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Abstract: Obtaining information on vertical forest structure requires detailed data acquisition and
analysis which is often performed at a plot level. With the growing availability of multi-modal
satellite remote sensing (SRS) datasets, their usability towards forest structure estimation is increasing.
We assessed the relationship of PlanetScope-, Sentinel-2-, and Landsat-7-derived vegetation indices
(VIs), as well as ALOS-2 PALSAR-2- and Sentinel-1-derived backscatter intensities with a terrestrial
laser scanner (TLS) and conventionally measured forest structure parameters acquired from
25 field plots in a tropical montane cloud forest in Kafa, Ethiopia. Results showed that canopy
gap-related forest structure parameters had their highest correlation (|r| = 0.4 − 0.48) with optical
sensor-derived VIs, while vegetation volume-related parameters were mainly correlated with
red-edge- and short-wave infrared band-derived VIs (i.e., inverted red-edge chlorophyll index
(IRECI), normalized difference moisture index), and synthetic aperture radar (SAR) backscatters
(|r| = −0.57 − 0.49). Using stepwise multi-linear regression with the Akaike information criterion
as evaluation parameter, we found that the fusion of different SRS-derived variables can improve
the estimation of field-measured structural parameters. The combination of Sentinel-2 VIs and
SAR backscatters was dominant in most of the predictive models, while IRECI was found to be the
most common predictor for field-measured variables. The statistically significant regression models
were able to estimate cumulative plant area volume density with an R2 of 0.58 and with the lowest
relative root mean square error (RRMSE) value (0.23). Mean gap and number of gaps were also
significantly estimated, but with higher RRMSE (R2 = 0.52, RRMSE = 1.4, R2 = 0.68, and RRMSE = 0.58,
respectively). The models showed poor performance in predicting tree density and number of tree
species (R2 = 0.28, RRMSE = 0.41, and R2 = 0.21, RRMSE = 0.39, respectively). This exploratory study
demonstrated that SRS variables are sensitive to retrieve structural differences of tropical forests and
have the potential to be used to upscale biodiversity relevant field-based forest structure estimates.
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1. Introduction

The horizontal and vertical structure of vegetation is important as it provides niches for
forest-dependent plant and animal species [1]. The structural complication of habitats has direct
effect on the availability of resources and microclimate conditions which can affect for example
the abundance and diversity of species. Even though tropical forests host the most endemic and
valuable biodiversity, they are threatened with increasing deforestation and forest degradation that
alters the complexity of the habitat [2]. Understanding the structural configuration and diversity of
tropical forest habitats will help explain the state of forest degradation and the resulting biodiversity
dynamics. Thus, forest habitat heterogeneity has become one of the most commonly used indicators in
forest biodiversity conservation and management studies [3,4]. Ecosystem structure (encompassing
the vertical structural complexity and the horizontal fragmentation status of habitats) is listed by
The Group on Earth Observations Biodiversity Observation Network (GEOBON) as one of the essential
biodiversity variables (EBVs) to monitor and to understand global biodiversity change [5], contributing
towards the realization of the United Nations (UN) Convention on Biological Diversity (CBD) Aichi
targets [6]. However, the accurate characterization and monitoring of forest structure is challenging.
This is often due to the complex three-dimensional configuration of tropical forests [7].

Ground-based traditional measurements are among the most accurate methods for forest structure
estimations and are a typical source for conservation studies [8,9]. However, their time-consuming,
spatially limited, and laborious nature opened up a growing exploration towards using remotely
sensed datasets to overcome such limitations [10,11]. In this context, light detection and ranging
(LiDAR) is a rather recent remote sensing technique that is increasingly being used in forestry. It has
active sensors that transmit laser pulses to targets and uses the time-of-flight principle to measure the
distance to an object. The three-dimensional position of an object can be defined using the known
position of the sensor and the range measurement between the sensor and the targeted object [12].
Information on the three-dimensionality of forests helps with the understanding of essential habitat
parameters such as gap formation and dynamics, light penetration, and understory vegetation [13].
Terrestrial laser scanner (TLS) measurements are used for rapid and detailed quantification of forest
structure variables such as tree height [14,15], vertical plant profiles [16], canopy gap fraction [17], and
diameter at breast height (DBH) measurements [18,19]. These measurements are made at a plot scale
and can be used to characterize forest structural complexity across different forest types [20]. Even
though TLS data provide good estimates of forest structure, the small coverage, operational costs, and
complex analytical process limit its usability [15].

Concomitantly, satellite remote sensing (SRS) is being explored as an alternative resource to
facilitate synoptic and scalable forest structure estimation [21,22]. The use of SRS for structural
assessment of forest environments is based on the distinct characteristics expected from forest
canopies when in contact with solar radiation and/or with signals from active satellites. Even though
three-dimensional forest structure elements such as tree height and number of layers are not yet
directly extractable from the commonly used optical satellite images, the spectral signals recorded
from leaf reflectance across different spectral regions could be used to assess biophysical parameters of
forests [23]. Especially, the leaf reflectance in the red-edge, near-infrared (NIR), and middle infrared
regions are affected by chlorophyll content, leaf structure, and water content, respectively. Therefore,
short wave infrared (SWIR), NIR, red-edge bands are often used to calculate vegetation indices that
could represent the amount and/or condition of vegetation within a pixel [24]. Several studies have
demonstrated the usability and relation of spectral vegetation indices (VIs) with field-measured vertical
forest structure attributes such as tree species diversity [22], biomass [23,25], and tree height [26].
Here, the spatial, spectral, radiometric, and temporal resolution of images affects the usability of
SRS for extracting structural information of forests. Medium-spatial resolution imagery such as
Landsat images are the most commonly used data for studying time series dynamics of biophysical
forest attributes [26–28]. The inclusion of red-edge spectrum-specific bands, and the availability of
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higher spatial resolution images in Sentinel-2 have improved the use of SRS data to assess forest
structure-related parameters [29,30].

Continuous acquisition of cloud and haze free optical images, especially over the tropics, is
difficult. Synthetic aperture radar (SAR) acquires continuous imagery that is largely independent
of cloud cover and solar illumination condition. SAR sensors transmit polarized microwaves (on a
horizontal (H) or vertical (V) plane) that interact with surface objects, and record the backscattered
signal (in either a horizontal (H) or vertical (V) plane). In the case of forests, complex structural
components (trunks, branches, and leaves) lead to typical volume scattering which can be identified
well in the HV (horizontal transmit and vertical received) polarization [31]. The wavelength, incidence
angles, and polarizations of SAR signals, as well as the canopy complexity of forests, determines
backscatter intensities. Long wavelengths (i.e., L- and P-band) have a greater ability to penetrate the
canopy and acquire backscatter signals from stems and large branches [32]. For example, with ALOS-2
PALSAR-2 L-band, high-HV backscatters are expected from dense vegetation of tropical forests, which
correlates with biomass [33]. The short wavelengths (i.e., X-, C-, S-band) are mainly scattered back from
the upper tree crown and less from beneath; thus, mainly indicating on canopy structural variables [34].
In addition to structural components, other environmental factors such as topography and moisture
causes variations in backscatter signals [35,36].

The ecological application of SRS is supported by the growing availability of very high-spatial
resolution satellite data (e.g., RapidEye, IKONOS, and PlanetScope), and with the freely available high-
to medium-spatial resolution data from Sentinel and Landsat satellites. The unique characteristics of
each SRS data type can provide valuable input in acquiring timely and continuous information on
forest structure and to the understanding of its implication on habitat requirements of forest-dependent
species [37]. Coupled with powerful analytical approaches, SRS datasets could provide wall-to-wall
and repeatable information on forest structure which would otherwise be very expensive to collect
with field-based analysis.

The overall objective of this study was to explore, at plot level, the applicability of optical SRS
(i.e., PlanetScope, Sentinel-2, Landsat-7); and SAR images (ALOS-2 PALSAR-2 and Sentinel-1), for
estimating field-measured (i.e., using TLS and conventional forestry measurements) forest structure
parameters in the tropical cloud forests of Kafa, Ethiopia. In doing so, we aim (i) to identify the
relationship between SRS-derived variables and field-measured forest structure parameters; and
(ii) to develop models estimating field-measured forest structure parameters through the fusion
of SRS-derived predictors. We hypothesize that SRS-derived indices and backscatters will show a
significant correlation with some TLS measurements; and that SRS variable-based models will be able,
to some extent, to estimate the forest structure of montane cloud forest.

2. Materials and Methods

2.1. Study Site

The study area is located in Kafa biosphere reserve (KBR), Ethiopia (36◦3′22.51” E, 7◦22′13.67” N)
(Figure 1). It covers a total area of 744,919 ha, of which 47% is comprised of different forest types
(i.e., intact to highly degraded) and diverse habitats (i.e., Sub-Afroalpine to wetland). The Afromontane
mountain cloud forests of KBR are the origin of wild varieties of Coffea Arabica L., and home to many
endemic and threatened species [38]. However, the ongoing deforestation, forest fragmentation, and
forest degradation due to anthropogenic pressure raise threats on the biological diversity of KBR [39],
thus placing it as part of the Eastern Afromontane Biodiversity Hotspot and under the national forest
priority area protection schemes [38].
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made with a RIEGL VZ-400 terrestrial laser scanner (RIEGL Laser Measurement Systems GmbH, 
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to difficult terrain. Five scanning positions (i.e., one in the center and four in the cardinal directions) 
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The point cloud data was preprocessed and co-registered using RiSCAN PRO software (RIEGL 
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of canopy level were considered as cumulative PAVD [40]. Additional canopy parameters (i.e., 
canopy heights, canopy gaps, and canopy openness) were derived from digital height models 
produced at a 0.5m resolution. The canopy gaps derived from TLS were defined by canopy height of 
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Figure 1. Location of the study area Kafa biosphere reserve in Ethiopia, indicating the field plots
(n = 25) used for this study. Note: Some plots are invisible due to the spatial proximity from mapping
scale used.

2.2. Field Data Collection

The field data on forest structure were collected in November 2015 in Kafa biosphere reserve,
Ethiopia, consisting of 25 plots across four forest management types (Intact: 7 plots, coffee forest:
8 plots, silvopasture: 7 plots, and plantation: 3 plots). The details on the collection and analysis of the
TLS and conventional forest measurements can be found in Decuyper et al. [20]. In short, a stratified
sampling design was made based on various GIS data layers (i.e., fragmentation map, land use/cover
map, and biodiversity assessment plots) of the study area to select field plots for measurements.
The chosen plot locations were representative of their surrounding forest type. TLS measurements
were made with a RIEGL VZ-400 terrestrial laser scanner (RIEGL Laser Measurement Systems GmbH,
Horn, Austria). From the 25 plots, 21 plots had a radius of 20 m, while 4 plots had a 10 m radius due to
difficult terrain. Five scanning positions (i.e., one in the center and four in the cardinal directions) were
used per each plot to acquire three-dimensional measurements.

The point cloud data was preprocessed and co-registered using RiSCAN PRO software (RIEGL
Horn, Austria). The vertical profiles of Plant Area Volume Density (PAVD) were derived based on a
method developed by Calders et al. [40], while the canopy gap and canopy height parameters, were
derived by analyzing the point clouds in CompuTree point cloud analysis open source software [41].
The PAVD from 0 m to 10 m were considered as understory vegetation, while PAVD from 0 m to top of
canopy level were considered as cumulative PAVD [40]. Additional canopy parameters (i.e., canopy
heights, canopy gaps, and canopy openness) were derived from digital height models produced at a
0.5m resolution. The canopy gaps derived from TLS were defined by canopy height of <10 m and with
an area of ≥1 m2 [20].

Conventional forestry measurements were also taken on all 25 plots. Measurements included
diameter at breast height (DBH), total basal area (BA), tree density, and tree species identification.
Above-ground biomass (AGB) was derived by using the wood density values for African tropical
moist forests [42]. The field-measured structural variables (Table 1) showed distinct characteristics
across different forest management types.
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Table 1. Descriptive statistics of field-measured forest structural parameters from field plots (n = 25).
PAVD = plant area volume density, AGB = above ground biomass, BA = basal area.

TLS Conventional

Mean
Gap
(m2)

Maximum
Gap
(m2)

Canopy
Openness

(%)

Number
of Gaps

PAVD 10 m
(m2/m3)

Cumulative
PAVD

(m2/m3)

Average
Height

(m)

AGB
(t/ha)

Tree
Density

Total BA
(m2/ha)

Number
of Tree
Species

Mean 105.7 276.9 24.3 6.9 1.5 3.1 17.8 479.2 730.8 58.3 7.9
Min 2.85 5.5 0.6 1 0.4 1.1 6 102.4 95.5 14.9 2
Max 826.1 893.5 70.9 24 3.5 5.3 37.1 1825.8 1655.2 220.3 16

2.3. Satellite Remote Sensing Data

An overview of the datasets used in this study is presented in Table 2. We acquired the
least clouded scenes from PlanetScope, Sentinel-2, Landsat-7, Sentinel-1, and ALOS-2 PALSAR-2
satellites that are closest to the field campaign date (i.e., November 2015). Since the change in
forest vertical structure is often a slow process, we do not assume the time-lag between field data
collection and SRS data acquisition will affect the relations between field parameters and SRS-derived
variables. The very high-spatial resolution PlanetScope images were accessed through the PlanetScope
ambassadorship quota (https://www.planet.com/markets/education-and-research/). The four-band
analytic PlanetScope (red, green, blue, and near infra-red) images were downloaded as orthorectified
top of atmosphere (TOA) radiance products (Level 3B). The images were converted to TOA reflectance
using the PlanetScope guide [43]. The Sentinel-2 Multispectral Imager Instrument (MSI) Level 1-C
images were acquired from the Sentinel Scientific Data Hub [44]. The products were atmospherically
corrected using Sen2Cor [45]. The geometrically and atmospherically corrected Landsat-7/ETM+
images were obtained from The United State of America’s Geological Survey (USGS) Landsat surface
Reflectance (SR) archive (http://landsat.usgs.gov/CDR_LSR.php). The CFmask cloud-shadow mask
product [46] was used to generate cloud- and cloud shadow-free images.

Table 2. Data sources and acquisition dates for estimating forest structure using satellite remote sensing.

Data Type Acquisition Date Parameters Derived Spatial Resolution

PlanetScope images 2016-11 Vegetation indices 3 m
Sentinel-2 2016-11-15 Vegetation indices 10 m

Landsat-7/ETM+ 2015-01-01 Vegetation indices 30 m

Sentinel 1 (C-band) 2015-09-22, 2015-11-09,
2015-12-03 VV backscatter 30 m

ALOS-2 PALSAR-2 (L-band) 2015-01-25, 2015-09-06,
2016-01-24

HH, HV backscatter,
Forest backscatter 30 m

The SAR images from Sentinel-1 and ALOS-2 PALSAR-2 were obtained for three time steps,
covering the wet and dry season. The Sentinel-1 VV-polarized C-band SAR images were acquired
in interferometric wide swath mode (IWS, 250 km swath width) and downloaded from the Sentinel
science hub (https://scihub.copernicus.eu/). The ALOS-2 PALSAR-2 HV-polarized L-band SAR
images were acquired in fine-beam dual mode (FBD, 70 km swath width) and obtained from the
ALOS-2 data archive (https://auig2.jaxa.jp/ips/home). The pre-processing and speckle removal of
the SAR images was conducted following the procedure by Reiche et al. [47]. Both Sentinel-1 and
ALOS-2 PALSAR-2 backscatter images were geocoded to 30 m resolution and were co-registered to
Landsat images [47].

Satellite Remote Sensing-Derived Vegetation Indices and Backscatter Intensities

The red (R), green (G), and near infrared (NIR) bands of optical SRS images, with their original
spatial resolution (Table 2), were used to calculate forest biophysical sensitive VIs [22,23,48–50] for
each field plot and their surrounding forests in the KBR (Table 3). The indices produced were
green normalized difference vegetation index (GNDVI), enhanced vegetation index (EVI), and green

https://www.planet.com/markets/education-and-research/
http://landsat.usgs.gov/CDR_LSR.php
https://scihub.copernicus.eu/
https://auig2.jaxa.jp/ips/home
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chlorophyll index (CI green). In addition, the shortwave infrared (SWIR) bands of Sentinel-2 and
Landsat-7 were used to produce the normalized difference moisture index (NDMI), while the Sentinel-2
specific red-edge bands were used to produce inverted red-edge chlorophyll Index (IRECI).

Table 3. Equations used for the calculation of vegetation indices from satellite remote sensing dataset.

Vegetation Index Description Satellite Source

GNDVI (nir − green)/(nir + green) PlanetScope, Sentinel-2, Landsat-7 [51]
EVI G*((nir − red)/(nir + C1*red − C2*blue + Levi)) PlanetScope, Sentinel-2, Landsat-7 [52]

CI green (NIR/green) − 1 PlanetScope, Sentinel-2, Landsat-7 [53]
NDMI (NIR − SWIR)/(NIR + SWIR) Sentinel-2, Landsat-7 [54]
IRECI (NIR − Red)/(RE2/RE1) Sentinel-2 [55]

HV backscatter HV backscatter of ALOS-2 PALSAR-2 sensor
presented in sigma-nought values ALOS-2 PALSAR-2 [35,56]

Forest Backscatter index σ◦HV + σ◦HH ∗ σ◦HH
σ◦HV ALOS-2 PALSAR-2 [36]

VV polarization VV backscatter of sentinel1 sensor presented in
sigma-nought values Sentinel-1 [57]

The C-band VV-polarization from Sentinel-1, as well as the L-band HH and HV polarizations from
ALOS-2 PALSAR-2, were used to acquire backscatter intensities [35,56] and to calculate forest-specific
backscatter (FB) values [56]. Vegetation indices were calculated for a 3 m × 3 m raster of pixels of
Planetscope, for 10 m × 10 m raster pixels of Sentinel-2 10 m bands, as well as for 20 m × 20 m
raster pixels of Sentinel-2 red-edge bands. Similarly, 30 m × 30 m raster pixels were used to calculate
vegetation indices for Landsat-7 images, and for calculating backscatter values of Sentinel-1 and
ALOS PALSAR-2 images. For the high-spatial resolution-derived SRS variables, the area-weighted
mean values of the variables were calculated by overlaying the circular ground plots of 20 m radius
(area = 0.1 ha). Whereas for the medium-spatial resolution images, we extracted the area-weighted
mean values with an overlay of 50 m radius plots. We chose to use the 50 m radius of plots for the
medium resolution images as our field plots are representative of the surrounding forest area, and
especially for the SAR images, looking into multiple pixels will help eliminate errors and noises while
using small raster pixels [35,58]. In addition, to account for the limited sensitivity of SAR backscatters
to forest structure during wet seasons due to vegetation and soil moisture [33,59], we calculated the
temporal standard deviation (TSD) of backscattered values between the three SAR images (Table 2).

2.4. Statistical Methods

The study initially assessed the relationship between field-measured forest structure parameters
and SRS-derived variables based on the Pearson correlation coefficient using ‘Hmisc’ package [60] with
the RStudio software [61]. We used p < 0.05 as the threshold to identify significant correlations. Then,
the field-measured forest parameters were modeled as a function of their correlated SRS variables
(Figure 2). Multiple linear regression models with both forward and backward stepwise selection
procedure were developed to combine and assess the contribution of SRS variables in predicting
field-measured structural parameters. The SRS variables used in the multiple linear regression models
were derived using the original pixel size of the high- to medium-spatial resolution images (Table 2),
so as to capture the possible detailed information on the corresponding field-measured structural
variables from the high-resolution SRS images. Multicollinearity between predictors was checked to
avoid overfitting. Predictors with correlations of >0.6 were excluded and a variance inflation factor of
<2 was set as a threshold. The multiple linear regression model is described as:

FMP = β0 + β1x1 + β2x2 + . . . + βpxp + ε (1)

where FMP is the response field-measured parameter, x1, x2, . . . , xp, are SRS variables, β represents
model coefficients, and ε is the additive normal distributed error term with zero mean.
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The stepwise model selection procedure identified the best-fitted model based on Akaike’s
information criterion (AIC). The accuracy of the fitted models was evaluated by exploring the coefficient
of determination (R2), and the root mean square error (RMSE) between observed and predicted forest
structural parameters. Relative root mean square error (RRMSE) is used to make the RMSE’s of the
estimation models comparable. We tested the distribution of our dataset and used a logarithmic
transformation on field-measured parameters that did not have a normal distribution (i.e., mean
gap, PAVD at 10 m, maximum gap, AGB, and total basal area). The predicted results were then
back-transformed and compared with the observed structural parameters.

3. Results

3.1. Correlation Analysis

The relationship between field-measured structural parameters and satellite remote
sensing-derived variables based on the visualization of scatter plots showed most relationships were
linear, especially with the optical VIs. Figure 3 represents a scatter plot of the relationship between
the field-measured structural parameters and the most correlated SRS variables from optical and SAR
domain. The Pearson correlation coefficient showed the strength and significance of these relationships.
We found statistically significant correlations between the field-measured structural parameters and
the SRS-derived variables (Table 4).

In summary, the gap-related parameters (i.e., mean gap, maximum gap, and canopy openness)
especially showed highly significant correlations (|r| = 0.4 − 0.48, p < 0.01) with PlanetScope-derived
GNDVI and CIGreen, as well as with Sentinel 2-derived EVI and IRECI VIs (|r| = 0.5 − 0.75, p < 0.01),
as well as with Sentinel-1 VV TSD (|r| = 0.4− 0.43, p < 0.05). The PAVD parameters, on the other hand,
showed significant correlations (|r| = −0.57 to 0.49, p < 0.01) with the Sentinel-2 (IRECI), Landsat-7
(CIGreen, NDMI), as well as with Sentinel-1, and ALOS-2 PALSAR-2 (HV TSD) SAR backscatter
variables. In addition, the conventionally measured structural parameters (except number of tree
species) were found to be highly correlated (|r| =−0.45 to 0.43, p < 0.05) with Sentinel-2-derived NDMI
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and IRECI indices as well as with Landsat-7-derived GNDVI and CIGreen indices (|r| = 0.41 − 0.44,
p < 0.05). No significant correlations were found between the number of species and SRS variables.
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Figure 3. Correlation between field-measured forest structure parameters and most correlated satellite
remote sensing variables from optical and synthetic aperture radar domain. PAVD = plant area
volume density, AGB = above ground biomass, PS-GNDVI = PlanetScope-derived green normalized
difference vegetation index, S2-IRECI = Sentinel-2-derived inverted red-edge chlorophyll index,
FB = forest backscatter.
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Table 4. Summary of the Pearson linear correlation r values between satellite remote sensing variables and field-measured structural parameters. ** = p < 0.01,
* = p < 0.05, grey = p > 0.05.

RS Group SRS Variables Mean
Gap Max Gap Canopy

Openness
Number
of Gaps

PAVD 10
m

Cumulative
PAVD

Average
Height AGB Tree

Density Total BA Number of
Species

PlanetScope
GNDVI Mean 0.45 * 0.44 * 0.41 *

EVI Mean 0.56 ** 0.53 **
CIGreen Mean 0.4 * 0.45 * 0.48 *

Sentinel-2

GNDVI Mean 0.7 ** 0.55 ** 0.5 * −0.4 *
EVI Mean 0.75 ** 0.67 ** 0.63 ** −0.49 * −0.48 *

CIGreen Mean
NDMI Mean 0.42 * 0.43 *
IRECI Mean 0.5 * 0.54 ** 0.53 ** −0.4 * −0.57 ** −0.42 * −0.45 * −0.48 *

Landsat-7

GNDVI Mean 0.44 *
EVI Mean 0.4 *

CIGreen Mean 0.44 * 0.41 * 0.42 *
NDMI Mean 0.46 *

Sentinel-1 VV Mean 0.44 * 0.49 *
VV TSD 0.4 * 0.43 *

ALOS-2 PALSAR-2

HV Mean
HV TSD 0.49 * 0.41 *

HH Mean 0.49 *
HH TSD
FB Mean
FB TSD
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3.2. Prediction of Field-Measured Forest Structure Parameters

Stepwise multi-linear regression was used for identifying best-fitted models to predict
field-observed forest structure parameters. The model with the lowest AIC was chosen as the best
one and was used to make predictions. All field-measured structural parameters were estimated by
the fusion of several SRS-derived variables, showing the complementarity of SRS products (Table 5).
Field-measured variables that were log-transformed (i.e., mean gap, PAVD at 10 m, maximum gap,
AGB, and total basal area) were able to be estimated using SAR data. Sentinel-2-based variables were
dominant in most of the predictive models. IRECI was the common predictor for most field-measured
variables, and especially in estimating mean gap, AGB, and cumulative PAVD. Backscatter values
from ALOS-2 PALSAR-2 and Sentinel-1 were also valid predictors in most models, especially for
predicting PAVD at 10 m and the number of gaps. Indices from PlanetScope and Landsat-7 were found
to be the least relevant on the predictive models. The combination of red-edge band-derived IRECI of
Sentinel-2, and ALOS-2 PALSAR-2 backscatters were found very important for AGB, total BA, and
canopy openness estimation.

Table 5. Stepwise multilinear regression with Akaike information criterion (AIC) for estimating
field-measured forest structure parameters using satellite remote sensing variables. Significance code:
0 ***, 0.001 **, 0.01 *, 0.05 #.

Field Measured Model Variables R2 RMSE
(RRMSE)

Predicted vs.
Observed

Correlation

TLS

Mean Gap
S2_IRECI_Mean **,
PS_GNDVI_Mean #

S1_VV_TSD
0.52 148.6

(1.4) 0.77

Maximum gap S2_EVI_Mean *, S1_VV_Mean
S2_IRECI_Mean # 0.51 181.74

(0.66) 0.81

Canopy openness S2_EVI_Mean *, S2_IRECI_Mean *
S1_VV_TSD *, ALOS_FB_Mean # 0.66 13.23

(0.54) 0.81

Number of gaps S1_VV_Mean ***, S1_VV_TSD **
S2_EVI_Mean ** 0.68 3.96

(0.58) 0.72

PAVD at 10 m S1_VV_Mean **
ALOS_HV_TSD ** 0.47 0.62

(0.41) 0.71

Cumulative PAVD S2_IRECI_Mean **, ALOS_HV_TSD *
LS_NDMI_Mean # 0.58 0.73

(0.23) 0.76

Average Height S2_IRECI_Mean, S2_EVI_Mean
ALOS_FB_Mean # 0.37 6.28

(0.35) 0.61

Conventional

AGB
S2_IRECI_Mean ***,

S2_NDMI_Mean * ALOS_FB_TSD *,
S1_VV_Mean

0.62 292.4
(0.61) 0.78

Tree density LS_GNDVI_Mean *, ALOS_HV_TSD 0.28 296.95
(0.41) 0.53

Total basal area
S2_IRECI_Mean ***,
S2_NDMI_Mean *
ALOS_FB_Mean #

0.61 32.12
(0.55) 0.81

Number of species S2_EVI_Mean, S1_VV_TSD # 0.21 3.14
(0.39) 0.46

S1: Sentinel-1, S2: Sentinel-2, PS: PlanetScope, LS: Landsat-7, ALOS: ALOS-2 PALSAR-2, FB: Forest backscatter, TSD:
Temporal standard deviation.

All regression models (except for average height) were statistically significant (p < 0.01), with
cumulative PAVD having the highest R2 (0.58) and lowest RRMSE value (0.23) (Table 5). For
TLS-measured structural parameters, number of gaps and mean gap were well predicted (R2 = 0.68,
RRMSE = 0.58, and R2 = 0.66, RRMSE = 0.54, respectively), while PAVD at 10 m and average height
had poor predictions (R2 = 0.47, RRMSE = 0.41, and R2 = 0.37, RRMSE = 0.35, respectively). As for the
conventional measurements, S2-IRECI and S2-NDMI explained much of the variation in AGB and total
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basal area (R2 = 0.62, RRMSE = 0.61, and R2 = 0.61, RRMSE = 0.55, respectively), while tree density and
number of species had the lowest R2 values (R2 = 0.28, RRMSE = 0.41, and R2 = 0.21, RRMSE = 0.39,
respectively). The relationship between field-measured (observed) (e.g., cumulative PAVD, canopy
openness, mean gap, and AGB) and satellite remote sensing-predicted forest structure variables are
visualized in Figure 4.
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4. Discussion

The study shows that optical SRS-derived VIs, despite being underestimated for saturating
in forest environments, can inform on forest structural differences. Indices calculated with higher
weighing coefficients of the SWIR, NIR, and red-edge bands were sensitive to most field-measured
forest structure parameters (Table 4). The sensitivity of SWIR to plant leaf water content, which is
correlated with canopy biomass, enabled NDMI to respond to vegetation volume-related parameters,
thus supporting the estimation of the TLS-measured cumulative PAVD, and the conventionally
measured AGB and basal area (Table 5), as did the sensitivity of NIR to multiple scattering of canopy
leaves, canopy gaps, and shadowing; thus, sensitivity to forest canopy structure was associated with
EVI’s response towards the estimation of TLS-measured, canopy gap-related parameters (Table 5).
The canopy chlorophyll content and leaf area index (LAI) sensitive red-edge bands of Sentinel-2 [55],
were associated with both vegetation volume [62] and canopy gaps [63], which made S2-IRECI the
most important index in estimating both conventionally and TLS-measured structural parameters
(Table 5). Our findings are in line with the studies of Huete et al. [64], Healey et al. [65], Brede et al. [66],
and Martin et al. [67], that also found the SWIR, NIR, and red-edge bands important in exploring
forests’ biophysical parameters. The PlanetScope-derived vegetation indices, despite being correlated
with many canopy gap-related parameters, did not have a significant contribution to the prediction
of field-measured structural estimates. This stands in contrast to other studies that found highly
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significant relationships between vegetation indices derived from very high-resolution images and
forest structure parameters. Meng et al. [22] and Wallner et al. [50], for example, successfully estimated
basal area, DBH, and other diversity indices using spectral and textural information from SPOT-5
and RapidEye images, respectively. Similar to the findings of this study, Baloloy et al. [23] found
Sentinel-2- and RapidEye-based predictors to perform better towards estimating AGB compared to
PlanetScope-derived predictors. A study by Houborg et al. [68] suggests that the potential applicability
of PlanetScope-derived variables for monitoring might be limited due to its low radiometric quality
and cross-sensor inconsistencies. The topographical and structural complexity of tropical forests can
also affect estimation qualities. Castillo-Santiago et al. [42] stated that the nature of tropical forests and
the quantity of shadows present on satellite images affects the prediction of forest structure variables
using vegetation indices. Such topographic factors could also affect our study plots as they are located
in cloud forest characterized by rough terrain and a mixture of different forest types (i.e., intact forest to
silvopasture). Due to the terrain conditions, our plot sizes are small, which could complicate the exact
link between SRS and field-measured parameters. In addition, the conservative threshold we used to
identify canopy gaps (canopy height of <10 m and with an area of ≥1 m2) from the TLS measurements,
and the reflectance of the dense understory in such forests despite having gaps, could have also
affected the sensitivity of vegetation indices to the mean and maximum canopy gap parameters.

As for the SAR data, the standard deviation of multi-temporal ALOS-2 PALSAR-2 backscatters
(HV-TSD), and forest backscatter (FB-TSD) were significant predictors of field-measured structural
parameters, rather than single-date observations. Since SAR backscatters obtained in wet season
are highly sensitive to the canopy moisture, using observations from dry seasons or multi-temporal
observations is advised [33]. Similar to our findings, Nguyen et al. [33] also found ALOS-FB to be
a significant predictor for AGB compared to HV polarization and other indices. Castillo et al. [29]
identified the sensitivity of Sentinel-1 C-band VV and VH polarization to AGB, but the sensitivity of the
later was higher in comparison. However, due to the unavailability of the Sentinel-1 VH polarization
in 2015, we could not use it in our study. However, we could still learn from our results that an analysis
of multi-seasonal, dense time series, and multiple polarization of SAR data could provide improved
estimations. In addition, as elaborated by a study of Joshi et al. [35], the accuracy of AGB estimation
improved when the pixel sizes were increased from 50 m to 250 m. This is also the reason we chose 50 m
radius plots for the SAR backscatters rather than the 20m plots we used for optical images. In doing
so, errors originating from speckle, thermal noise, geolocation, canopy layover, and variations due
to moisture or topography while using small SAR pixels could be addressed [58]. Even though SAR
backscatters are heavily used in AGB estimations, our results also show they can contribute largely
towards estimation of understory vegetation estimation (i.e., PAVD at 10 m). The strong penetration of
SAR pulses even in densely vegetated tropical forest environments makes them uniquely valuable in
estimating the lower canopy vegetation density, which otherwise had not been picked up by indices
derived from the optical sensors (Table 5).

Overall, the canopy gap-related forest structure parameters (e.g., mean gap, maximum gap,
canopy openness) were better correlated to SRS variables than the vegetation volume-related
parameters (e.g., AGB, PAVD at 10 m). Other studies support this finding [32,69,70] as SRS signals are
weakened by canopy closure in tropical forests, thus providing limited information on volume-related
parameters such as AGB and PAVD. In addition, studies have also shown that the relationship between
forest structure and SRS derivatives might not always be linear [32,71,72]. These algorithms have
different assumptions on the distribution of the data, which have an effect on the models chosen
for modeling the relationships, thus an implication on the upscaling or extrapolation of structural
estimations [32,73]. The use of parametric methods, such as the linear regression model used in this
study, are arguably suitable for a small dataset, whereas non-parametric methods, such as random
forest, would be an appropriate choice for larger datasets where non-linear relationships could be
reliably picked up [73].
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Several studies have investigated the estimation of forest structure using SRS data in other
forest ecosystems, with different analytical and statistical approaches. Studies in temperate [35,50,74]
and boreal forests [25,75], compared to tropical forests [56,76] shows higher correlations and model
estimation power. This can arguably be due to the relatively higher saturation of SRS derivatives
(i.e., vegetation indices and SAR backscatters) in forests with high vegetation density and complex
structure, such as in case of tropical forests, compared to, for instance, temperate and boreal forests.
The use of texture measures [77], object-based image analysis [78], and radiative transfer models [79]
showed improved estimations and provide detailed insight into the structural assessment of tropical
forests. A common recommendation from most studies is that SRS-based forest structure assessments
will benefit from data acquired in dry seasons. As for optical data, cloud cover, especially in tropical
forests, are an important concerns. As for SAR data, humid and wet canopies reduce the signals’
sensitivity to biomass and structure of forests. A comparative study by Nguyen et al. [33] showed
increased sensitivity of backscattering during the dry season (R2 = 0.05 − 0.47) compared to the wet
season (R2 = 0.02 − 0.27). The most common limitation that our study shares with other similar
studies that applies SRS for forest structure estimation is the issue with an insufficient number of field
observations, which is due to the large effort required to acquire field data on structural parameters.
The low number of field data in turn limits the identification of subtle relationships, validation of
models, and upscaling of point estimations to landscape level.

The availability of different SRS datasets creates an opportunity to assess the possibilities of data
fusion to achieve an improved estimation of field-measured forest structure parameters. Our findings
point out that a combination of different SRS predictors provided better estimates than using single
predictors in our study area (Table 6). Instead of taking the single best correlated SRS variable to
estimate field observations, we tested all combinations using stepwise multilinear regression with AIC
as an evaluation parameter. As a result, we learned that, except the cases where we had insignificant
models and/or predictors (i.e., average height, tree density, and number of species), the combination
between Sentinel-2 and SAR variables provided significant estimates of field measurements. Sentinel-2-
and Sentinel-1-derived predictors mainly estimated canopy gap-related parameters; the fusion of
Sentinel-2, ALOS-2 PALSAR-2, and Sentinel-1 variables best estimated cumulative PAVD; while the
combination of Sentinel-1 and ALOS-2 PALSAR-2 backscatters best predicted PAVD at 10 m. Similarly,
the fusion of Sentinel-2 and ALOS-2 PALSAR-2 provided the best estimation for AGB. Goh et al. [40]
also found the integration of NIR band from Spot-5 and the HV backscatter from ALOS-2 PALSAR-2
to be the best predictive model of AGB in humid tropical forests. Nguyen et al. [33] also performed
a similar study in dense tropical forest, where the best predictive models of AGB were attained
through fusing maximum NDVI from Landsat-8, SAR textures from HV polarization, and FB from
ALOS-2. The complementary nature of optical and SAR data in terms of data availability, sensitivity to
vegetation features, and the difference in saturation levels would make the use of multimodal data
for forest structure estimation appealing. However, Mura et al. [80] advise that fusion of SRS datasets
should be efficient and reliable as unique technical and methodological challenges could be introduced
with each modality.

Estimation of field-measured structural parameters through the fusion of SRS data precedes the
upscaling of plot measurements to the landscape. As for our study, the upscaling of field measurements
to landscape observations using the link between field-measured and SRS was challenging, because of
the small number of field observations we had on forest structure parameters, and the small plot size
used. The small number of samples would make the modeling and prediction accuracy unreliable.
Such spatial upscaling demands large number of field observations and suitable modelling approaches
to effectively train, validate, and map structural parameters.
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Table 6. Field-measured forest structure parameters estimation through single and fusion of satellite
remote sensing for this study. Synthesized based on the correlation results of Table 4 and modeling
results of Table 5. Green = best estimators, orange = good estimator.

Field Measurements Structural Parameters Univariate Predictors Multivariate Predictors

TLS

Canopy gap parameters PlanetScope Sentinel-2 + Sentinel-1

PAVD ALOS-2 PALSAR-2,
Sentinel-1

Sentinel-2 + ALOS-2
PALSAR-2 + Sentinel-1

Average height Sentinel-2 -

Conventional

AGB/basal area Sentinel-2 Sentinel-2 + ALOS-2
PALSAR-2

Tree density Landsat-7, ALOS-2
PALSAR-2 -

Number of tree species - -

5. Conclusions

This study identified the relationship between satellite remote sensing-derived variables and
field-measured forest structure parameters. TLS-derived three-dimensional structural parameters
showed significant correlation with satellite remote sensing (SRS)-derived vegetation indices and
backscatter intensities. Another important contribution of this study is the identification of useful
combinations of optical and SAR remote sensing variables for structure parameter estimation via data
fusion. In summary, we found the strongest relationship between TLS-measured canopy gap-related
parameters and optical data-based vegetation indices, while some significant correlations were also
observed between vegetation volume-related field-measured variables and SAR backscatter.

As can be concluded from our study, the growing availability and potential integration of SRS
datasets could bring new opportunities to derive biodiversity relevant forest structure estimates.
In our case, we were able to derive suitable estimates of forest vertical structure (i.e., canopy gap-
and canopy volume-related parameters) which are also identified by the GEOBON as SRS-essential
biodiversity variables (EBVs) which can support monitoring of biodiversity change [81]. In doing so,
the information gathered from multi-modal satellite data and the modeling approach used to combine
them shows the possibilities of upscaling field-measured structural data to landscape level. However,
further assessment of the use and efficient combination of SRS dataset through employing physical
studies (e.g., through radiative transfer models), and in different forest ecosystems might provide
more insight into the relationship between forest structure and SRS.

The need to go from expensive, but highly accurate plot measurements, to reliable landscape-level
estimations that can be used to inform conservation and management efforts and drive the use of
multi-sensor and multi-scale approaches. With the need for continuous, repetitive, and affordable data
on forest structure, great expectations are laid on National Aeronautics and Space Administration’s
global ecosystem dynamics investigation (GEDI) mission which provides the first high-resolution
LiDAR observation of the 3D structure of the Earth making precise measurements of forest canopy
height, canopy vertical structure, and surface elevation [82]; and European Space Agency’s BIOMASS
mission which is a SAR-based system that aims to take measurements of forest biomass to assess
terrestrial carbon stocks and fluxes for a better understanding of the carbon cycle [83]. The data from
such missions are expected to address the data gap on tropical forests and support climate change
mitigation programs such as the monitoring reporting and verification (MRV) for reducing emissions
from deforestation and forest degradation (REDD+), as well as for the development and use of EBVs.

Even though sensible explanations could be given using the implication of forest structure
parameters on biodiversity, a next step should be linking the structural estimates with actual
biodiversity dataset from the field to determine the effect of the vertical structure of forests on
biological diversity.
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