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Abstract: Research Highlights: Short-term nitrogen (N) addition did not significantly alter the effects
of seasonal drought on the leaf functional traits in Machilus pauhoi Kanehira seedlings in N-rich
subtropical China. Background and Objectives: Seasonal drought and N deposition are major drivers
of global environmental change that affect plant growth and ecosystem function in subtropical China.
However, no consensus has been reached on the interactive effects of these two drivers. Materials
and Methods: We conducted a full-factorial experiment to analyze the single and combined effects of
seasonal drought and short-term N addition on chemical, morphological and physiological traits of
M. pauhoi seedlings. Results: Seasonal drought (40% of soil field capacity) had significant negative
effects on the leaf N concentrations (LNC), phosphorus (P) concentrations (LPC), leaf thickness (LT),
net photosynthetic rate (A), transpiration rate (E), stomatal conductance (Gs), and predawn leaf
water potential (ψPD), and significant positive effects on the carbon:N (C:N) ratio and specific leaf
area (SLA). Short-term N addition (50 kg N·hm−2·year−1 and 100 kg N·hm−2·year−1) tended to
decrease the C:N ratio and enhance leaf nutrient, growth, and photosynthetic performance because of
increased LNC, LPC, LT, leaf area (LA), SLA, A, E, andψPD; however, it only had significant effects on
LT and Gs. No significant interactive effects on leaf traits were detected. Seasonal drought, short-term
N addition, and their interactions had significant effects on soil properties. The soil total C (STC),
nitrate N (NO3

−-N) and soil total N (STN) concentrations were the main factors that affected the
leaf traits. Conclusions: Seasonal drought had a stronger effect on M. pauhoi seedling leaf traits than
short-term N deposition, indicating that the interaction between seasonal drought and short-term N
deposition may have an additive effecton M. pauhoi seedling growth in N-rich subtropical China.
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1. Introduction

Global environmental change is amongst the most crucial factors that influence the biodiversity,
structure and function of forest ecosystems [1–3]. As the most important drivers of environmental
change, the climate change (especially the drought stress) and atmospheric nitrogen (N) deposition
seriously affect the primary productivity and stability, carbon (C) and water cycles of the forest
ecosystems [3,4]. Plants are subject to periodic atmospheric or soil droughts not only in arid areas
but also in non-arid and semi-arid areas [5], which causes a decrease in the soil water content and
an increase of the plant water deficit. In addition, drought can also decrease the availability of soil
nutrients, resulting in plant N limitation, which stunts growth and increases mortality [4,6,7]. As N
is a limiting element in terrestrial ecosystems [8], elevated N deposition caused by anthropogenic
activities can increase the soil available N, and possibly alleviate N limitation in the ecosystems owing
to high N availability [9,10], which can increase plant aboveground productivity and C sequestration
capacity [11]. However, N deposition can also alter soil nutrient cycle, and increase soil acidification
and cations leaching from the soil [12], resulting in plant nutrient imbalances and further stunting of
growth [13,14].

Plant functional traits link the plants to the environment [15]. Leaves have a relatively large
contact area to the environment, so are most sensitive to environmental conditions [16]. Leaf functional
traits are crucial determinants of plant physiology and biogeochemical cycles [15,17] and are extremely
sensitive to environmental change, reflecting the adaption of plants to their environments and their
self-regulation in complex habitats [18]. Therefore, the responses and adaptation mechanisms of plants
to environmental change are best investigated by using plant leaves as research objects [18]. It is
becoming increasingly recognized that leaf chemical, morphological and physiological traits can be
altered by drought or N deposition alone, as well as their combination [19–23]. For example, plants
usually have a lower specific leaf area (SLA) in response to drought on the global, regional and local
scale [24–28] to maximize C absorption and reduce water consumption [25]. However, plants can also
increase their SLA by reducing leaf thickness (LT) and/or density rather than by decreasing leaf area
(LA) under drought [29]. Therefore, how leaf traits respond to drought and/or N addition is unclear
because of environmental change and species-specific characteristics.

Considerable evidence has been accumulated to demonstrate that drought and N deposition might
affect ecosystem responses in two ways. Firstly, co-occurring drivers can have additive effects (i.e., no
statistically significant effect of the interaction between drought and N deposition is detected) [30],
which can be predicted from single-factor studies [31]. Secondly, the combination of drought and
N deposition may not be additive, but instead may have non-additive effects on plants (i.e., the
interaction is statistically significant), meaning that opposite or synergistic interaction effects may
occur through multi-factor approaches [2,3,20,30,32–35]. Many studies have reported that N deposition
increases plant sensitivity to drought stress [2,3,32,34,36,37], because high productivity caused by
N fertilization may decrease plants’ drought resistance and increase mortality [30]. However, N
deposition may alleviate the negative effects of drought stress on plants [19,38], but no consistent
conclusion on this matter has been summarized yet. The seedling stage is the most vulnerable stage in
a plant’s life history; and is particularly sensitive to environmental change [20,39,40]. Therefore, it is of
great significance to study how the functional traits of seedling leaves respond to the combined effects
of drought stress and N deposition.

Extensive evergreen broadleaf forests are widely distributed in southern China [41], where
frequent seasonal droughts have occurred in recent decades [42] accompanied by high N deposition.
Southern China, generally known as “the oasis of the subtropical zone”, is characterized by a
subtropical moist monsoon climate, whereas other subtropical regions have more arid climates.
Therefore, it is essential to investigate the ecological effects of atmospheric N deposition and seasonal
drought on forest plants in China’s subtropical region.
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Machilus pauhoi Kanehira is amongst the most dominant evergreen broadleaf tree species in
subtropical China. It is distributed in Fujian, Zhejiang, Jiangxi, Anhui, Hunan, Guangdong, Guangxi
and other provinces in China [43]. As it is widely used and has high economic value, it has attracted
much attention. Subject to changes in precipitation, seasonal droughts often occur in the range of
M. pauhoi [44], as well as high N deposition. We evaluated how seasonal drought and N addition
interactively affected the leaf nutrients, morphology, and photosynthetic physiology of M. pauhoi
seedlings. A full-factorial experiment of short-term N addition and drought treatment was conducted
to explore two key questions: (1) Does short-term seasonal drought have a significant effect on leaf
functional traits in M. pauhoi seedlings? (2) Does short-term N deposition aggravate the effects of
seasonal drought on the leaf functional traits of M. pauhoi seedlings in N-rich subtropical China? The
results are expected to facilitate a better understanding of the adaptive strategy of M. pauhoi to its
habitat, and provide a scientific guidance to further investigate plants’ response mechanisms to global
environmental changes.

2. Materials and Methods

2.1. Experimental Design

The study was conducted at the Forestry Technology Center of Shunchang County (117◦48′

E, 26◦48′ N), Nanping City, Fujian Province, southern China. It is characterized by a subtropical
moist monsoon climate, with an annual average temperature of 18.9 ◦C, a coldest monthly average
temperature of 7.9 ◦C in January, and a hottest monthly average temperature of 28.1 ◦C in July.
The average annual precipitation ranges from 1600 to 1900 mm and is concentrated from February
to September. The annual frost-free period is 305 days, with an average sunshine duration of about
1741 hours.

Southern China has experienced frequent seasonal drought in recent decades [42], and the
frequency of summer and autumn droughts in Fujian Province is relatively high [44]. Therefore, in
order to simulate seasonal drought, a full-factorial experiment including drought and N addition was
conducted for three months from August 2014. To eliminate any effects of seedling germplasm resource
differences, the study used one-year-old similar-sized cuttings from the same seed tree in Suichun
County, Jiangxi Province, with an average tree height of 17.95 ± 0.72 (mean ± standard deviation) cm
and an average basal diameter of 3.12 ± 0.75 (mean ± standard deviation) mm [45]. Seedlings were
transplanted into polyvinyl chloride pots with an inner diameter of 30 cm and height of 30 cm on
July 1st, 2014. Pots containing one plant each were placed in a greenhouse covered with a sunshade
net (75% shading) for routine water management at 2.5 m above the ground. The experimental pots
contained red soil from Shunchang County. The soil total C, N, and phosphorus (P) concentrations
were 4.35 mg·g−1, 1.24 mg·g−1, and 0.14 mg·g−1, respectively, and the pH was 4.67.

The N addition and drought treatments were conducted from 1 August 2014 to 31 October 2014. N
deposition in Fujian Province in southeastern China has been about 50 kg·hm−2·year−1 in recent years,
so the seedlings were arranged in three N addition levels: 0 (control, N0), 50 kg N·hm−2·year−1 (low N,
N1), and 100 kg N·hm−2·year−1 (high N, N2) [45]. The drought treatments were set at two levels: 80%
of soil field capacity (control with a normal water supply, D0) and 40% of soil field capacity (drought
stress, D) [45]. Therefore, there were six treatments in total: D0N0 (control), D0N1 (low N addition),
D0N2 (high N addition), DN0 (drought treatment, no N), DN1 (combined treatment of drought and
low N), and DN2 (combined treatment of drought and high N). Three replicates were included for
each treatment, with 10 seedlings in each replicate. N was added with ammonium nitrate (NH4NO3),
and the soil surface area was calculated based on the 30-cm inner diameter of the experimental pot.
The amount of N added per pot was calculated using this area (N1 treatment 1.01 g NH4NO3; N2

treatment 2.02 g NH4NO3). The total amount of NH4NO3 was divided into six equal parts, and each
part was added every two weeks for three months. NH4NO3 was dissolved in 10 mL of distilled
water and uniformly applied with a pipetting gun. An equal amount of distilled water was used in
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the control treatment. For the drought treatment, soil moisture was monitored and maintained at the
desired soil field capacity, in the way that pots were weighed and watered with distilled water to a
given soil water content every two days. Besides, the soil surfaces of the pots were covered with a
plastic film to prevent water evaporation.

2.2. Leaf Sampling and Functional Traits Determination

In October 2014, the predawn leaf water potential (ψPD, Mpa) and midday leaf water potential
(ψM, Mpa) were determined using a Dewpoint Potential Meter (WP4C, Decagon, Pullman, WA, USA)
at 4:00 a.m. and 12:00 p.m., respectively. Photosynthetic parameters were measured using a portable
CIRAS-3 photosynthesis system (PP Systems, Amesbury, MA, USA). Measurements were conducted
from 08:00 a.m. to 10:30 a.m. to avoid midday stomatal closure. The temperature and relative humidity
in the leaf chamber were kept at ambient values. The net photosynthetic rate (A, µmol CO2·m−2·s−1),
transpiration rate (E, mmol H2O·m−2·s−1), stomatal conductance (Gs, mmol H2O·m−2·s−1), and
intercellular carbon dioxide (CO2) concentrations (Ci, µmol CO2·mol−1) of upper, fully expanded,
healthy leaves from three seedlings in each treatment were measured. The instantaneous water use
efficiency (WUE, µmol CO2·mmol−1 H2O) was calculated as the ratio of the net photosynthetic rate to
the transpiration rate [46].

Sample leaves were collected at the end of the experiment in October 2014. Relatively complete,
fully expanded, and well-grown leaves (including petioles) without pests or diseases were selected
from the experimental seedlings and taken to the laboratory.

A Vernier caliper with an accuracy of 0.01 mm was used to measure three thicknesses of the leaves
(top, middle and bottom) at an intermediate position between the border and the midrib (avoiding
important secondary veins) [47], and the average was used as the single LT (mm). A LI-3000C portable
leaf-area meter (Li-Cor, Lincoln, NE, USA) was used to measure LA (cm2) [47]. The leaf fresh weight
(FW) was immediately recorded, and the saturated weight (SW) was determined after soaking leaf
samples in deionized water for 24 h in the dark [19]. Subsequently, the leaf samples were oven-dried
at 65 ◦C to a constant weight and the dry weight (DW) was determined. Three seedlings with similar
average basal diameters and tree heights were selected for each treatment, and the average of three
measurements was used to determine leaf morphological traits. The SLA (cm2·g−1) was calculated as
the ratio of LA to leaf DW [22,47]. The leaf relative water content (LRWC, %) was calculated in the
following manner: LRWC = (FW − DW)/(SW − DW) × 100% [19,48].

The dried leaf samples were ground into a fine powder using a sample grinder and screened with
a 1-mm sieve for chemical analysis. Leaf C and N concentrations per dry mass (LCC and LNC, mg·g−1)
were determined using a CHNS/O Elemental Analyzer (Vario EL III, Elementar, Langenselbold,
Germany) [49,50]. Leaf P concentrations per dry mass (LPC, mg·g−1) were determined using a
Continuous Flow Analytical System (SAN ++, Skalar, Breda, Holland) after digestion and boiling in a
solution of H2SO4-HClO4 [49]. Their stoichiometric ratios were then calculated.

2.3. Soil Sampling and Physicochemical Properties Determination

After leaf sampling, soil from the pots where leaves were sampled was sampled using a steel
shovel. The soil samples were passed through a 2-mm sieve and divided into two parts. One part of
the fresh soil was used to colorimetrically determine nitrate N (NO3

−-N, mg·kg−1) and ammonium
N (NH4

+-N, mg·kg−1) concentrations using an autoanalyser (SEAL-AA3, Hamburg, Germany) after
extraction with a 2 M KCl solution [50]. The other part was air-dried to measure the pH and total C
and N concentrations. Soil pH was determined using a pH meter, with a soil:water ratio of 1:2.5 [49].
The soil total C and N concentrations (STC and STN, respectively, mg·g−1) were determined using a
CHNS/O Elemental Analyzer (Vario EL III, Elementar, Langenselbold, Germany) [49,50].
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2.4. Data Analysis

The leaf functional traits’ responses to N addition and drought were measured as the magnitude
of treatment effect (MTE). The MTE was calculated as MTE = (Xt − Xc)/(Xt + Xc), where Xt is the
leaf trait value (except for ψPD with a negative numerical value) for the N addition or (and) drought
treatment, and Xc is the leaf trait value for the control treatment [2]. The MTE of ψPD was calculated as
MTE = (Xc − Xt)/(Xc + Xt). The numerical value ranges from −1 to 1 [2].

A Principal Component Analysis (PCA) was conducted to identify important traits using Canoco
5.0 software (Microcomputer Power, Ithaca, NY, USA). Before conducting an analysis of variance
(ANOVA), the variance of the data was tested by Levene’s homogeneity test. If the variance was
homogeneous, one-way ANOVA with Least Significant Difference (LSD) post-hoc tests were performed.
If the variance was heterogeneous, a nonparametric Kruskal-Wallis test was performed [51]. The C:N
ratio did not meet the assumption of variance homogeneity, so a nonparametric Kruskal-Wallis test
was adopted. A two-way ANOVA was used to analyze drought treatment, N addition and their
interactive effects. Based on stepwise linear regression analysis between soil variables and leaf traits,
the multi-collinearity among soil variables was detected in the case that variables with the square root
of variance inflation factor (

√
VIF) higher than 2 were excluded [52]. Path analysis was then used

to analyze the direct and indirect effects from independent variables (soil variables) to dependent
variables (leaf traits) [53]. The ANOVA analysis and path analysis were both conducted using SPSS
24.0 software (SPSS Inc., Chicago, IL, USA). Origin 9.0 software (Origin Lab Corp., Northampton, MA,
USA) was used to create the figures. Differences at p < 0.05 were considered significant. The data are
presented as means ± standard deviations in the figures.

3. Results

3.1. Effects of Drought Treatment, N Addition and their Interaction on Leaf Functional Traits

For leaf chemical traits, the first PCA axis accounted for 67.80% of the total variation, with strong
loadings of LNC, C:N ratio and LPC (in descending order) (Table S1, Figure 1). The second PCA
axis accounted for 22.62% of the total variation, with strong loadings of the C:P ratio, N:P ratio, LPC,
and LCC (in descending order) (Table S1, Figure 1). For leaf physiological traits, the first PCA axis
accounted for 59.07% of the total variation, with strong loadings of E, A, Gs, and ψPD (in descending
order) (Table S1, Figure 1). The second PCA axis accounted for 17.89% of the total variation, with
strong loadings of Ci and WUE (in descending order) (Table S1, Figure 1). Therefore, LNC, C:N ratio,
and LPC were selected as chemical traits, and E, A, Gs, and ψPD were selected as physiological traits.
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Drought treatments decreased leaf trait values in comparison with the non-drought treatments, 
except for the C:N ratio and SLA (Table S2, Figure 2). N addition increased LNC, LPC, LT, SLA, A, E, 
and ψPD in comparison with non-N addition but decreased the C:N ratio and Gs (Table S2, Figure 2). 
No significant differences in LNC, LPC, C:N ratio, or LA were found among the treatments, but 

Figure 1. Principal component analysis of leaf chemical and physiological traits in Machilus pauhoi
seedlings. Leaf C concentrations (LCC); Leaf N concentrations (LNC); Leaf P concentrations (LPC);
Leaf C:N ratio (C:N ratio); Leaf C:P ratio (C:P ratio); Leaf N:P ratio (N:P ratio); Net photosynthetic rate
(A); Transpiration rate (E); Stomatal conductance (Gs); Predawn leaf water potential (ψPD); Water use
efficiency (WUE); Midday leaf water potential (ψM); Intercellular CO2 concentrations (Ci); Leaf relative
water content (LRWC). Each point indicates one replicate.

Drought treatments decreased leaf trait values in comparison with the non-drought treatments,
except for the C:N ratio and SLA (Table S2, Figure 2). N addition increased LNC, LPC, LT, SLA, A, E,
and ψPD in comparison with non-N addition but decreased the C:N ratio and Gs (Table S2, Figure 2).
No significant differences in LNC, LPC, C:N ratio, or LA were found among the treatments, but
there were significant differences in LT, SLA, A, E, Gs, and ψPD among them (Table S2, Figure 2).
The highest LT value was recorded in the D0N2 treatment (0.59 ± 0.05 mm) and the lowest in the DN0

treatment (0.39 ± 0.05 mm) (Table S2, Figure 2). The highest SLA value was in the DN0 treatment
(186.99 ± 6.04 cm2·g−1), and the lowest in the D0N0 treatment (142.91 ± 3.07 cm2·g−1) (Table S2,
Figure 2). The highest A was in the D0N1 treatment (14.85 ± 3.24 µmol CO2·m−2·s−1), and the
lowest in the DN2 treatment (1.38 ± 1.28 µmol CO2·m−2·s−1) (Table S2, Figure 2). The highest E, Gs,
and ψPD values were in the D0N1 treatment (3.90 ± 0.48 mmol H2O·m−2·s−1, 363.83 ± 45.32 mmol
H2O·m−2·s−1, −0.04 ± 0.02 Mpa, respectively), and the lowest in the DN2 treatment (0.83 ± 0.35
mmol H2O·m−2·s−1, 39.67 ± 21.83 mmol H2O·m−2·s−1, −0.85 ± 0.08 Mpa, respectively) (Table S2,
Figure 2).

Drought treatment had significant effects on the leaf traits, except LA (Table S3, Figure 2), whereas
N addition only significantly affected LT and Gs (Table S3, Figure 2). The interaction between drought
treatment and N addition had no significant effect on the leaf traits (Table S3, Figure 2).
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Figure 2. Differences in leaf functional traits of M. pauhoi seedlings among different treatments (mean 
± standard deviation). (a) Leaf N concentrations; (b) Leaf P concentrations; (c) Leaf C:N ratio; (d) 
Leaf thickness; (e) Leaf area; (f) Specific leaf area; (g) Net photosynthetic rate; (h) Transpiration rate; 
(i) Stomatal conductance; (j) Predawn leaf water potential. Normal water supply (D0); Drought 
treatment (D); No N addition (N0); Low N addition (N1); High N addition (N2). Note: * p < 0.05; ** p < 
0.01; *** p < 0.001, ns p > 0.05. 
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Figure 2. Differences in leaf functional traits of M. pauhoi seedlings among different treatments (mean
± standard deviation). (a) Leaf N concentrations; (b) Leaf P concentrations; (c) Leaf C:N ratio; (d) Leaf
thickness; (e) Leaf area; (f) Specific leaf area; (g) Net photosynthetic rate; (h) Transpiration rate; (i)
Stomatal conductance; (j) Predawn leaf water potential. Normal water supply (D0); Drought treatment
(D); No N addition (N0); Low N addition (N1); High N addition (N2). Note: * p < 0.05; ** p < 0.01; *** p
< 0.001, ns p > 0.05.
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3.2. Treatment Effects of Drought, N Addition, and their Interaction on Leaf Functional Traits

The responses of leaf functional traits to drought treatment and N addition were further analyzed
by measuring their MTE. Short-term low and high N addition had positive effects on LNC, LPC, LT, LA,
SLA, A, E, and ψPD (Figure 3a–c). In comparison with the control treatment, low N addition increased
these parameters by 2.22%, 2.77%, 14.88%, 7.83%, 4.22%, 17.55%, 13.04%, and 41.46%, respectively,
and high N addition by 8.55%, 2.45%, 17.73%, 3.78%, 4.31%, 7.48%, 7.69%, and 16.00%, respectively
(Figure 3a–c). Short-term low N and high N addition had negative effects on the C:N ratio by decreasing
it by 2.16% and 8.11%, respectively, in comparison with the control treatment (Figure 3a). A positive
effect of low N addition on Gs was found, which increased by 11.29% in comparison with the control
treatment (Figure 3c), whereas high N addition had a negative effect on Gs and decreased it by 1.31%
in comparison with the control treatment (Figure 3c). Short-term drought stress had negative effects
on LNC, LPC, LT, LA, A, E, Gs, and ψPD, the values of which were 3.22%, 2.25%, 2.93%, 5.25%, 76.55%,
53.19%, 74.26%, and 75.42% lower, respectively, than those of the control treatment, and positive
effects on the C:N ratio and SLA, with 13.36% and 3.24% higher values, respectively, than the control
treatment (Figure 3a–c). There were positive interactions between drought and low N addition and
between drought and high N addition on the C:N ratio, LT, and SLA. The interaction between drought
and low N addition increased the C:N ratio, LT, and SLA by 2.96%, 2.77%, and 12.31%, respectively, in
comparison with the control treatment, while the interaction between drought and high N addition
increased them by 4.00%, 2.38% and 11.96%, respectively (Figure 3a,b). However, the effects on LNC,
LPC, LA, A, E, Gs, and ψPD were negative. The interaction between drought and low N addition
decreased LNC, LPC, LA, A, E, Gs, and ψPD by 2.78%, 3.91%, 6.79%, 46.20%, 44.58%, 71.60% and
77.95%, respectively, in comparison with the control treatment, while the interaction between drought
and high N addition decreased them by 3.91%, 0.77%, 18.33%, 68.24%, 56.52%, 75.94%, and 79.65%,
respectively (Figure 3a–c).
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LPC, LT, LA, SLA, A, E, and ψPD (Figure 3a, b, c). In comparison with the control treatment, low N 
addition increased these parameters by 2.22%, 2.77%, 14.88%, 7.83%, 4.22%, 17.55%, 13.04%, and 
41.46%, respectively, and high N addition by 8.55%, 2.45%, 17.73%, 3.78%, 4.31%, 7.48%, 7.69%, and 
16.00%, respectively (Figure 3a, b, c). Short-term low N and high N addition had negative effects on 
the C:N ratio by decreasing it by 2.16% and 8.11%, respectively, in comparison with the control 
treatment (Figure 3a). A positive effect of low N addition on Gs was found, which increased by 
11.29% in comparison with the control treatment (Figure 3c), whereas high N addition had a 
negative effect on Gs and decreased it by 1.31% in comparison with the control treatment (Figure 3c). 
Short-term drought stress had negative effects on LNC, LPC, LT, LA, A, E, Gs, and ψPD, the values of 
which were 3.22%, 2.25%, 2.93%, 5.25%, 76.55%, 53.19%, 74.26%, and 75.42% lower, respectively, 
than those of the control treatment, and positive effects on the C:N ratio and SLA, with 13.36% and 
3.24% higher values, respectively, than the control treatment (Figure 3a, b, c). There were positive 
interactions between drought and low N addition and between drought and high N addition on the 
C:N ratio, LT, and SLA. The interaction between drought and low N addition increased the C:N 
ratio, LT, and SLA by 2.96%, 2.77%, and 12.31%, respectively, in comparison with the control 
treatment, while the interaction between drought and high N addition increased them by 4.00%, 
2.38% and 11.96%, respectively (Figure 3a, b). However, the effects on LNC, LPC, LA, A, E, Gs, and 
ψPD were negative. The interaction between drought and low N addition decreased LNC, LPC, LA, 
A, E, Gs, and ψPD by 2.78%, 3.91%, 6.79%, 46.20%, 44.58%, 71.60% and 77.95%, respectively, in 
comparison with the control treatment, while the interaction between drought and high N addition 
decreased them by 3.91%, 0.77%, 18.33%, 68.24%, 56.52%, 75.94%, and 79.65%, respectively (Figure 
3a, b, c). 
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Figure 3. Magnitude of treatment effect of leaf functional traits of M. pauhoi seedlings in different 
treatment groups. (a) Leaf chemical traits; (b) Leaf morphological traits; (c) Leaf photosynthetic traits. 
Low N addition (N1); High N addition (N2); Drought treatment (D); Combined treatment of drought 
and low N (DN1); Combined treatment of drought and high N (DN2). 

3.3. Effect of Drought Treatment, N Addition and their Interaction on Soil Physicochemical Properties 

Figure 3. Magnitude of treatment effect of leaf functional traits of M. pauhoi seedlings in different
treatment groups. (a) Leaf chemical traits; (b) Leaf morphological traits; (c) Leaf photosynthetic traits.
Low N addition (N1); High N addition (N2); Drought treatment (D); Combined treatment of drought
and low N (DN1); Combined treatment of drought and high N (DN2).

3.3. Effect of Drought Treatment, N Addition and their Interaction on Soil Physicochemical Properties

Soil properties significantly differed among the six treatments (Table S4, Figure 4). Soil pH,
STN and STC in the D0N0 treatment, the soil C:N ratio (SCN) in the DN2 treatment, and NO3

−-N
and NH4

+-N in the D0N1 treatment had the lowest values (Table S4, Figure 4). The pH in the D0N2

treatment, STN in the DN2 treatment, STC in the DN1 treatment, SCN in the D0N2 treatment, and
NO3

−-N and NH4
+-N in the DN1 treatment had the highest values (Table S4, Figure 4). Significant

effects of N addition on pH, STN, SCN, NO3
−-N and NH4

+-N were detected, but not on STC (Table S5,
Figure 4). Drought treatment as well as the interaction between drought treatment and N addition had
significant effects on all of the soil properties (Table S5, Figure 4).
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Soil properties significantly differed among the six treatments (Table S4, Figure 4). Soil pH, STN 
and STC in the D0N0 treatment, the soil C:N ratio (SCN) in the DN2 treatment, and NO3−-N and 
NH4+-N in the D0N1 treatment had the lowest values (Table S4, Figure 4). The pH in the D0N2 
treatment, STN in the DN2 treatment, STC in the DN1 treatment, SCN in the D0N2 treatment, and 
NO3−-N and NH4+-N in the DN1 treatment had the highest values (Table S4, Figure 4). Significant 
effects of N addition on pH, STN, SCN, NO3−-N and NH4+-N were detected, but not on STC (Table S5, 
Figure 4). Drought treatment as well as the interaction between drought treatment and N addition 
had significant effects on all of the soil properties (Table S5, Figure 4). 
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Figure 4. Differences of soil properties among different treatments (mean ± standard deviation). (a) 
Soil pH; (b) Soil total N concentrations; (c) Soil total C concentrations; (d) Soil C:N ratio; (e) Nitrate 
N concentrations; (f) Ammonium N concentrations. Normal water supply (D0); Drought treatment 
(D); No N addition (N0); Low N addition (N1); High N addition (N2). Note: * p < 0.05; ** p < 0.01; *** p 
< 0.001. 

3.4. Main Soil Factors Affecting Leaf Functional Traits 

Figure 4. Differences of soil properties among different treatments (mean ± standard deviation). (a)
Soil pH; (b) Soil total N concentrations; (c) Soil total C concentrations; (d) Soil C:N ratio; (e) Nitrate
N concentrations; (f) Ammonium N concentrations. Normal water supply (D0); Drought treatment
(D); No N addition (N0); Low N addition (N1); High N addition (N2). Note: * p < 0.05; ** p < 0.01;
*** p < 0.001.

3.4. Main Soil Factors Affecting Leaf Functional Traits

A path analysis was conducted in order to ascertain which soil factors mainly affected leaf traits.
The correlation between pH and STC was the highest, with the regression coefficient (R) of 0.662;
followed by STC and NO3

−-N, with R of 0.508 (Figure 5). With regard to the correlation between
leaf traits and soil properties, for LPC, LT, and A, high correlation was detected in NO3

−-N, STC,
and STN, respectively (Figure 5). For SLA, E, Gs, and ψPD, high correlation was all detected in STN
and NO3

−-N (Figure 5). For LPC, NO3
−-N had the greatest direct effect, and STC had the greatest

indirect effect through NO3
−-N (Table 1). For LT, STC had the greatest direct effect, and NO3

--N had
the greatest indirect effect through STC. For SLA, the direct effect of STN was slightly greater than
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that of NO3
−-N, and the indirect effect of NO3

−-N through STN was slightly greater than that of
STN. For A, STN had a direct effect, but no indirect effect was detected. For E and Gs, STC had the
greatest direct effect, and STC had the greatest indirect effect through pH, STN, and NO3

−-N. For ψPD,
NO3

−-N had the greatest direct effect, and STC had the greatest indirect effect through pH, STN, and
NO3

−-N. For LPC, E, Gs, and ψPD, the contribution on NO3
−-N to the R2 was the highest (Table 1).

For LT, the contribution on STC to the R2 was the highest (Table 2). For SLA, the contribution on STN
to the R2 was slightly higher than that of NO3

−-N (Table 2). Therefore, STC, NO3
−-N, and STN were

the main factors that affected the leaf traits of M. pauhoi seedlings.

A path analysis was conducted in order to ascertain which soil factors mainly affected leaf 
traits. The correlation between pH and STC was the highest, with the regression coefficient (R) of 
0.662; followed by STC and NO3−-N, with R of 0.508 (Figure 5). With regard to the correlation 
between leaf traits and soil properties, for LPC, LT, and A, high correlation was detected in NO3−-N, 
STC, and STN, respectively (Figure 5). For SLA, E, Gs, and ψPD, high correlation was all detected in 
STN and NO3−-N (Figure 5). For LPC, NO3−-N had the greatest direct effect, and STC had the 
greatest indirect effect through NO3−-N (Table 1). For LT, STC had the greatest direct effect, and 
NO3--N had the greatest indirect effect through STC. For SLA, the direct effect of STN was slightly 
greater than that of NO3−-N, and the indirect effect of NO3−-N through STN was slightly greater 
than that of STN. For A, STN had a direct effect, but no indirect effect was detected. For E and Gs, 
STC had the greatest direct effect, and STC had the greatest indirect effect through pH, STN, and 
NO3−-N. For ψPD, NO3−-N had the greatest direct effect, and STC had the greatest indirect effect 
through pH, STN, and NO3−-N. For LPC, E, Gs, and ψPD, the contribution on NO3−-N to the R2 was 
the highest (Table 1). For LT, the contribution on STC to the R2 was the highest (Table 2). For SLA, 
the contribution on STN to the R2 was slightly higher than that of NO3−-N (Table 2). Therefore, STC, 
NO3−-N, and STN were the main factors that affected the leaf traits of M. pauhoi seedlings. 

 
Figure 5. Correlations between M. pauhoi seedling leaf traits and soil properties. Soil pH (pH); Soil 
total C concentrations (STC); Soil total N concentrations (STN); Nitrate N concentrations (NO3−-N); 
Leaf P concentrations (LPC); Leaf thickness (LT); Specific leaf area (SLA); Net photosynthetic rate 
(A); Transpiration rate (E); Stomatal conductance (Gs); Predawn leaf water potential (ψPD). Values 
above arrows indicate correlation coefficients between soil properties and leaf traits. 

 

Figure 5. Correlations between M. pauhoi seedling leaf traits and soil properties. Soil pH (pH); Soil
total C concentrations (STC); Soil total N concentrations (STN); Nitrate N concentrations (NO3

−-N);
Leaf P concentrations (LPC); Leaf thickness (LT); Specific leaf area (SLA); Net photosynthetic rate (A);
Transpiration rate (E); Stomatal conductance (Gs); Predawn leaf water potential (ψPD). Values above
arrows indicate correlation coefficients between soil properties and leaf traits.
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Table 1. Path analysis of Machilus pauhoi seedling leaf traits and soil properties.

Leaf Traits Variables Correlation
Coefficients

Direct
Effect

Indirect Effect

Total Indirect
Effect pH STN STC NO3

−-N NH4
+-N

Nutrient LPC
STC 0.085 0.505 −0.420 — — — −0.420 —

NO3
−-N −0.571 −0.827 0.257 — — 0.257 — —

Morphology
LT

STC 0.527 0.896 −0.368 — — — −0.368 —
NO3

−-N −0.270 −0.725 0.455 — — 0.455 — —

SLA
STN 0.569 0.498 0.071 — — — 0.071 —

NO3
−-N 0.543 0.466 0.076 — 0.076 — — —

Photosynthetic
physiology

A STN −0.524 −0.524 — — — — — —

E

pH −0.111 −0.546 0.436 — −0.058 0.651 −0.158 —
STN −0.583 −0.280 −0.302 −0.113 — −0.053 −0.136 —
STC 0.185 0.984 −0.798 −0.361 0.015 — −0.452 —

NO3
−-N −0.530 −0.890 0.360 −0.097 −0.043 0.500 — —

Gs

pH −0.221 −0.662 0.442 — −0.051 0.661 −0.168 —
STN −0.581 −0.244 −0.336 −0.137 — −0.054 −0.146 —
STC 0.090 0.998 −0.908 −0.438 0.013 — −0.483 —

NO3
−-N −0.599 −0.951 0.352 −0.117 −0.037 0.507 — —

ψPD

pH −0.226 −0.491 0.265 — −0.082 0.497 −0.150 —
STN −0.666 −0.395 −0.271 −0.102 — −0.041 −0.129 —
STC 0.017 0.750 −0.733 −0.325 0.021 — −0.429 —

NO3
−-N −0.621 −0.845 0.234 −0.087 −0.060 0.381 — —

Note: Path coefficients of direct effect are simple, standardized regression coefficients. Results of stepwise linear regression and multi-collinearity are in Table S6 in supplementary
materials. NH4

+-N with
√

VIF higher than 2 was excluded from Gs path analysis.
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Table 2. Determination coefficients (R2) between M. pauhoi seedling leaf traits and soil properties and the contribution of each soil variable to the R2.

Leaf Traits Variables
Determination Coefficient (R2)

Contribution to R2

pH STN STC NO3
−-N

Nutrient LPC
STC 0.255 −0.424 0.043

NO3
−-N 0.684 0.472

Error term e 0.485

Morphology

LT
STC 0.803 −0.660 0.472

NO3
−-N 0.526 0.196

Error term e 0.332

SLA
STN 0.248 0.071 0.283

NO3
−-N 0.217 0.253

Error term e 0.464

Photosynthetic
physiology

A
STN 0.275 0.275

Error term e 0.725

E

pH 0.298 0.063 −0.711 0.172 0.061
STN 0.078 0.030 0.076 0.163
STC 0.968 −0.890 0.182

NO3
−-N 0.792 0.472

Error term e 0.122

Gs

pH 0.438 0.067 −0.875 0.223 0.146
STN 0.060 0.026 0.071 0.142
STC 0.996 −0.964 0.090

NO3
−-N 0.904 0.570

Error term e 0.052

ψPD

pH 0.241 0.080 −0.488 0.147 0.111
STN 0.156 0.032 0.102 0.263
STC 0.563 −0.644 0.013

NO3
−-N 0.714 0.525

Error term e 0.088
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4. Discussion

4.1. Response to Drought Stress

Tree species growing in humid habitats are generally considered sensitive to drought stress [54].
Drought treatment had a negative but not significant effect on the LA of M. pauhoi seedlings,
which corroborates previous findings, demonstrating that the M. pauhoi seedlings decreased LA and
transpiration to prevent cell turgor and ψPD reduction in response to drought stress. LT is associated
with resource acquisition, water conservation and CO2 assimilation [22]. Plants usually increase LT to
cope with drought [22], which is inconsistent with our results, as we found a significant negative effect
of drought stress on LT. It is possible that drought stress affected the seedlings’ water metabolism
and decreased their ψPD. Leaf water deficit hindered the growth and division of mesophyll cells and
reduced the gaps between cells and compacted them, indicating that M. pauhoi leaves preserve and
make full use of the limited water available under drought conditions by reducing E. This may be a
typical economic adaptation.

Considerable evidence has been accumulated to demonstrate that plants increase leaf mass
per area (LMA) (or decrease SLA) in response to drought on the global scale [25], reflecting the
adaptive strategies employed by plants to maximize C absorption and reduce water consumption [25].
The relatively consistent results also apply on regional and local scales [26–28]. However, our results
were contrary to previous findings, but agreed with the findings reported by [20,29]. M. pauhoi seedlings
significantly increased SLA by reducing LT and/or density more than decreasing LA under drought,
as previously suggested [29], indicating a tradeoff between leaf investment and survival under limited
photosynthetic conditions. Elevated SLA is beneficial to M. pauhoi seedlings because it improves
leaf structure efficiency in response to drought stress, so compensates for leaf biomass allocation
reduction [55]. In addition, a larger SLA shortens the distance from stomatal pores to carboxylation
sites, thus counteracting the resistance of mesophyll and stomata [56]. M. pauhoi seedlings decreased
LT under drought stress. SLA is negatively correlated with LT [22], which corresponds well in our
observations for M. pauhoi seedlings (R2 = −0.474, p < 0.01). Accordingly, it was confirmed that the
M. pauhoi seedlings increased SLA in response to drought stress. SLA and LNC are two vital traits
correlated closely with C gain and the maximum assimilation rate [15], but our results do not support
a positive relationship between them [22]. Drought treatment significantly decreased LNC, which
decreased LPC, because N is tightly coupled with P [57–59].

Drought treatment significantly decreased A, E, Gs and ψPD, mainly due to the fact that
drought-associated soil water shortage leads to CO2 limitation through stomata closure (a decrease
in Gs) and metabolic constraints [35,60]. Specifically, soil water shortage attributed to drought has
a negative effect on N metabolism by regulating the activities of crucial enzymes that participate in
N assimilation and catabolism, which results in damage to cell membranes and further decreases
photosynthetic capacity [35,61].

4.2. Response to N Addition

Our results indicated N addition (50 kg N·hm−2·year−1 or 100 kg N·hm−2·year−1) increased
LNC, LPC, LT, LA, SLA, A, E, and ψPD in M. pauhoi seedlings, indicating that appropriate N addition
promotes their growth, but no significant effects were detected except for LT and Gs. Previous studies
showed that N addition of 100 kg N·hm−2·year−1 increases the LA of Acer truncatum Bunge seedlings,
but when N addition exceeds 200 kg N·hm−2·year−1, LA decreases [62]. Appropriate N input (20, 40,
or 60 kg N·hm−2·year−1) improves the growth of Fraxinus mandshurica Ruprecht seedlings, but when
N addition is above 80 kg N·hm−2·year−1, growth is inhibited [63]. The threshold was considered
as “N critical load”, that was, the ecosystems can tolerate N addition without any obviously adverse
effects [64]. The critical N capacity varies with ecosystem type, study area, and forest type. Therefore,
it is reasonable to infer that N input of 100 kg N·hm−2·year−1 may not reach the N critical load.
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Therefore, more attention should be paid to atmospheric N deposition in the range of M. pauhoi in
order to evaluate any negative effects caused by N deposition.

N addition increased LT, LA and SLA, which is consistent with numerous previous
findings [26,65,66]. SLA (the reciprocal of LMA) indicates captured light resources on LA per
unit leaf dry matter investment, which is closely related to plants’ light interception efficiency [15].
N addition increased SLA, as documented previously [63,65], possibly because it promoted growth
and thus increased leaf photosynthesis [21], accelerated the resource cycle to increase resource capture
efficiency [67], or reduced the availability of canopy light to increase the SLA [68]. Elevated LT, LA,
and SLA caused by N fertilization suggests that M. pauhoi leaves have a higher resource acquisition
ability and relative growth rate (characterized by having a reduced dry matter investment per unit LA)
under exogenous N input.

N addition increased the LNC of M. pauhoi seedlings by increasing the soil available N (the sum
of NO3

−-N and NH4
+-N) [21,69], as identified previously [27,50,59,65,70,71]. We also found that N

addition increased the LPC, as reported by [72], but contrary to other results [27,73]. There are two
possible explanations for the increase in LPC caused by N addition. Firstly, N is tightly coupled with
P from cell to ecosystem [57–59], so the absorption of one affects the availability of the other [74].
Specifically, N addition increased the LPC on account of the close coupling between leaf N and P [59],
leading to increased soil available P concentrations. Secondly, Fujita et al. (2010) suggested that
elevated N input could increase soil P absorption by increasing root phosphatase activity [75]. Plants
can use excess N to assemble more phosphatase under N addition and thus promote the absorption of
soil P, leading to an increase in the LPC [76,77]. Elevated LNC and a relatively stable C level resulted
in a decrease in the C:N ratio under N addition.

N addition increased the photosynthetic performance of the M. pauhoi seedlings by increasing A
and the photosynthetic N use efficiency (PNUE), as previously reported [20,23,78]. Elevated A can be
explained in two ways. Firstly, it may have increased the leaf chlorophyll content [35,63]. Secondly, it
may have increased the LNC possibly fixed in photosynthetic pigments and enzymes, resulting in a
higher A [63]. PNUE that reflects nutrition-related physiological traits of leaves [79], can be used to
evaluate plants’ photosynthetic capacity [78,80].

4.3. Additive or Non-Additive Effects?

Water and N are the main limiting factors for plant growth [81]. No significant interactive effects
of drought stress and N addition on the leaf functional traits of M. pauhoi seedlings were detected,
possibly owing to a tradeoff between water and N input. Under a combination of drought stress and
short-term N addition, LNC, LPC, LA, A, E, Gs, and ψPD decreased, while the SLA and C:N ratio
increased. It reflects that the effect of short-term N deposition on plants is relatively weaker than
that of drought stress, and drought is the main limiting factor [56] that affects the full utilization of
additional N [82]. It is possible that short-term addition of NH4NO3 solution is easily immobilized
and incorporated by C molecules into relatively stable soil organic storage, so is difficult for plants
to absorb by plants [83]. Additionally, the NH4NO3 solution was directly added to the soil in our
experiment, and it takes some time for roots to uptake nutrients from the soil that are then transported
to the leaves. Drought, N addition and their interaction all had significant effects on soil properties,
but N addition and the interaction between N addition and drought had no significant effects on leaf
traits. The response of leaves to N input may indicate a hysteresis effect, which is not immediately
apparent. Therefore, it is reasonable to conclude that short-term N addition does not significantly alter
the effects of seasonal drought on M. pauhoi seedling leaf traits, and the interaction between short-term
drought and N deposition has an additive effect on M. pauhoi seedling leaf traits.

However, because of the different N addition levels, fertilization forms, and drought intensity
and duration, the adaptive strategies of M. pauhoi under different N addition and drought levels differ,
which should be investigated in future studies.
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5. Conclusions

A full-factorial experiment was conducted to analyze the single and combined effects of seasonal
drought and short-term N addition on the chemical, morphological and physiological traits of Machilus
pauhoi seedlings. Seasonal drought (40% of soil field capacity) had significant negative effects on LNC,
LPC, LT, A, E, Gs, and ψPD, and significant positive effects on the C:N ratio and SLA. Short-term N
addition (50 kg N·hm−2·year−1 and 100 kg N·hm−2·year−1) increased LNC, LPC, LT, LA, SLA, A, E,
and ψPD, and decreased the C:N ratio; however, it only had significant effects on LT and Gs. It was
concluded that seasonal drought had a stronger effect on M. pauhoi seedling leaf traits than short-term
N deposition. The interaction between drought and N deposition was additive. Drought, N addition,
and their interaction all had significant effects on soil properties. Path analysis indicated that the
STC, NO3

−-N, and STN were the main factors that affected the leaf traits. In summary, short-term N
addition does not significantly alter the effects of seasonal drought on M. pauhoi seedling leaf traits in
N-rich subtropical China. However, the effects of N fertilization on M. pauhoi seedlings may not be fully
taken into account because of the short experimental duration. Therefore, long-term N fertilization
combined with seasonal drought experiments should be conducted in the future. Our results provide
deeper insights into the adaptive responses of M. pauhoi to its habitat, and lay the groundwork for
future studies that investigate the response mechanisms of plants to global environmental change.
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deviation), Table S5: Results of a two-way ANOVA of drought treatment, N addition, and their interactions on soil
properties; Table S6: Results of stepwise linear regression analysis of leaf functional traits of M. pauhoi seedlings
and soil properties.
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