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Abstract: Integrated bamboo-chicken farming (BCF) systems are a traditional agroforestry pattern
with large economic benefits in subtropical China. However, little is known regarding the effect
of this integration on the bamboo leaf-associated microbiome, which can be very important for
disease control and nutrient turnover. In the present study, we compared the leaf-associated bacterial
and fungal communities of moso bamboo (Phyllostachys edulis) in a BCF system and an adjacent
moso bamboo forest (MBF). The results showed that Cyanobacteria and Ascomycota were the
predominant microbial phyla associated with bamboo leaves. Chicken farming under the bamboo
forest significantly increased the bacterial and fungal alpha diversity (observed operational taxonomic
units (OTUs) and Simpson’s index) associated with bamboo leaves. Principal components analysis
(PCoA) further confirmed the shifts in the bacterial and fungal communities caused by chicken
farming. Based on the observed relative abundances, the phyla Bacteroidetes, Actinobacteria, TM7,
and Basidiomycota were significantly increased on BCF-associated leaves compared with MBF leaves,
while Acidobacteria and Ascomycota were significantly decreased. An ecological function prediction
analysis based on metabolic processes indicated that BCF could accelerate nutrient (C, N, and S)
cycling but may increase the risk of fungal-associated diseases. Our findings suggest that shifts
in leaf-associated bacterial and fungal communities can be important indicators for the scientific
management of BCF systems.

Keywords: bamboo-chicken system; bacterial community; fungal community; leaf-associated
microbiome; ecological niche shift

1. Introduction

Bamboo forests are an important type of forest in tropical and subtropical areas, covering a total
area of 31.5 million ha in 2010 and accounting for approximately 0.8% of the world’s total forest area [1].
Moso bamboo (Phyllostachys edulis (Carrière) J. Houzeau, synonym Phyllostachys heterocycla (Carrière)
is currently the most important source of woody bamboo [2]. The shoot of moso bamboo can grow
from 0–20 m in 45–60 days under suitable spring conditions [3]. Moso bamboo plays an important
role in ecological and environmental protection [4,5], as well as in rural economic development
in China [6,7]. Bamboo belongs to the subfamily Bambusoideae in the family Gramineae, which
includes approximately 1500 species from approximately 90 genera worldwide [1]. China has more
than 6 million ha of bamboo forest, 70% of which are moso bamboo forests [8]. However, because
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of increasing labor operational costs in China that have occurred in the last decade, the traditional
management of bamboo forests has lost a great deal of economic attraction. Therefore, how to rationally
utilize vast bamboo resources has become an important issue for scientific study.

Agroforestry systems are land-use systems and technologies where woody perennials are
deliberately used on the same land management units as agricultural crops and/or animals [9].
Because bamboo forests are characterized by their short rotation and strong regeneration ability, they
can typically be used to establish agroforestry systems as a potential strategy for providing food and
nutritional security and for contributing to the economic development of developing countries in
the tropics [10]. The use of an agroforestry pattern consisting of moso bamboo and chicken farming
has been reported in China [11,12]. The results of a previous study showed that chicken farming in
a bamboo forest increased soil C, total N, total P, total K, and the soil water-holding capacity [12].
However, because of the continuous input of chicken manure on the soil surface, there was a high risk
of surface erosion and manure seepage [12], which may cause water pollution. Therefore, chicken
rearing density is the most crucial aspect of this agroforestry practice [11]. There is also increasing
concern that the introduction of chickens into a bamboo forest ecosystem may cause niche displacement
of native microbiomes [12], which will further influence their functionality.

The surfaces and inner tissues of all land plants are colonized by diverse microorganisms,
including bacteria, fungi, oomycetes, viruses, archaea, and protists [13,14]. Lorenz Hiltner defined
the term “rhizosphere” in 1904 [15], and plant-associated microorganisms with root systems have
received substantial attention in recent years [13,14,16]. Moso bamboo-associated bacteria and fungi
have been isolated using culture-dependent methods [17,18] and high-throughput sequencing [19], but
the latter study was primarily focused on the bamboo rhizome and pole-bacterial communities.
The leaves of plants are ubiquitous global habitats that are inhabited by a diverse community
of microorganisms [20,21]. These microbial communities have the potential to influence plant
biogeography and ecosystem function through their influence on the fitness and function of their hosts
and on soil nutrient turnover [22]. Additionally, the most important fungal and bacterial bamboo
diseases are foliar, such as leaf spot disease on Bambusa polymorpha Munro., Dendrocalamus longispathus
(Kurz) Kurz, and Dendrocalamus strictus (Roxb.) Nees [23]. However, the shifts in the leaf-associated
microbiota (epiphytes and endophytes) in a bamboo-chicken farming (BCF) ecosystem have not
been explored.

In this study, we comparatively investigated the leaf-associated bacterial and fungal communities
of moso bamboo with and without chicken farming. The aim of this study was to determine how the
leaf-associated microbiota of moso bamboo responds to the introduction of chickens into a bamboo
forest and the functional profiles associated with these shifts in the microbiota.

2. Materials and Methods

2.1. Experimental Site and Design

The study area (30◦38′14.92” N, 119◦21′1.05” E) was located in the town of Hanggai, western
Anji County, Zhejiang Province. The area has a mid-latitudinal subtropical monsoon climate, with an
average annual precipitation of approximately 1854 mm, a mean annual temperature of approximately
17 ◦C, and an altitude of 400–450 m above sea level. The average annual sunshine duration in this
region is 1946 h, and the frost-free period is 230 days. In addition, the soils in the region are classified
as Ferric Luvisols, derived from silty sand and fine sand-mixed rock [24]. The investigated BCF system
was established in 2006. To maintain a rational bamboo density, a selective harvest practice was
adopted into this system. The stand density was approximately 2100 stems ha−1, with an average
plant height and diameter at breast of 9.0 m and 8.9 cm, respectively. A previous study showed that
chicken farming resulted in significant increases in soil organic C and the total N, P, and K contents [12].
Therefore, the chicken rearing density was maintained within 2500–3000 ha−1 to avoid the risk of
over-application of manure. The adjacent bamboo forest was selected as a control, because it had very
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similar site conditions with respect to soil type, position of slope, slope gradient, and other aspects
that were the same as in the BCF system. The adjacent moso bamboo forest (MBF) without chicken
farming was the control group. The MBF was selectively harvested to maintain a specific density.
The growth status of the MBF forest was very close to that of the BCF system, namely, the stand density
was approximately 2300 stems ha−1 and the average plant height and diameter at breast were 8.6 m
and 8.5 cm, respectively.

2.2. Sampling

Leaf samples were collected in late September 2018. The paired-site sampling method [25] was
adopted for sampling, namely, three sites along the border between BCF and MBF forests were chosen.
The distance between each site was greater than 100 m. Each site included two sampling subplots
(10 m × 10 m) belonging to BCF and MBF, respectively. Originally, both forests (BCF and MBF) in each
site had very similar soil conditions, slope positions, and management systems. One bamboo plant
with an average size was chosen in each subplot for sampling. The healthy leaves were randomly
collected from the fifth to the seventh branches (from the bottom up) from both the shaded and
unshaded parts of the plant. Approximately 10 g of leaves were pooled as a composite sample, these
were immediately frozen in liquid nitrogen and stored at −80 ◦C for further analysis.

2.3. Illumina High-Throughput Sequencing

DNA was extracted from the leaf samples using a Magnetic Soil and Stool DNA kit (Tiangen,
Beijing, China) according to the manufacturer’s instructions. The bacterial 16S rRNA and fungal
ITS2 genes were amplified using the primer pairs 338F (5′-ACTCCTACGGGAGGCAGCAG-3′)/806R
(5′-GGACTACHVGGGTWTCTAAT-3′) and ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′)/ITS2R
(5′-GCTGCGTTCTTCATCGATGC-3′), respectively. PCR amplification and MiSeq sequencing were
performed by Majorbio Bio-pharm Technology Co., Ltd. (Shanghai, China). Raw sequences have been
deposited in NCBI under Bioproject PRJNA514420 and PRJNA514422.

2.4. Data Analyses

Paired reads were assembled using FLASH [26], and the assembled sequences from each sample
were combined into one file using the add_qiime_labels.py script in QIIME [27]. The chimeric
16S and ITS sequences were removed with Vsearch v2.8.0 [28] using the RDP “Gold” database
(https://drive5.com/uchime/gold.fa) and the UNITE/INSD ITS2-only UCHIME reference dataset
v. 7.2 [29] as references, respectively. Next, the nonchimeric sequences with 97% similarity were
clustered into operational taxonomic units (OTUs) using the open-reference OTU picking workflow
pipelines in QIIME [27]. The representative OTU sequences were assigned using the RDP classifier to
identify bacterial taxa against the Greengenes reference database released in August 2013 [30], while
the representative sequences of fungi were identified using the UNITE database [31].

The bacterial and fungal OTU tables were rarefied to the lowest number of sequences using
QIIME [27]. Alpha diversity indices (observed OTUs, Shannon, and Simpson’s index) were calculated
using the alpha_rarefaction.py workflow in QIIME. Principal coordinates analysis (PCoA) based on
the Bray–Curtis distance was conducted and visualized in R using the phyloseq package [32] and
ggplot2 [33]. The Sorenson Similarity Index (Cs) was used to measure the similarity between MBF
and BCF based on the presence and absence of OTUs. The index was calculated as: Cs=2C/(A + B),
where A and B are the number of OTUs in MBF and BCF, respectively, and C is the number of OTUs
shared by the two groups. METAGENassist [34] and FUNGuild [35] were used to assess putative
functional profiles based on the bacterial and fungal community composition of the leaf samples from
moso bamboo. The differences in microbial composition and alpha diversity were analysed using an
independent samples t-test using IBM-SPSS (version 22.0; Chicago IL, USA).

https://drive5.com/uchime/gold.fa
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3. Results

3.1. Compositions of Bacterial and Fungal Communities

After filtering out the low-quality reads and chimeric sequences, 328,471 and 377,590 bacterial
and fungal sequences were obtained from the moso bamboo leaf samples of both MBF and BCF, which
clustered into 2056 and 798 OTUs, respectively, at the 97% similarity cut-off level.

The most abundant bacterial phylum in the moso bamboo leaves was Cyanobacteria, accounting
for an average of 63.38% of the total sequences, followed by Proteobacteria, Bacteroidetes,
Actinobacteria, Firmicutes, Thermi, Acidobacteria, TM7, Planctomycetes, and Armatimonadetes,
which accounted for 23.65, 5.53, 4.13, 0.93, 0.51, 0.45, 0.40, 0.25, and 0.19% of the total sequences,
respectively (Figure 1a). In contrast, only two fungal phyla with an average relative abundance of
>0.1% were detected in the bamboo leaves, with the dominant phylum being Ascomycota, accounting
for an average of 97.72% of the total sequences (Figure 1b), followed by Basidiomycota, which
accounted for 0.72% of the total sequences. At the genus level, fifteen bacterial genera with an
average relative abundance >0.1% were detected (Table 1), i.e., Methylobacterium (7.73%), Hymenobacter
(4.74%), Sphingomonas (4.70%), Deinococcus (0.51%), Kineococcus (0.48%), Spirosoma (0.41%), Beijerinckia
(0.35%), Curtobacterium (0.19%), Friedmanniella (0.17%), Microbacterium (0.16%) and Ralstonia (0.16%).
Based on the classifiable sequences, the fungal reads were primarily assigned to fourteen genera with
an average relative abundance of >0.1%, and these genera were ranked in order of relative abundance
as follows (Table 1): Alatosessilispora (12.66%), Strelitziana (12.10%), Shiraia (1.75%), Cladosporium (1.01%),
Camptophora (0.75%), Geastrumia (0.39%), Mycosphaerella (0.36%), Ramularia (0.35%), Bacidina (0.35%),
Trichomerium (0.27%), Hortaea (0.20%), Hygrocybe (0.14%), and Arthrinium (0.14%).
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Figure 1. Bacterial and fungal compositions at the phylum level in the moso bamboo leaves. (a) Bacterial
phyla with an average relative abundance of greater than 0.1%; (b) Fungal phyla relative abundance.
MBF, adjacent moso bamboo forest; BCF, moso bamboo-chicken farming agroforestry.

At the phylum level, the abundances of the bacterial phyla Bacteroidetes, Actinobacteria, and
TM7 were significantly increased (p < 0.05) and that of Acidobacteria was significantly decreased
(p < 0.05) in the BCF samples compared with those of the MBF (Figure 2a). The bacterial genera
Methylobacterium, Hymenobacter, Kineococcus, Spirosoma, Friedmanniella, Bdellovibrio, and Arthrobacter
were significantly increased in the BCF samples (p < 0.05), while that of Terriglobus was significantly
decreased (p < 0.05) relative to the MBF samples (Table 1). For the fungal communities (Figure 2b,
Table 1), the relative abundances of the taxa Ascomycota, Shiraia, Geastrumia, Mycosphaerella, Bacidina,
and Hortaea were significantly lower (p < 0.05) in the BCF samples than in the MBF samples, while the
relative abundances of the taxa Basidiomycota, Alatosessilispora, Strelitziana, Cladosporium, Camptophora,
Ramularia, Trichomerium, and Arthrinium in the BCF samples were significantly increased (p < 0.05)
compared to those observed in the MBF samples.
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Table 1. Relative abundances of the dominant bacterial and fungal genera in moso bamboo leaves.

Phylum Genus MBF BCF p Value

Bacteria

Proteobacteria Methylobacterium 2.05% ± 1.46% 13.40% ± 3.96% 0.010
Bacteroidetes Hymenobacter 1.84% ± 0.88% 7.64% ± 2.14% 0.012
Proteobacteria Sphingomonas 3.57% ± 2.41% 5.84% ± 2.20% 0.297

[Thermi] Deinococcus 0.00% ± 0.01% 1.02% ± 0.42% 0.052
Actinobacteria Kineococcus 0.08% ± 0.05% 0.88% ± 0.12% 0.003
Bacteroidetes Spirosoma 0.02% ± 0.01% 0.79% ± 0.23% 0.027
Proteobacteria Beijerinckia 0.58% ± 0.46% 0.11% ± 0.07% 0.158
Actinobacteria Curtobacterium 0.11% ± 0.09% 0.26% ± 0.15% 0.203
Actinobacteria Friedmanniella 0.00% ± 0.00% 0.33% ± 0.06% 0.001
Actinobacteria Microbacterium 0.22% ± 0.22% 0.10% ± 0.04% 0.446
Proteobacteria Ralstonia 0.18% ± 0.20% 0.14% ± 0.11% 0.790
Proteobacteria Burkholderia 0.25% ± 0.20% 0.03% ± 0.01% 0.197
Proteobacteria Bdellovibrio 0.08% ± 0.05% 0.17% ± 0.03% 0.039
Acidobacteria Terriglobus 0.20% ± 0.07% 0.04% ± 0.02% 0.019
Actinobacteria Arthrobacter 0.01% ± 0.01% 0.22% ± 0.08% 0.012

Fungi

Ascomycota Alatosessilispora 0.02% ± 0.02% 25.30% ± 2.14% 0.002
Ascomycota Strelitziana 0.03% ± 0.02% 24.17% ± 0.84% 0.000
Ascomycota Shiraia 3.11% ± 0.69% 0.40% ± 0.10% 0.003
Ascomycota Cladosporium 0.11% ± 0.05% 1.91% ± 0.35% 0.001
Ascomycota Camptophora 0.05% ± 0.01% 1.46% ± 0.13% 0.000
Ascomycota Geastrumia 0.76% ± 0.30% 0.02% ± 0.02% 0.013
Ascomycota Mycosphaerella 0.54% ± 0.04% 0.18% ± 0.03% 0.000
Ascomycota Ramularia 0.01% ± 0.01% 0.70% ± 0.15% 0.001
Ascomycota Bacidina 0.69% ± 0.18% 0.01% ± 0.01% 0.003
Ascomycota Trichomerium 0.00% ± 0.00% 0.53% ± 0.05% 0.003
Ascomycota Hortaea 0.40% ± 0.09% 0.00% ± 0.00% 0.015

Basidiomycota Hygrocybe 0.00% ± 0.00% 0.29% ± 0.19% 0.118
Ascomycota Arthrinium 0.07% ± 0.03% 0.20% ± 0.07% 0.043
Ascomycota Didymella 0.06% ± 0.01% 0.14% ± 0.02% 0.006
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3.2. Bacterial and Fungal Community Diversities

The observed OTUs and Simpson’s indices were calculated to estimate the alpha-diversity
characteristics of each sample. As shown in Figure 3, compared with the MBF, the BCF treatment
significantly increased the number of observed OTUs and the Simpson’s indices of the bacterial and
fungal communities associated with bamboo leaves. For the fungal communities, the Shannon index
was significantly higher in BCF than that in MBF (p < 0.05), while no difference (p > 0.05) was observed
between MBF and BCF within the bacterial communities.
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The PCoA based on Bray–Curtis distances revealed that the first principal component (PCoA 1)
explained 79.50% and 99.10% of the variability in the bacterial and fungal community, respectively
(Figure 4a,b). Two different clusters were formed for the MBF and BCF samples with respect to
the bacterial (Sorenson index = 0.51) and fungal (Sorenson index = 0.55) community compositions,
indicating that chicken farming in the bamboo forest caused bacterial and fungal community shifts
associated with the bamboo leaves.
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3.3. Ecological Function Evaluation of the Niche Shift of Leaf-Associated Microbiome

The functional potential of the bacterial and fungal communities associated with moso leaves
was evaluated based on their metabolic processes using METAGENassist [33] and FUNGuild [34],
respectively. The results (Figure 5) showed that the shift in the bacterial niche in the BCF treatment
significantly increased the nutrient cycling pathways, including nitrogen (nitrogen fixation), carbon
(carbon fixation), sulfur (sulfur and sulfide oxidation), and other metabolic processes (propionate
metabolism, aromatic hydrocarbon degradation, naphthalene degradation, and atrazine metabolism).
In contrast, the results showed that the shift in the fungal niche in the BCF treatment significantly
increased the proportion of trophic types of fungi (pathotrophic, pathotrophic–saprotrophic,
saprotrophic–symbiotrophic, pathotrophic–symbiotrophic and saprotrophic taxa), but significantly
decreased the proportion of symbiotrophic fungi in comparison to the MBF treatment (Figure 6).
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4. Discussion

The worldwide biomass of moso bamboo leaves is 2.89–3.65 Mg ha−1, which accounts for 3–5%
of the total aboveground bamboo biomass and changes every two years [36]. Bamboo leaves play an
important role in bamboo forest carbon sequestration, soil nutrient development, and adaptation to
environmental change [37,38]. To the best of our knowledge, the moso bamboo leaf-associated bacterial
and fungal communities have not been well investigated. In this study, the use of high-throughput
sequencing revealed that Cyanobacteria was the dominant bacterial phylum in the leaves of moso
bamboo. A previous study showed that the bamboo species Merostachys neesii had a large number
of cyanobacterial 16S rRNA genes per cm2 of leaf [39]. Cyanobacteria have been suggested to be
capable of both nitrogen and carbon fixation [40,41]. We also observed that Ascomycota was the
most abundant fungal phylum associated with moso bamboo leaves, followed by Basidiomycota.
This finding is in line with that of a previous study in which the endophytic fungi isolated from moso
bamboo seeds belonged to the phyla Ascomycota and Basidiomycota [18], the members of which
are important decomposers that break down dead leaves in forest ecosystems [42,43]. As mentioned
above, the dominant leaf-associated bacterial and fungal phyla may contribute to C and N cycling in
moso bamboo plantation ecosystems. The results of this study also identified fifteen bacterial genera
with a relative abundance greater than 0.1% in the moso bamboo leaves (Table 1), which differs from
the findings obtained using traditional bacterial isolation and culture methods. Yuan et al. [17] isolated
five genera (Pseudomonas, Micrococcus, Dermacoccus, Pantoea, and Streptomyces) from the leaves of moso
bamboo stands in the Wuyi Mountain, Jiangle, and Changting regions of China. However, traditional
culture-based bacterial isolation methods cannot sufficiently identify the bacteria associated with
leaves, especially for the cyanobacteria.

The results of the current study indicated that the introduction of chicken farming into a moso
bamboo forest markedly influenced the moso bamboo leaf-associated microbiome, by increasing
the relative abundance of the taxa Bacteroidetes, Actinobacteria, TM7, Arthrobacter, Kineococcus,
Friedmanniella, Hymenobacter, Methylobacterium, Bdellovibrio, and Spirosoma compared with that
observed in the MBF. Members of the bacterial phylum Bacteroidetes are important contributors
to nutrient turnover because they harbour genes for denitrification, indicating a possible role in
nitrogen cycling [44]. Members of the genus Hymenobacter can be used as plant growth-promoting
bacteria to enhance plant nutritive properties [45]. Methylobacterium and Spirosoma belong to the
class Alphaproteobacteria within the phylum Proteobacteria. Alphaproteobacteria participate in a
variety of metabolic strategies including photosynthesis, nitrogen fixation, ammonia oxidation, and
methylotrophy [46]. The results of previous studies showed that moderate chicken farming in bamboo
forests can significantly improve the soil properties, increasing soil N, organic matter, total P, available
P, total K, and available K [12]. As mentioned above, the shifts in bacterial abundances in moso
bamboo leaves caused by chicken farming may contribute to nutrient cycling. Actinobacteria species
may contribute to their host plants by promoting growth and enhancing their ability to withstand
environmental stresses [47]. Arthrobacter species can promote legume growth by solubilizing iron,
which is then taken up by the plants [48]. Members of the genus Kineococcus are reported to play
roles in the immediate response to stress and/or the recovery from stress [49]. Species of the genus
Methylobacterium are able to interact symbiotically with different plant species, and these interactions
can promote plant growth or induce systemic resistance, increasing plant fitness [50]. Zhu et al. [12]
also observed that chicken farming in bamboo forests may increase the risk of excess phosphorus
input. Thus, the presence of different bacteria may help bamboo trees respond to the excessive
nutrient stress caused by chicken farming. Fries et al. [51] isolated a Spirosoma strain from Zn- and
Cd-accumulating Salix caprea, and Lee et al. [52] reported a novel Spirosoma strain with high gamma
and UVC radiation resistance. In addition, some studies have reported that moso bamboo has a high
metal tolerance [53,54]. Thus, the genus Spirosoma may be associated with moso bamboo with a high
metal tolerance.
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Fungal endophytes have been reported to promote plant growth [55], affect plant resistance
to abiotic and biotic stresses [55–57], and decompose plant litter [58]. Rodriguez and Redman [59]
noted that fungal symbiosis represents significant ecological plasticity, e.g. Colletotrichum species can
express either parasitic or mutualistic lifestyles depending on the host genotype colonized. Similar
to endophytic fungi, epiphytic fungal colonization on the surfaces of plant tissues can protect host
plants from disease [60,61], and can participate in the decomposition of plant litter [62]. In the current
study, BCF was observed to increase the relative abundance of Basidiomycota and decrease that
of Ascomycota associated with moso bamboo leaves compared to that observed in MBF. Previous
studies have shown that species of the phyla Ascomycota and Basidiomycota are important soil fungal
decomposers [63,64]. Members of the phylum Basidiomycota are able to degrade lignocellulose organic
matter [65,66], while members of the phylum Ascomycota have a limited ability to degrade recalcitrant
lignin-containing litter material [67]. The results also indicated that all of the different genera belong
to the phylum Ascomycota, such as Alatosessilispora, Strelitziana, Cladosporium, Camptophora, Ramularia,
Trichomerium, and Arthrinium. Thus, these fungal phyla and genera may contribute to the carbon cycle
in bamboo plantations.

Previous studies observed that animal manure in forest-livestock systems can improve the soil
nutrient status by accelerating N cycling [68,69], although excess manure may result in soil nutrient
erosion and imbalance [70,71]. Zhu et al. [12] observed that chicken trampling can significantly
increase soil bulk density, which causes further environmental stress that impacts plant growth.
The niche shift of leaf-associated bacterial communities in BCF also showed higher potential for
nutrient cycling, which may be related to change in environmental stress. Chicken guts are colonized
by diverse microbial classes including archaea, bacteria, and fungi [72]. Those microbial communities
also contain pathogens [73], and the gastrointestinal pathogens can enter the food chain through
defecation in the farm environment or by fertilization of crops with manure [74]. In this study, we
also found that moso bamboo leaves from the BCF treatment exhibited an increased proportion of
pathotrophic, pathotrophic–saprotrophic and saprotrophic fungi, indicating that chicken farming in
bamboo plantations may lead to a higher risk of fungal-associated diseases. Thus, BCF systems should
include certain management practices such as controlling chicken density, and good sterilization
practices should be undertaken during chicken farming.

5. Conclusions

In summary, introducing chicken farming to a moso bamboo forest markedly changed the
leaf-associated bacterial and fungal communities. The observed bacterial and fungal shifts may
have dual effects. On the one hand, BCF systems may contribute to increased nutrient cycling in moso
bamboo forests and enhance the adaption ability of trees to environmental stresses caused by shifts in
bacterial communities. On the other hand, BCF may increase the risk of fungal-associated diseases.
Therefore, increased attention is required in terms of soil nutrient management and leaf disease control
in BCF systems.
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