi·CFit t = 1, 2 (14)

where CFat, CFwt are the arithmetic and weighted average of the tth (t = 1, 2) basic correction factor
from each component equation, respectively. CFit is the tth (t = 1, 2) basic correction factor for ith
component equation, Wi is the proportion of the ith component biomass accounted for the total
aboveground biomass.

2.5. Model Assessment

This study used the entire empirical data to fit additive biomass equations [45]. Model fitting and
predicting was assessed by the statistics as follows.

Coefficient of determination

R2 = 1−∑ n
j=1
(
yj − ŷj

)2/ ∑ n
j=1
(
yj − y

)2 (15)

Standard error of estimate

SEE =

√
1

n− k ∑ n
j=1

(
yj − ŷj

)2 (16)

Total relative error

TRE =
n

∑
j=1

(
yj − ŷj

)
/

n

∑
j=1

ŷj × 100% (17)

Average system error

ASE =
1
n

n

∑
j=1

[(
yj − ŷj

)
/ŷj
]
× 100% (18)

Relatively mean absolute error

RMA =
1
n

n

∑
j=1

∣∣(yj − ŷj
)
/ŷj
∣∣× 100% (19)

Mean prediction error
MPE = tα·(SEE/y)/

√
n× 100% (20)

where yj, ŷj are the jth observed value and the responding predicted value, y is the average of the
observed value, k is the number of parameters, tα is the t value when the confidence level is α (usually
taken by 95%).

To ensure that the estimated mean function captures dominant pattern in the arithmetic scale, the
fitted model not only needs to be assessed by several statistics but also should be validated graphically,
which was a critically important oversight by many researchers [23,46]. In this study, the additive
biomass equations based on different assumptions of error structure (additive vs. multiplicative) were
validated graphically.
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3. Result

3.1. Error Structure for Each Component Equation and Additive System

Additive biomass equations were fitted to original and log-transformed data, respectively
(Equation (4) and Equation (5)), to yield the parameter estimation value, then calculated the AICc,
respectively, namely AICc-norm for Equation (4) and AICc-logn for Equation (5) based on the conditional
likelihood function from the conditional probability density function. The difference between AICc

value and parameter estimate were computed in Table 2. The AICc-norm for Schima superba and
Liquidambar formosana was clearly lower than AICc-logn with a difference between −731.2 and −221.5
supporting the additive error for each component equation. But there existed different error structures
for each component equation of Cinnamomum camphora. The AICc-norm for branch and foliage was
larger than AICc-logn favoring the multiplicative error structure with a difference of 38.3 and 263.2
while for other component equation, the AICc-norm was lower than AICc-logn with a difference between
−105.9 and −15.9 favoring the additive error structure. Components for two other tree species had a
large ER (evidence ratio) more than 100 supporting the additive error as well, while the branch and
foliage for Cinnamomum camphora had a smaller ER less than 0.01 supporting the multiplicative error
as well.

Table 2. Results of parameter estimate and likelihood analysis based on conditional.

Species Component ∆AICc ER
LR NLR

a b AICc-logn a b AICc-norm

Cinnamomum
camphora

Branch 38.3 <<10−2 0.01231
(0.00218)

2.74507
(0.06317) 357.8 0.01213

(0.00197)
2.75077

(0.05655) 396.1

Foliage 263.2 <<10−2 0.01429
(0.00356)

2.04953
(0.09561) 228.3 0.01360

(0.00246)
2.09921

(0.07636) 491.5

Stem wood −55.5 >>102 0.07100
(0.00741)

2.26782
(0.03982) 350.8 0.08086

(0.02089)
2.26358

(0.07766) 295.3

Stem bark −15.9 >>102 0.02016
(0.00307)

2.0898
(0.05842) 216.5 0.03274

(0.01061)
1.99888

(0.09682) 200.6

Aboveground −105.6 >>102 — — 396.1 — — 290.5

Schima superba

Branch −495.5 >>102 0.03682
(0.00596)

2.37522
(0.06300) 340.0 0.05756

(0.01954)
2.18189

(0.10335) −155.5

Foliage −263.2 >>102 0.07793
(0.01242)

1.44971
(0.07602) 276.3 0.04990

(0.01759)
1.66296

(0.11131) 13.1

Stem wood −530.9 >>102 0.08755
(0.00892)

2.24571
(0.04176) 317.8 0.14024

(0.02612)
2.13536

(0.05512) −213.1

Stem bark −311.7 >>102 0.02301
(0.00295)

2.13066
(0.05245) 253.0 0.04092

(0.01291)
1.9895

(0.09415) −58.7

Aboveground −617.1 >>102 — — 364.8 — — −252.3

Liquidambar
formosana

Branch −595.5 >>102 0.01603
(0.00312)

2.51909
(0.07487) 357.3 0.01702

(0.00551)
2.51466

(0.10100) −238.2

Foliage −221.5 >>102 0.00385
(0.00117)

2.26453
(0.12098) 167.8 0.00475

(0.00219)
2.33859

(0.13845) −53.7

Stem wood −670.7 >>102 0.08077
(0.00991)

2.33577
(0.04822) 347.8 0.09299

(0.01878)
2.30736

(0.06021) −322.9

Stem bark −401.6 >>102 0.02048
(0.00310)

2.19051
(0.05960) 238.5 0.02329

(0.00480)
2.17340

(0.06284) −163.1

Aboveground −731.2 >>102 — — 379.6 — — −351.6

Note: Values in parentheses are the standard error of the mean. ∆AICc = AICc−norm −AICc−logn. AICc−norm was
AIC value calculated from the nonlinear regression model and AICc−logn was AIC value calculated from the linear
regression model. NLR and LR represents the nonlinear and linear regression respectively. ER represents the
evidence ratio. The symbol “<<” and “>>” denotes far less than and far greater than.

The joint likelihood function was calculated for the whole model system based on the joint
probability density function. The analysis of error structure for additive model system was shown
in Table 3. The AICc-norm for three tree species was all lower than AICc-logn with a difference of −7.0,
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−810.2 and −846.7 and got relatively large ER as well, supporting the additive error, which meant
that the approach of NLR for additive biomass equations was appropriate for three broad-leaved tree
species, especially for Schima superba and Liquidambar formosana in this study.

Table 3. Results of likelihood analysis based on the joint likelihood function for additive system of
three tree species.

Species ∆AICc ER
LR NLR

logLLR AICc-logn logLNLR AICc-norm

Cinnamomum camphora −7.0 33 −961.8 1941.3 −958.3 1934.3
Schima superba −810.2 >>102 −1018.0 2053.8 −612.9 1243.6

Liquidambar formosana −846.7 >>102 −952.4 1922.6 −529.1 1075.9

3.2. Assessment of Anti-Log Correction Factor for Additive System

Log-transformed equation predicts the logarithm of the response variable. To obtain the unbiased
value in the original scale, the anti-log correction factor is necessary. The arithmetic and weighted
average (CFat and CFwt) of basic correction factors from each equation as well as responding evaluation
statistics for total aboveground biomass was listed in Table 4. The arithmetic average of basic CF from
each component equation was represented by CFat (t = 1, 2) and the weighted average of basic CF
from each component equation was represented by CFwt (t = 1, 2). CF0 represented the model was
not corrected.

Table 4. Evaluation statistics of aboveground biomass applying different correction factors for three
tree species.

Species Model Basic
CF

Additive
Model CF

CF
Value R2 SEE TRE ASE RMA MPE

Cinnamomum
camphora

NLR - - - 0.897 73.14 1.36 −5.52 17.92 10.22

LR

CF0 - 1.00000 0.880 78.91 9.62 4.38 19.35 11.02

CF1
CFa1 1.13975 0.905 70.25 −3.82 −8.42 18.17 9.81
CFW1 1.07544 0.898 72.84 1.93 −2.94 17.83 10.18

CF2
CFa2 1.11111 0.903 71.08 −1.35 −6.06 17.82 9.93
CFW2 1.09824 0.901 71.63 −0.19 −4.96 17.76 10.01

Schima superba

NLR - - - 0.903 60.32 0.92 −6.65 21.71 8.54

LR

CF0 - 1.00000 0.890 64.15 2.61 5.72 21.61 9.08

CF1
CFa1 1.12639 0.849 75.06 −8.90 −6.15 19.86 10.63
CFW1 1.06502 0.875 68.42 −3.65 −0.74 20.05 9.69

CF2
CFa2 1.08285 0.868 70.11 −5.24 −2.37 19.88 9.93
CFW2 1.03248 0.884 65.88 −0.62 2.39 20.68 9.33

Liquidambar
formosana

NLR - - - 0.933 53.85 0.23 −2.77 19.79 7.31

LR

CF0 - 1.00000 0.929 55.42 6.54 5.30 21.05 7.52

CF1
CFa1 1.17647 0.915 60.36 −9.44 −10.5 20.32 8.19
CFW1 1.08010 0.932 54.18 −1.36 −2.51 19.67 7.36

CF2
CFa2 1.16312 0.919 59.06 −8.40 −9.47 20.12 8.02
CFW2 1.06842 0.932 53.99 −0.28 −1.45 19.71 7.33

Note: CF is correction factor. SEE is standard error of estimate (see Equation (16)). TRE is total relative error
(see Equation (17)). ASE is average system error (see Equation (18)). RMA is relatively mean absolute error (see
Equation (19)). MPE is mean prediction error (see Equation (20)).

The uncorrected model performed worse with a lower R2, larger standard error of estimate
(SEE, hereafter) and mean prediction error (MPE, hereafter) than that of NLR for three tree species.
Thus, NLR model could yield relatively better prediction compared to the uncorrected LR model.
After applying the CF for Cinnamomum camphora, R2 of LR model improved by 0.018 to 0.025, SEE
decreased by 6.07 kg to 8.66 kg and total relative error (TRE, hereafter), Relatively mean absolute
error (RMA, hereafter) and MPE dropped in varying degrees. Importantly, R2 and SEE might not be
the best with CFw2, but the remaining statistics including TRE, average system error (ASE, hereafter),



Forests 2019, 10, 298 10 of 20

RMA, and MPE were even better than NLR. LR model for Schima superba obtained worse fitting and
predicting accuracy when it was corrected with R2 decreasing by 0.006 to 0.041 and SEE increasing
by 1.73 kg to 10.91 kg, but among the different four CFs, the correction effect for CFw2 was relatively
better than that of other correction factors, and TRE, ASE and RMA statistics was better than that of
NLR model. The different assessment statistics of corrected LR model got dropped and increased to
different degrees for Liquidambar formosana. Using CFw2 increased the R2 by 0.003, dropped the SEE by
1.43 kg compared with LR0, and the ASE and RMA statistics was better than NLR model, but in terms
of R2 and SEE statistics, it was slightly worse than NLR model.

CFwt (t = 1, 2) corrected better for Schima superba and Liquidambar formosana especially the CF based
on secondly basic correction factor (Equation (12)), that is CFw2. Although CFat could yield higher R2,
TRE and ASE got relatively larger and reached −3.82%, −1.35% and −8.42%, −6.06%, respectively.
Generally speaking, the value of CFwt was larger than that of CFat. The approach of weighted average
apparently reduced TRE and ASE for additive biomass equations. Taking Liquidambar formosana as an
example, based on two basic CFs using the approach of weighted average, TRE reduced by 8.08% and
8.12% while ASE reduced 7.99% and 8.02%. As far as all the evaluation statistics, CFw2 corrected best
for aboveground biomass of additive equations for three broad-leaved tree species. When CFw2 for
additive system was used, it did not perform better than NLR model except Cinnamomum camphora
which is slightly better than NLR, but the difference between NLR and corrected LR model was small
for three tree species total aboveground biomass.

3.3. Comparison of Model Fitting and Error Structure

Major violation indicated the inappropriateness of the model and potential invalidity of the result.
To assess the correction effect of CFw2 for each component, the result of evaluation statistics was listed
in Table 5. LR0 represented the uncorrected model and LRw2 represented the corrected model by CFw2.
For Schima superba and Liquidambar formosana, the NLR model of each component including the total
aboveground biomass obtained better estimation supporting the additive error which was consistent
with the determination (Tables 2 and 3). For Cinnamomum camphora, the NLR model for stem wood
and stem bark yielded relatively better prediction with higher R2 and small SEE, TRE, RMA and MPE,
favoring the additive error which was consistent with the determination (Table 2). Nonetheless, for the
branch, R2 for LRw2 model was slightly higher than NLR, but it got the worst TRE and ASE, while
NLR model performed better for foliage component. In addition, the LR model for total aboveground
biomass corrected by CFw2 got a relatively better fitting result (Table 4) favoring the multiplicative
error which was slightly inconsistent with the determination (Table 2). It could be seen that the error
structure of component equation for Cinnamomum camphora was different and this would be discussed
later in detail.

Observed values of biomass components together with the fitted curve were plotted against
diameter at the breast for three tree species, respectively (Figures 2–4). All models showed a good fit to
the small untransformed observations. There was no visually apparent difference between LR0 and
LRw2 model for three tree species. Except for Schima superba branch and foliage as well as Liquidambar
formosana foliage, the fitted curve from three model curves showed a close path following the path
of data. Nonetheless, most NLR models estimated slightly larger than LR0 model especially for a
large diameter and the larger the diameter was, the clearer this pattern exhibited. The mean function
from NLR model could capture a relatively dominant pattern, which followed the path of the data,
especially for the larger individual. The additive error structure for a compatible system was fairly
more appropriate graphically to formulate the model specification and fit on the original scale which
was consistent with the determination in Table 3.
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Table 5. Evaluation statistics for each component equation from nonlinear model (NLR), uncorrected
linear model (LR0) and linear model corrected by CFw2 (LRw2) for three tree species.

Tree Species Component Model R2 SEE TRE ASE RMA MPE

Cinnamomum
camphora

Branch
NLR 0.782 51.65 1.63 −2.39 41.70 19.18
LR0 0.780 51.87 2.09 −2.56 41.58 19.26

LRw2 0.799 49.59 −7.05 −11.27 40.65 18.42

Foliage
NLR 0.580 8.17 −3.93 −5.78 46.85 24.91
LR0 0.554 8.42 7.43 0.81 47.73 25.68

LRw2 0.572 8.25 −2.18 −8.21 46.31 25.16

Stem wood
NLR 0.875 35.62 1.74 −3.10 22.47 10.07
LR0 0.854 38.49 14.26 9.22 24.65 10.88

LRw2 0.873 35.88 4.04 −0.55 22.57 10.14

Stem bark
NLR 0.848 6.31 1.01 −10.54 30.03 10.52
LR0 0.806 7.12 22.16 16.03 35.55 11.88

LRw2 0.836 6.54 11.23 5.65 30.32 10.91

Schima superba

Branch
NLR 0.636 39.95 7.21 −5.25 36.42 19.31
LR0 0.533 45.25 −12.14 −6.66 34.24 21.87

LRw2 0.508 46.44 −14.9 −9.60 33.93 22.45

Foliage
NLR 0.655 5.16 5.16 0.50 51.07 15.84
LR0 0.560 5.82 31.52 8.77 56.98 17.86

LRw2 0.574 5.73 27.38 5.35 55.95 17.59

Stem wood
NLR 0.908 33.73 −2.07 −7.79 25.34 8.55
LR0 0.905 34.27 8.76 13.03 27.09 8.68

LRw2 0.906 34.00 5.34 9.47 25.69 8.61

Stem bark
NLR 0.813 8.49 −1.04 −10.28 28.60 11.79
LR0 0.804 8.68 10.67 13.08 30.54 12.05

LRw2 0.805 8.67 7.19 9.52 29.12 12.04

Liquidambar
formosana

Branch
NLR 0.609 39.22 0.87 −2.37 37.89 22.94
LR0 0.607 39.31 5.52 2.58 38.84 22.99

LRw2 0.608 39.24 −1.23 −3.99 37.68 22.95

Foliage
NLR 0.597 6.14 −0.39 7.03 68.27 23.45
LR0 0.468 7.05 56.97 56.25 94.13 26.93

LRw2 0.494 6.88 46.92 46.25 88.25 26.28

Stem wood
NLR 0.932 33.4 0.05 −3.41 21.59 7.19
LR0 0.931 33.81 4.84 3.83 23.20 7.28

LRw2 0.931 33.86 −1.87 −2.82 21.64 7.29

Stem bark
NLR 0.909 6.20 0.17 −1.53 27.97 8.28
LR0 0.902 6.46 7.69 7.46 30.34 8.63

LRw2 0.910 6.19 0.79 0.57 28.46 8.27
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Figure 2. The curve fitted from nonlinear regression (NLR), uncorrected linear regression (LR0) and 
corrected linear regression based on the weighted average of secondly basic correction factor from 
each component equation that is CFw2 ((LRw2) for Cinnamomum camphora (Cinnamomum camphora (L.) 
Presl). The scattered points were the observations from data. (A)–(D) represented branch, foliage, 
stem wood, and stem bark, respectively. The solid line represented the nonlinear regression model 
(NLR), the dashed line represented the uncorrected linear regression model (LR0) and the dotted line 
represented the corrected linear regression based on the weighted average of secondly basic 
correction factor from each component equation that is CFw2 (LRw2). 

Figure 2. The curve fitted from nonlinear regression (NLR), uncorrected linear regression (LR0) and
corrected linear regression based on the weighted average of secondly basic correction factor from each
component equation that is CFw2 ((LRw2) for Cinnamomum camphora (Cinnamomum camphora (L.) Presl).
The scattered points were the observations from data. (A–D) represented branch, foliage, stem wood,
and stem bark, respectively. The solid line represented the nonlinear regression model (NLR), the
dashed line represented the uncorrected linear regression model (LR0) and the dotted line represented
the corrected linear regression based on the weighted average of secondly basic correction factor from
each component equation that is CFw2 (LRw2).
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Figure 3. The curve fitted from nonlinear regression (NLR), uncorrected linear regression (LR0) and 
corrected linear regression based on the weighted average of secondly basic correction factor from 
each component equation that is CFw2 ((LRw2) for Schima superba (Schima superba Gardn. et Champ.). 
The scattered points were the observations from data. (A)–(D) represented branch, foliage, stem 
wood, and stem bark, respectively. The solid line represented the nonlinear regression model (NLR), 
the dashed line represented the uncorrected linear regression model (LR0) and the dotted line 
represented the corrected linear regression based on the weighted average of secondly basic 
correction factor from each component equation that is CFw2 (LRw2). 

Figure 3. The curve fitted from nonlinear regression (NLR), uncorrected linear regression (LR0) and
corrected linear regression based on the weighted average of secondly basic correction factor from
each component equation that is CFw2 ((LRw2) for Schima superba (Schima superba Gardn. et Champ.).
The scattered points were the observations from data. (A–D) represented branch, foliage, stem wood,
and stem bark, respectively. The solid line represented the nonlinear regression model (NLR), the
dashed line represented the uncorrected linear regression model (LR0) and the dotted line represented
the corrected linear regression based on the weighted average of secondly basic correction factor from
each component equation that is CFw2 (LRw2).
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Figure 4. The curve fitted from nonlinear regression (NLR)、uncorrected linear regression (LR0) and 
corrected linear regression based on the weighted average of secondly basic correction factor from 
each component equation that is CFw2 ((LRw2) for Liquidambar formosana (Liquidambar formosana Hance). 
The scattered points were the observations from data. (A)–(D) represented branch, foliage, stem 
wood, and stem bark, respectively. The solid line represented the nonlinear regression model (NLR), 
the dashed line represented the uncorrected linear regression model (LR0) and the dotted line 
represented the corrected linear regression based on the weighted average of secondly basic 
correction factor from each component equation that is CFw2 (LRw2). 

4. Discussion 

The one−dimension likelihood function was derived from univariate normal distribution and 
solved the estimate issue of a single function called maximum likelihood estimates (MLE), which was 
used later to determine the error structure of allometric equation by Xiao et al. (2011) [30] and 
Ballantyne (2013) [31]. In this study, each equation of a compatible system of additive equations was 
estimated simultaneously to ensure the significantly contemporaneous correlations by NSUR. 
However, the one-dimension likelihood function only considered the single variate but ignored the 
correlations of multiple variates in the additive equations, which might be inappropriate to determine 
the error structure of additive equations. In contrast, the multivariate likelihood function took the 
relationships of multiple variates into account and reflected the multivariate error distribution for 
additive equations more accurately. 

This study computed the joint and conditional multivariate likelihood function for additive 
biomass equation of three broad-leaved tree species respectively based on the joint and conditional 
probability density function to analyze the error structure (additive vs. multiplicative) of each 
component equation and model system. The model satisfying the responding error structure fitted 
better and major violation indicated the inappropriateness of the model and potential invalidity of 
the result. The NLR model for Schima superba and Liquidambar formosana indeed yielded better 
estimation than uncorrected and corrected LR model statistically and graphically, which verified our 
determination on additive error structure properly in this study. However, for Cinnamomum 

Figure 4. The curve fitted from nonlinear regression (NLR), uncorrected linear regression (LR0) and
corrected linear regression based on the weighted average of secondly basic correction factor from
each component equation that is CFw2 ((LRw2) for Liquidambar formosana (Liquidambar formosana Hance).
The scattered points were the observations from data. (A–D) represented branch, foliage, stem wood,
and stem bark, respectively. The solid line represented the nonlinear regression model (NLR), the
dashed line represented the uncorrected linear regression model (LR0) and the dotted line represented
the corrected linear regression based on the weighted average of secondly basic correction factor from
each component equation that is CFw2 (LRw2).

4. Discussion

The one-dimension likelihood function was derived from univariate normal distribution and
solved the estimate issue of a single function called maximum likelihood estimates (MLE), which
was used later to determine the error structure of allometric equation by Xiao et al. (2011) [30] and
Ballantyne (2013) [31]. In this study, each equation of a compatible system of additive equations
was estimated simultaneously to ensure the significantly contemporaneous correlations by NSUR.
However, the one-dimension likelihood function only considered the single variate but ignored the
correlations of multiple variates in the additive equations, which might be inappropriate to determine
the error structure of additive equations. In contrast, the multivariate likelihood function took the
relationships of multiple variates into account and reflected the multivariate error distribution for
additive equations more accurately.

This study computed the joint and conditional multivariate likelihood function for additive
biomass equation of three broad-leaved tree species respectively based on the joint and conditional
probability density function to analyze the error structure (additive vs. multiplicative) of each
component equation and model system. The model satisfying the responding error structure fitted
better and major violation indicated the inappropriateness of the model and potential invalidity
of the result. The NLR model for Schima superba and Liquidambar formosana indeed yielded better
estimation than uncorrected and corrected LR model statistically and graphically, which verified our
determination on additive error structure properly in this study. However, for Cinnamomum camphora,
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the corrected model of total aboveground obtained more accurate estimated value than NLR, especially
the total aboveground model corrected by CFw2 which had six evaluation statistics relatively better
than that of NLR while for the foliage component the NLR model performed better. It indicated that
the error of total equation might be the additive, but the error of components was not necessarily the
same. This is mainly due to the different error structures for each component equation determined
by the conditional likelihood function (see Table 2), but either NLR or LR could be taken to estimate
additive biomass equations. Nonetheless, to hold the property of compatibility for each component
NSUR compromised the error among component equations [26,37]. The error structure for additive
system based on the joint likelihood function was the result of a tradeoff for component equations
and might cause the inconsistence of error structure between additive system and each component
equation, leading to the determination on error structure and model assessment for aboveground and
foliage component was inconsistent just like Cinnamomum camphora in this study.

Likelihood analysis based on AIC provided a method for analyzing the error structure to
determine more appropriate regression (NLR or LR) especially for a compatible system of biomass
equations [30]. Nonetheless, using AIC as a direct indicator to compare candidate regression equations
(NLR or LR) has been criticized by some researchers [46]. Through the graphical validation of NLR and
LR equation, Packard (2013) thought that AIC was not a sufficient way to choose alternative statistical
models between NLR and LR regression. In addition, some researchers thought the individual AIC,
AICc, or BIC values were not interpretable in absolute terms as they contain arbitrary constants and
are much affected by sample size [46]. Evidence ratio rescaled these information criteria and was good
evidence to compare candidate models, which overcame the shortcomings of direct comparison from
AIC. It is noteworthy that the larger the difference between AIC, the larger the evidence ratio. Evidence
ratio might be more appropriate to compare the model which had a close AIC that could not be directly
differentiated in absolute terms. Moreover, as Packard (2014) [23] said, the good fit must capture the
dominant pattern in the untransformed data, Figures 2–4 in this study clearly indicate that the lower
the AIC of an equation, the better the capture of pattern in all range of data. When considering the
candidate equation, statistic test might not be enough to assess the appropriateness of fit and several
criteria, as well as graphical validation, were quite necessary.

Both log-transformation for LR model and weighted estimation for NLR model can stabilize the
heteroscedasticity and make the constant of variance. However, the log-transformation was thought to
create a newly logarithmic scale to estimate parameters [10,14]. Thus, the value of back-transformed
prediction would not reflect the real relationship and relied largely on which variance of each response
value changed on the arithmetic scale [19,21]. In our study, it is noted that the uncorrected model LR0

substantially underestimated the predicted value, especially for large observed value (TRE much larger
than zero and the curve was lower than others). When the log-transformed observed value did not fall
on the real linear curve, it is easy to understand from log function curve that the back-transformed
linear model put much weight on the predicted value for a small individual and compressed the
predicted value for a large individual. This nonlinear transformation caused an accurate estimation for
the small value and a poor estimation for the large estimation on an arithmetic scale.

To obtain the accurate predicted value closer to the arithmetic scale, a correction factor is necessary
to correct the systemic bias introduced by log-transformation [8,10,13], but the compatible property of
each component value summing to the total value is also needed for the additive system. Based on the
two basic CFs, the arithmetic and weighted average from each component equation were computed
in this study. The first basic CF (Equation (11)) has been the most used CF from the log-normal
function but only satisfying the assumptions strictly, can it yield perfect correction effect [8]. Because of
overcompensating the bias with the standard error of estimate, it might cause an overestimate [16,17].
The second basic CF is independent on the model distribution and corrects the bias from the observed
and predicted value, which might cause the value to be lower than 1.0 [11,15]. Using second basic CF
to formulate the systemic correct factor for additive biomass equations performed better in this study,
which was consistent with the result proposed by Snowdon in 1991 [15]. In addition, weighted average
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applied the proportion of each component accounting for the total as a weight to calculate the CF,
which considered the relationship among components. Thus, it could obtain a better correction effect
compared with that of the arithmetic average in this study. But because the CF for the additive system
was calculated from the average of each component, it might lead to a poor correction effect for some
specific components. For example, the fitting effect got worse when it was corrected for Schima superba
branch and the total aboveground.

NLR has become a commonly used approach with a feature of inexpensive, user-friendly software
in allometric studies. So, does it imply NLR perform better definitely than LR model and does it mean
the conventionally log-transformed model is unnecessary [13,19,24]? This debate on NLR (additive
error) or LR (multiplicative error) model which one is better suited for allomeric research has never
subsided. Because of the unbalanced weight put on the predicted value on the original scale for LR
model and better fitting of a large value for NLR model, it is suggested that the LR model might be
appropriate for small individuals, such as young forests, while NLR model might be appropriate for
large individuals, such as mature forests. However, to choose a better model, both statistical analysis
and graphical validation for the real empirical data are needed. This research provided a statistical
analysis of the determination on the error structure for additive biomass equations. For a compatible
model system, especially when the error structures of component equations were analyzed differently,
describing the error structure accurately and improving the fitting accuracy could be an interesting
research area in the future.

5. Conclusions

In this study, we developed the multivariate likelihood function to analyze the error structure for
additive biomass equations of three broad-leaved tree species, which extended the likelihood function
proposed by Xiao [30] and Ballantyne [31] to the general occasion of a contemporaneously correlated set
of equations. To compare NLR and LR on the original scale, the correction factors specific for additive
equations were developed by the arithmetic and weighted average of two basic corrections from each
component equation to hold additive property. The main conclusion could be that: (1) the multivariate
likelihood function could be used to analyze the error structure of additive biomass equations and the
result of model assessment confirmed our determination. The conditional likelihood function could
be used for component equations. The joint likelihood function could be used for additive system.
The determination on error structure was a result of tradeoff for additive biomass equations and the
error for total equation might be the additive but the error for components was not necessarily the
same, (2) the correction factors developed in this study could yield a good effect of correction especially
for the approach of weighted average based on the second CF (Equation (12)) which could be used
for additive equations to hold the compatible property after corrected, (3) the additive equations
confirming the responding error structure got more fitting accuracy while violating the responding
assumption caused the accuracy loss. In this study, NLR got relatively better goodness-of-fit for the
additive biomass equations of three broad-leaved tree species.
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Appendix A

Appendix A.1. Multivariate Normal Distribution

The multivariate normal density is a generalization of the univariate normal density to P ≥ 2
dimensions. Recall that the univariate normal distribution, with mean µ and variance σ2, has the
probability density function

f (x) =
1√

2πσ2
exp
{
−1

2
((x− µ)/σ)2

}
(A1)

Assume that the P × 1 vectors X1, X2, . . . , Xn represent a random sample from a multivariate
normal population with mean vector µ and covariance matrix Σ. The multivariate normal distribution
with mean µ and covariance Σ > 0 has the density function (Equation (A2)) and can be written X ~ Np

(µ, Σ).

f (x) =
1

(2π)p/2|Σ|1/2 exp
{
−1

2
(x− µ)′Σ−1(x− µ)

}
(A2)

The joint density function of all the observations is the product of the marginal normal densities:{
Joint density o f
X1, X2, . . . , Xn

}
= ∏ n

j=1

{
1

(2π)p/2|Σ|1/2 exp
{
−1

2
(
xj − µ

)′Σ−1(xj − µ
)}}

(A3)

when the numerical values of the observations become available, they may be substituted for the Xj in
Equation (A3). The resulting expression now considered as a function of µ and Σ for the fixed set of
observations is called the likelihood function.

Appendix A.2. Multivariate Log-Normal Distribution and Correction Factor

It is a well-known fact that if a random variable X is normally distributed with mean µ and
variance σ2, then the moment generating function of X is

m(θ) = E
(

eθX
)
=

1√
2πσ

∫
eθXe−

1
2 (

x−µ
σ )

2

dx = eµθ+ 1
2 σ2θ2

(A4)

For a proof see a relative statistical book, such as Hogg and Craig (1995).
Let Y follow the lognormal distribution, so W = ln Y is normally distributed with mean of µw and

variance σ2
w. Then the moment generating function of W is

m(θ) = E
(

eθW
)
= eµwθ+ 1

2 σ2
wθ2

(A5)

Since W = ln Y implies Y = ew, it follows that

E(Y) = E
(

eW
)
= m(1) = eµw+

1
2 σ2

w (A6)

According to Baskerville (1972), the correct factor for back-transformation of univariate
log-transformed equation defined as

CF = exp
(

SEE2/2
)

(A7)

where SEE represented the standard error of estimate of the regression which was the unbiased
estimate of σ2

w. Equation (A7) was calculated from the univariate log-transformed equation, but for the
multivariate log-transformed equations, multivariate log-normal distribution should be considered.

Let X =
[
X1, X2, . . . , Xp

]
be a p-component random vector having normal distribution

with mean µ and covariance matric Σ. Now we use the transformation Yi = exp(Xi) and
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define Y =
[
Y1, Y2, . . . , Yp

]
. The density of Y is multivariate log-normal distribution and has the

following form:

fY =
1

(2π)p/2|Σ|1/2Y−1
exp
{
−1

2
(lnY− µ)′Σ−1(lnY− µ)

}
(A8)

where lnY =
[
lnY1, lnY2, . . . , lnYp

]
is p-component column vector.

Mean of Yi and covariance matrix Dij respectively is

νi = exp (µi +
1
2

σ2
ij) (A9)

Dij = exp
{(

µi + µj

)
+

1
2
(
σii + σjj

)}
·
{

exp
(
σij
)
− 1
}

(A10)

where σij is the ijth element covariance of X.

Appendix A.3. Multivariate Conditional Distribution

Assume X(1) represent r × 1 random vector and X(2) represent (p − r) × 1 random vector. If p

random vector X =

(
X(1)
X(2)

)
, the conditional density of X(1) given that X(2) is defined by

f
(

X(1)

∣∣∣X(2)) =
{

conditional density X(1)o f given that X(2)

}
= f

(
X(1), X(2)

)
/ f
(

X(2)

)
(A11)

where f
(

X(2)

)
is the density function of X(2).

Appendix A.4. Toward Akaike Weights and Evidence Ratios

ER (evidence ratio) is imperative to rescale these criteria such as AIC. Usually, this is done by
subtracting to AIC of each model AIC of the model with the minimum one:

∆AICi = AICi − AICmin (A12)

where AICi represent AIC calculated from the ith (I = 1, 2, . . . , R) model, AICmin is the minimum AIC
of R models.

It is convenient to normalize the model likelihoods such that they sum to 1 and treat them as
probabilities. Hence, we use:

ωi =
exp(−∆AICi/2)

∑R
i=1 exp(−∆AICi/2)

(A13)

The ωi is called Akaike weights and the ratios ωi/ωj is called evidence ratio which is identical to
the original likelihood ratios.

In this study, NLR and LR were compared using evidence ratio and ER was calculated by:

ER =
ωNLR
ωLR

(A14)
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