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Abstract: Individual tree growth models are flexible and commonly used to represent growth
dynamics for heterogeneous and structurally complex uneven-aged stands. Besides traditional
statistical models, the rapid development of nonparametric and nonlinear machine learning methods,
such as random forest (RF), boosted regression tree (BRT), cubist (Cubist) and multivariate adaptive
regression splines (MARS), provides a new way for predicting individual tree growth. However,
the application of these approaches to individual tree growth modelling is still limited and short of
a comparison of their performance. The objectives of this study were to compare and evaluate the
performance of the RF, BRT, Cubist and MARS models for modelling the individual tree diameter
growth based on tree size, competition, site condition and climate factors for larch–spruce–fir mixed
forests in northeast China. Totally, 16,619 observations from long-term sample plots were used.
Based on tenfold cross-validation, we found that the RF, BRT and Cubist models had a distinct
advantage over the MARS model in predicting individual tree diameter growth. The Cubist model
ranked the highest in terms of model performance (RMSEcv [0.1351 cm], MAEcv [0.0972 cm] and
R2

cv [0.5734]), followed by BRT and RF models, whereas the MARS ranked the lowest (RMSEcv

[0.1462 cm], MAEcv [0.1086 cm] and R2
cv [0.4993]). Relative importance of predictors determined

from the RF and BRT models demonstrated that the competition and tree size were the main drivers
to diameter growth, and climate had limited capacity in explaining the variation in tree diameter
growth at local scale. In general, the RF, BRT and Cubist models are effective and powerful modelling
methods for predicting the individual tree diameter growth.

Keywords: random forest; boosted regression tree; cubist; multivariate adaptive regression splines;
tree diameter growth

1. Introduction

Forest growth models are important tools in providing quantitative and reliable information for
forest management decisions making [1,2]. These models can be developed with different resolutions
including stand, diameter class and individual tree levels [3]. Both stand and diameter class growth
models are unable to represent the growth dynamics of individual trees and are only applicable to
homogeneous and even-aged stands [2]. On the other hand, individual tree growth models are flexible
and able to represent the growth dynamics of individual trees, which are commonly used to represent
growth dynamics for the heterogeneous and structurally complex mixed uneven-aged stands [2,4,5].
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Tree growth is often expressed as a function of tree size, competition and site condition [5–9]. Besides
these aforementioned factors, climate factors such as temperature, light and precipitation are not
negligible in determining tree growth [10]. Climate-sensitive tree growth models have also been
developed recently [11–13]. The climate, site condition and competition interactively influence
individual tree growth. Meanwhile, these influences may vary with tree species and size. However,
so far information about contributions of different factors to individual tree growth in mixed forests
is still insufficient, and it is necessary to identify the dominant factors affecting tree growth with
appropriate methods [14].

Traditionally, individual tree diameter growth models related tree growth to stand- and
tree-level variables using statistical models such as linear and nonlinear regression models with
or without random effects [15–18]. These statistical models are often applied under certain statistical
assumptions, such as the data are normally distributed, homoscedastic and independent. However,
due to continuous observations, hierarchy and intrinsic variability of forest growth data, the above
assumptions are usually difficult to satisfy [4]. Moreover, the selection of specific mathematical
equation (model form) and convergence is rather difficult when modelling individual tree growth
in nonlinear form with multiple variables. Therefore, data-driven methods were also applied and
showed their potential such as generalized additive model (GAM) and artificial neural networks
(ANN) [4,19,20].

In contrast to traditional statistical models, machine learning (ML) has the ability to model
complex and nonlinear interactive relationship between the predictor variables and the response
variable without statistical assumptions and predetermined mathematical equations [21]. Many
state-of-the-art ML algorithms have been developed, including classification and regression trees
(CART), random forest (RF), boosted regression tree (BRT), ANN, support vector machine (SVM),
cubist (Cubist) and multivariate adaptive regression splines (MARS). These data-driven methods have
already been successfully applied to ecology and remote sensing to perform tasks such as soil organic
carbon mapping [22], carbon and energy fluxes [23,24], and species distribution [25,26]. However,
the applications in forest growth and yield prediction are still limited. Few applications of these
methods have been found in individual tree growth prediction [4,19]. With the increasing number
of the ML algorithms, the comparison among these methods becomes more important. A direct
comparison of ML algorithms has not yet been attempted in individual tree growth predicting. Unlike
ANN and SVM which are often adversely affected by noninformative predictors and high correlation
among the predictors, RF, BRT, Cubist and MARS models are naturally resistant to noninformative
predictors due to the built-in feature selection mechanisms [27,28]. Highly correlated predictors do not
drastically affect model performance in RF, BRT, Cubist and MARS [27]. In addition, unlike the ANN
and SVM models, the RF, BRT, Cubist and MARS models do not need to pre-process predictors (such
as centralization and standardization), and can well handle the case of many qualitative predictive
variables or qualitative predictive variables with many levels. It is noted that both RF and BRT have
the ability to provide quantitative and reliable measurements of relative importance of variables. Thus,
the information about contributions of different factors to individual tree growth in mixed forests can
be determined using both BRT and RF.

Therefore, the goal of this study is to use machine learning algorithms to predict the individual tree
diameter growth with long-term plot observations of semi-natural mixed larch–spruce–fir-broadleaved
forests in northeast China. The specific objectives were: (1) to compare and evaluate the performance
of the RF, BRT, Cubist and MARS models for tree diameter growth modelling based on tree size,
competition, site condition and climate factors; and (2) to identify the contributions of different factors
to the individual tree diameter growth.
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2. Data and Methods

2.1. Data

2.1.1. Study Area

This study was conducted in long-term permanent plots of larch–spruce fir mixed forests located
in the Wangqing Forestry Bureau, Jilin Province, northeast China (43◦05′–43◦49′ N, 43◦05′–43◦05′ E).
The study area belongs to middle or low hilly area of the Changbai Mountains with elevation ranging
between 360–1477 m above sea level. The mean annual precipitation and temperature were 547 mm
and 3.9 ◦C, respectively.

2.1.2. Permanent Plot Data

Plot data used to develop individual tree diameter growth models were obtained from
20 remeasured permanent plots of semi-natural conifer-broadleaf mixed forests. The area of plots
ranges in size from 0.075 to 0.25 hm−2. All plots, which originated from pure larch (Larix olgensis
Henry) plantation planted in 1962–1964, had become seminatural conifer-broadleaf mixed forests
of larch–spruce–fir. Larch, spruce (Picea jezoensis Carr.) and fir (Abies nephrolepis (Trautv.) Maxim.)
were the dominant tree species. The main associated tree species were classified as three tree species
(groups): Korean pine (Pinus koraiensis Sieb. et Zucc.), slow growing tree species group (acer mono
(Acer mono Maxim.), Manchurian ash (Fraxinus mandshurica Rupr.), tilia amurensis (Tilia amurensis
Rupr.), betula costata (Betula costata Trautv.), amur corktree (Phellodendron amurense Rupr.) and medium
growing tree species group (birch (Betula platyphylla Suk), elm (Ulmus propinqua Koidz.)). Beginning
with the first inventory in the year of 1986, tree- and stand-level characteristics of these permanent
plots have been remeasured periodically with an interval of two or three years from 1986 to 2010.
Characteristics recorded for each tree include DBH above 5 cm, tree species, and status (live, dead,
cut and damage). Site characteristics recorded for each plot include slope, aspect and elevation.
Our analyses focused on the plot data within an interval of any five consecutive years in 25 years
(1986–2010). In total, we received 16,619 observations. Summary statistics of tree- and stand-level
variables were listed in Table 1.

Table 1. Summary statistics of permanent plot data within an interval of any five consecutive years
(n = 16,619).

Variable Mean Sd Minimum Maximum Description

∆D (cm) 0.28 0.21 0 2.04 Individual tree mean annual DBH increment
within an interval of any five consecutive years

N (trees·hm−2) 1017 245 395 1585 The number of trees per hectare
BA (m2·hm−2) 26.26 5.42 14.22 37.37 Basal area per hectare

Dg (cm) 18.31 2.13 13.01 22.95 Average DBH
Slope (◦) 9.25 3.54 6.00 18.00 Slope

Elevation (m) 691.10 62.79 600.00 800.00 Elevation

2.1.3. Climate Data

Basic climate data of 43 weather stations in and around Jilin Province from 1961 to 2010
are provided by the China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn).
The climate data were spatially interpolated using ANUSPLIN software with a spatial resolution
of 300 m × 300 m [29]. For each plot, 44 candidate climatic variables corresponding to individual
tree mean annual DBH increment (∆D) within any five years’ interval were calculated including
temperature, precipitation, illumination and composite climatic factors generated by their interactions
(Table 2). The values of candidate climate variables were the mean of corresponding climatic factors
during the five-year interval.

http://cdc.cma.gov.cn
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Table 2. Description of 44 candidate climatic variables.

Type Variables Description Variables Description

Temperature

Amaxt (◦C) Annual maximum
temperature Amint (◦C) Annual minimum temperature

Amt (◦C) Annual mean temperature Gsdd5 (◦C)
The accumulated temperature is

greater than 5 ◦C in growing
season (April–September)

Gsmaxt (◦C)
Maximum temperature in

growing season
(April–September)

Gsmint (◦C) Minimum temperature in
growing season (4–9 months)

Maxtwm (◦C) The highest temperature in
the hottest month (July) Mmincm (◦C) The lowest temperature of the

coldest month (January)

Mtcm (◦C) The mean temperature of
the coldest month (January) Mtwm (◦C) The mean temperature of the

hottest month (July)

Precipitation

Gsp (mm)
Average precipitation in

growing season
(April–September)

Map (mm) Annual mean precipitation

Msp (mm) Monthly total precipitation Sp (mm) Summer precipitation
(June–August)

Gsrh (%)
Relative humidity in

growing season
(April–September)

Marh (%) Annual mean relative humidity

Illumination Asr (h) Annual total solar radiation
duration Gssr (h)

Solar radiation duration in
growing season

(April–September)

Composite climatic
factors generated by

the interaction of basic
climatic factors

ahm (◦C·mm−1) 1000 × ((Amt + 10)/Map) shm (◦C) Gsmaxt + Maxtwm

amaxtmap
(◦C·mm−1) Amaxt/Map amtmap

(◦C·mm−1) Amt/Map

gsmaxtgsrh
(100 ◦C) (Gsmaxt × Gsrh)/1000 gsmintgsp

(◦C·mm−1) Gsmint/Gsp

gsmintgsrh
(100 ◦C) Gsmint/Gsrh gsmintmap

(◦C·mm−1) Gsmint/Map

gspdd5 (mm·◦C) (Gsp × Gsdd5)/1000 gspgsrh (100 mm) Gsp/Gsrh

gspmtcm (mm·◦C) (Gsp ×Mtcm)/1000 gspgsmint
(mm·◦C) (Gsp × Gsmint)/1000

gsrhgsmint
(100 ◦C) (Gsrh × Gsmint)/1000 mapdd5 (mm·◦C) (Map × Gsdd5)/1000

mapgsmint
(mm·◦C) (Map × Gsmint)/1000 mapmtcm

(mm·◦C) (Map ×Mtcm)/1000

maxtwmsp
(◦C·mm−1) Maxtwm/Sp mtcmgsp

(◦C·mm−1) Mtcm/Gsp

mtcmmap
(◦C·mm−1) Mtcm/Map pratio Gsp/Map

prdd5 (◦C) pratio × Gsdd5 tdiff (◦C) Mtwm −Mtcm

tdgsp (◦C·mm−1) tdiff/Gsp gsptd (◦C·mm) (Gsp × tdiff)/1000

maptd (◦C·mm) (Map × tdiff)/1000 tdmap (◦C·mm−1) tdiff/Map

2.2. Modelling Techniques

2.2.1. Modelling Methods and Development

Individual tree diameter growth is often modeled as the function of tree size, competition, site
condition and climate factors. In our study, the individual tree mean-annual DBH increment (∆D) as
an output were modeled using the RF, BRT, Cubist and MARS models respectively with the mentioned
variables below as inputs. As climate, site condition and competition interactively influence individual
tree growth, these influences may vary with tree species and size. In order to analyze the influences of
tree species on ∆D, tree species were treated as a categorical variable in our study. Thus, the model
form was expressed as follows:

∆D = f (Size, Competition, Site, Climate, Species). (1)
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where f () represents the RF, BRT, Cubist or MARS model; Size represents tree size variables including
initial tree DBH at the beginning of five-year interval (D0) and stand average DBH (Dg); Competition
represents competition variables (Equations (2)–(5)) including the sum of basal area larger than the
subject tree (BAL), the sum of square DBH in trees which are larger than subject tree (DL), the ratio
of DBH of subject tree to average DBH (RD), the ratio of DBH of subject tree to the maximal DBH
(DDM), the number of trees per hectare (N) and basal area per hectare (BA); Species represents a tree
species category including six tree species (groups): larch, spruce, fir, Korean pine, slow growing
tree species group and medium growing tree species group; Site represents site condition variables
including aspect, slope and altitude; the “Climate” represents climate variables including 44 climatic
factors (see Table 2). Totally there were 56 input variables.

BAL =
π

40000 ∑
nlager
i=1 D2

i
Area

. (2)

DL =
∑

nlager
i=1 D2

i
Area

. (3)

RD =
Dsubject

Daverage
. (4)

DDM =
Dsubject

Dmaximum
. (5)

where nlager is the number of the trees with the basal area larger than that of the subject tree, Di is the
DBH of the i-th tree, Dsubject is the DBH of the subject tree, Daverage is the stand average DBH, Dmaximum
is the maximal DBH of the stand, Area is the plot area.

(1) Random Forest Model

The RF algorithm was first proposed by Breiman [30]. It is a decision tree model of ensemble
learning. For regression prediction, the base learner of RF is regression tree. Each regression tree of
RF is constructed by drawing bootstrap sample of the original dataset with replacement. When a
bootstrap sample is drawn, approximately 36.8% of the original dataset is not included in the sample.
The portion of the data not drawn into the sample composes the “out-of-bag” data, used to assess
the generalization errors of the selected regression tree, whereas the bootstrap sample is used to train
a regression tree. For each split node of the regression tree, a randomized subset of predictors is
selected: randomly select k (<P) of the original predictors (P is number of original predictors). The best
predictor to split a “parent” split node into two “child” nodes is the predictor among the k predictors
leading to the largest decrease in the overall sums of squares error. A regression tree is completed
until the terminal nodes contain only individuals belonging to the same classes or until they contain
no more than five individuals. Thus, multiple trees are generated by repeating the partition process
for a pre-specified number of trees. The RF predictions are the averaged predictions over all trees.
The importance score of predictors can be estimated based on the total decrease in residual sum of
squares over all nodes for which it was selected as the splitting predictor and averaged over all trees.

The RF modeling was implemented by the package “randomForest” [31] in R software [32].
Two tuning parameters require users to make choices: “ntree” and “mtry” [33]. The ntree, is the
number of trees to grow and governs the total number of independent trees. The mtry is the number of
predictive variables randomly sampled as candidates at each split and controls the correlations between
trees, and decreasing mtry will decrease the correlations between trees. The default value of ntree is
500. In general, the overall error rate tends towards stability while the ntree is greater than 500 [34].
In order to ensure the reliability of the prediction results without affecting the computational efficiency,
the value of ntree in our case was set to be 1000. For mtry, the default value is recommended set to
be the number of total predictor variables divided by three in the regression context [30]. However,
the default value of mtry is not always able to obtain the optimal model. It is necessary to tune the
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parameter. Since there were 56 predictive variables in our case, we tested 56 possible values for mtry:
mtry = 1, 2, 3, . . . , 56. A resampling technique—tenfold cross-validation—was implemented to train
and evaluate these 56 RF models (ntrees = 1000, mtry = 1, 2, 3, . . . , 56). The R package “caret” [35] and
a random seed were used to tune these RF models.

(2) Boosted Regression Tree Model

The BRT is also an ensemble learning method combining regression trees and “gradient boosting”
algorithm. Unlike RF, BRT develops multiple regression trees sequentially from the gradient of loss
function of the previous regression tree, whereas RF is a simple ensemble of independent trees [33].
More specifically, at the first step, a regression tree is fitted to a subset of data for minimizing the loss
function (e.g., the squared error for regression). Then the second tree is fitted to the gradient (e.g.,
residual) of the first tree [36]. The two regression trees are combined and the gradient is computed.
A new tree is fitted, and so on. The above procedure continues until a pre-specified number of trees is
reached. In order to reduce overfitting and improve model prediction performance, each regression
tree of BRT is constructed by drawing bootstrap sample of the original dataset without replacement
(usually 50% of the original sample) [37]. The BRT predictions are the weighted average of predictions
over all trees, the weights are proportional to regression tree performances [36]. The importance score
of a predictor can be constructed for BRT in exactly the same way as it was for RF.

The BRT modeling was implemented by the R package “gbm” [38]. Five tuning parameters require
users to make choices: “distribution”, “bag.fraction”, “shrinkage”, “n.trees” and “interaction.depth”.
As the tuning parameters are multitudinous and changing any of the parameters can influence the
optimal values of the other parameters, tuning BRT model is complex [33]. The distribution is the
form of loss function. For regression prediction, the distribution is set to be “gaussian” (squared
error). The bag.fraction (0 < bag.fraction ≤ 1) is the sampling faction of the training data randomly
selected to create each tree. Lower bag.fraction can introduce more randomness into the model and
counteract overfitting while also reducing the required computing costs [37]. However, increased
randomness can lead to higher between-model variability [33,39]. Friedman [37] recommended using
the bag.fraction of around 0.5. The shrinkage (0 < shrinkage ≤ 1) is the step-size reduction or learning
rate. The n.trees, is the total number of trees to grow. The parameter shrinkage affects the optimal
n.trees. Decreasing shrinkage increases the value of n.trees required, and a lower shrinkage improves
model performance but also increases computing costs (both storage and time) [38]. Balancing
computing costs and model predictive performance, Ridgeway [38] recommended setting shrinkage
at a range from 0.01 to 0.001 with n.trees between 3000 and 10,000. Thus, we consider three possible
values for shrinkage (0.01, 0.005, 0.001) and 15 possible values for n.trees (3000, 3500, . . . , 10,000).
The interaction.depth, is the maximum depth of variable interactions for each tree, with the default
value of 1. However, the parameter interaction.depth affects the optimal setting for both n.trees and
shrinkage. As interaction.depth is increased, shrinkage needs to be decreased if sufficient trees are
grown [39]. Considering the trade-off between computing costs and model predictive performance,
we tried 5 possible values for interaction.depth: 1, 3, 5, 7, 9. The tenfold cross-validation was also
implemented to train and evaluate these 225 BRT models (distribution = “gaussian”, bag.fraction =
0.5, shrinkage = 0.01, 0.005, 0.001, n.trees = 3000, 3500, . . . , 10,000, and interaction.depth = 1, 3, 5, 7, 9).
The R package “caret” [35] and a random seed, which is identical to the seed used for RF models, were
used to tune BRT models.

(3) Cubist Model

The Cubist can be an ensemble learning method combining model tree and “committees”
(boosting-like) algorithm. The model tree used in Cubist works in a similar way as the classical
regression tree does. However, unlike the regression tree, the terminal nodes of the model tree use
linear regression models rather than discrete values, and the splitting criterion of the model tree uses
the reduction in standard deviation instead of the reduction in squared error [27]. Each model tree
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of Cubist is affected by the result of the previous model tree. More specifically, subsequent model
trees of Cubist are built as follows: if a data point is over-predicted by the prior model tree, then the
same value is adjusted downward for the next model tree. Similarly, underpredicted data points are
adjusted so that the next model tree will produce a larger prediction in the next iteration. The above
procedure continues until a pre-specified number of committee model trees is reached. Unlike BRT,
the predictions of Cubist are simple average of the predictions from each model tree instead of the
weighted average of predictions over all trees.

The Cubist modeling was implemented by the R package “Cubist” [40]. Two tuning parameters
require users to make choices: “committees” and “neighbors”. The committees is the number of
iterative model trees to grow in sequence whose maximal value is limited to 100 [41].The neighbors is
the number of neighboring training points which can be used to adjust the final predictions and is an
integer with range 0–9 [42]. Considering the trade-off between computing costs and model predictive
performance, we tried 20 possible values for committees (1, 6, 11, . . . , 96) and 6 possible values for
neighbors (0, 1, 3, 5, 7, 9). The tenfold cross-validation was also implemented to train and evaluate
these 120 Cubist models (committees = 1, 6, 11, . . . , 96, and neighbors = 0, 1, 3, 5, 7, 9). The R package
“caret” [35] and a random seed, which is identical to the seed used for RF models, were used to tune
Cubist models.

(4) Multivariate Adaptive Regression Splines Model

The MARS, which was firstly proposed by Friedman [43], can be deemed to be an extension
of linear models that automatically captures nonlinearity and interactions between variables.
The modeling procedures of MARS are inspired by the recursive partitioning approach such as
CART [43,44]. However, unlike CART, MARS creates continuous models with continuous derivatives
instead of discontinuous branching at tree nodes [28,43]. More specifically, MARS creates flexible
regression models by using basis function to fit piecewise linear regression models to distinct intervals
of the independent variable space [28,45]. Both the knots (the break values of the intervals) and the
variables to use are selected by using basis functions with exhaustive search. After the initial model is
created with the first two basis functions, the model keeps on conducting next exhaustive search to
get another set of basis functions that yield the best model fit. The above procedure continues until a
stopping point is reached. The model form of MARS can be presented as follows:

f̂ (x) = β +
N

∑
n=1

βnBn(x) (6)

where, f̂ (x) represents the dependent variable; x represents the independent variables; β is the
intercept; Bn(x) is the basis function, which may be a single hinge function or a product of two or
more hinge functions; βn represents the coefficient of the n-th basis function; N is the number of basis
functions of the model. Hinge functions are a key part of MARS models. A hinge function takes the
form as follows:

max(0, x− c) or max(0, c− x) (7)

where c is a constant, also called the knot.
The MARS modeling was implemented by the R package “earth” [46]. Two tuning parameters

require users to make choices: “degree” and “nprune” [27]. The parameter degree is the maximum
degree of interaction. The default of degree is 1, which means an additive MARS model without
interaction terms is built. Although MARS can build models with two or more degree interactions,
Hastie et al. [47] recommended setting an upper bound on the degree of interaction. The lower degree
interaction can aid in the interpretation of the final model, whereas the higher degree interaction
can lead to occasional instabilities in the model predictions (perhaps an order of magnitude of the
true value) [27,47]. Thus, we tried 3 possible values for degree: 1, 2, and 3. Parameter nprune is
the maximum number of terms (including intercept). The value of nprune is equal or greater than 2



Forests 2019, 10, 187 8 of 20

and less than “nk”. The nk is the maximum number of model terms before pruning (nk = min (200,
max (20, 2 × ncol(x))) + 1, where ncol(x) is the number of predictive variables). Since there were 56
predictive variables in our case, we considered 112 possible values for nprune: nprune = 2, 3, . . . ,
113. The tenfold cross-validation was also implemented to train and evaluate these 360 MARS models
(degree = 1, 2, 3, and nprune = 2, 3, . . . , 113). The R package “caret” [35] and a random seed, which is
identical to the above ML methods, were used.

2.2.2. Model Evaluation

The performance of the RF, BRT, Cubist and MARS models was evaluated using tenfold
cross-validation resampling technique. Three measures for model performance were computed
for each fold: coefficient of determination (R2), root mean square error (RMSE) and mean absolute
error (MAE). Then the 10 resampled validation measurements of model performance were averaged
as follows.

Coefficient of determination of cross-validation (R2
cv):

R2
CV =

1
k

k

∑
j=1

(
R2

j

)
=

1
k

k

∑
j=1

1−
∑

nj
i=1

(
Oij − Pij

)2

∑
nj
i=1

(
Oij −Oj

)2

 (8)

Root mean square error of cross-validation (RMSEcv):

RMSECV =
1
k

k

∑
j=1

(
RMSEj

)
=

1
k

k

∑
j=1


√√√√ 1

nj

nj

∑
i=1

(
Oij − Pij

)2

 (9)

Mean absolute error of cross-validation (MAEcv):

MAECV =
1
k

k

∑
j=1

(
MAEj

)
=

1
k

k

∑
j=1

(
1
nj

nj

∑
i=1

∣∣Pij −Oij
∣∣) (10)

where, k is the number of fold, and k = 10 in our case; Oij is the i-th observed value of the j-th fold;
Pij is the i-th predicted value of the j-th fold; Oj is the average observed value of the j-th fold; nj is
the number of samples in j-th fold; R2

j, RMSEj and MAEj are the R2, RMSE and MAE of the j-th
fold, respectively.

2.3. Model Comparison

Once model performance has been quantified through the tuning process described above,
the optimal RF, BRT, Cubist and MARS models were determined by selecting parameter settings
associated with the numerically best performance estimates (the smallest RMSEcv in our case). Then
the comparisons between the four optimal models were made by assessing the performance measures
on each fold. As the performances were measured using identically resampled datasets, statistical
methods for paired comparisons can be used to detect pairwise differences in the performance among
models [27,48]. Therefore, paired t-test was applied to verify if the differences in performance among
the four optimal models with the significant level of 0.05.

Moreover, the four models in our study could provide estimations of importance score. For limited
space of the manuscript and wide use, only the results of RF and BRT models were reported after the
pre-examination, which showed similar results. The importance score of a predictor was estimated
based on the total decrease in residual sum of squares over all nodes for which it was selected as the
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splitting predictor and averaged over all trees. It was normalized to 100% by its relative value (rIMi),
which was expressed as following for the RF and BRT models:

rIMi =
IMi

∑P
q=1 IMq

× 100%. (11)

where, the IMi and IMq are the importance score of the i-th and q-th predictor, P is the total number of
the predictors.

3. Results

3.1. Individual Tree Diameter Prediction Based on ML Algorithms

3.1.1. RF

The effect of mtry on RF model performance is presented in Figure 1. Parameter values of mtry at
1 and 9 had the lowest and highest R2

cv (0.4460 and 0.5565), respectively. For RMSEcv, mtry at 9 and 1
resulted in the lowest and highest values (0.1377 and 0.1751 cm). For MAEcv, the lowest and highest
MAEcv (0.0996 and 0.1341 cm) were at 11 and 1, respectively. As mtry increased, R2

cv initially increased
and then stabilized at the values larger than 6, and both RMSEcv and MAEcv initially decreased and
then stabilized at values between 6 and 56. Thus, the optimal model of RF (ntree = 1000 and mtry = 9)
was determined using the smallest RMSEcv.
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Figure 1. Tuning random forest (RF)—the effect of mtry on RF model performance. The tenfold
cross-validation was used for model validating. The error bar is standard deviation. The parameter,
mtry, is the number of predictive variables randomly sampled as candidates at each split and controls
the correlations between trees.

3.1.2. BRT

Figure 2 shows the effect of n.trees, shrinkage and interaction.depth on BRT model performance.
Parameter values of n.trees, shrinkage and interaction.depth at (3000, 0.001, 1) and (8500, 0.01, 9)
resulted in the lowest and highest R2

cv (0.4171 and 0.5714). For RMSEcv, n.trees, shrinkage and
interaction.depth at (7000, 0.01, 9) and (3000, 0.001, 1) had the lowest and highest RMSEcv (0.1353
and 0.1611 cm). For MAEcv, the lowest and highest MAEcv (0.0982 and 0.1225 cm) were at (9500, 0.01,
9) and (3000, 0.001, 1), respectively. In general, as n.trees increased, R2

cv initially increased and then
stabilized at higher number of n.trees, both RMSEcv and MAEcv initially decreased and then stabilized
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at higher number of n.trees. Overall, shrinkage of 0.01 had better model performance than shrinkage
of 0.001 and 0.005. In addition, interaction.depth of 9 had the best model performance. Thus, the
optimal model of BRT (distribution = “gaussian”, bag.fraction = 0.5, shrinkage = 0.01, n.trees = 7000
and interaction.depth = 9) was determined using the smallest RMSEcv.
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Figure 2. Tuning boosted regression tree (BRT)—the effect of n.trees, shrinkage and interaction.depth
on BRT model performance. The tenfold cross-validation was used for validating. The error bar is
standard deviation. The parameters, n.trees, shrinkage and interaction.depth are the total number of
trees to grow, the step-size reduction or learning rate and the maximum depth of variable interactions
for each tree, respectively.

3.1.3. Cubist

The lowest and highest R2
cv (0.4564 and 0.5734) were at committees values of 1 and 86 and

neighbors values of 1 and 9, respectively (Figure 3). For RMSEcv, the lowest and largest values (0.1351
and 0.1650 cm) were at committee values of 31 and 1 and neighbors values of 9 and 1. For MAEcv,
the lowest and highest (0.0970 and 0.1077 cm) were at committee values of 31 and 1 and neighbors
values of 5 and 1. In generally, as committees increased, R2

cv initially increased and then stabilized at
higher number of committees, and both RMSEcv and MAEcv initially decreased and then stabilized at
higher number of committees. Increasing neighbors would increase R2

cv and decrease both RMSEcv

and MAEcv with the exception of the neighbors’ value of 0. Thus, the optimal model of Cubist
(committees = 31 and neighbors = 9) was determined using the smallest RMSEcv.
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Figure 3. Tuning Cubist—the effect of neighbors and committees on Cubist model performance.
The tenfold cross-validation was used for validating. The error bar is standard deviation.
The parameters, committees and neighbors, are the number of iterative model trees to grow in
sequence and the number of neighboring training points which can be used to adjust the optimal
predictions, respectively.

3.1.4. MARS

Parameter values of nprune and degree at (2, 3) and (51, 2) resulted in the lowest and highest R2
cv

(0.3062 and 0.4993), respectively (Figure 4). The lowest and highest RMSEcv (0.1462 and 0.1721 cm)
were at (39, 2) and (2, 3). Parameters nprune and degree at (45, 3) and (2, 3) had the lowest and
highest MAEcv (0.1085 and 0.1278 cm). Generally, as nprune increased, R2

cv initially increased and
then stabilized at values between 25 and 113, both RMSEcv and MAEcv initially decreased and then
stabilized at the same value. The degree of 2 had better model performance than degree of 1 and 3. Thus,
the optimal model of MARS (nprune = 39 and degree = 2) was determined using the smallest RMSEcv.
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Figure 4. Tuning multivariate adaptive regression splines (MARS)—the effect of degree and nprune
on MARS model performance. The tenfold cross-validation was used for validating. The error bar is
standard deviation. The parameters, degree and nprune, are the maximum degree of interaction and
the maximum number of terms (including intercept), respectively.

3.1.5. Model Evaluation and Comparisons

The predictive performance of four selected optimal models is presented in Table 3. The results of
tenfold cross-validation indicated that the RF, BRT and Cubist models significantly outperformed the
MARS model in terms of three performance measures (the t-test p value for corresponding pairs <0.05).
The highest R2, the lowest RMSE and the lowest MAE were observed for Cubist model, followed by
the BRT and RF model, while the lowest R2, the highest RMSE and the highest MAE were found for
the MARS model.

Table 3. The predictive performance measures of four optimal models based on tenfold cross-validation.

Evaluation Criteria
Models

RF BRT Cubist MARS

R2
cv 0.5565(0.0186) a 0.5711(0.0232) a 0.5734(0.0215) a 0.4993(0.0262) b

RMSEcv (cm) 0.1377(0.0044) b 0.1353(0.0050) b 0.1351(0.0048) b 0.1462(0.0047) a
MAEcv (cm) 0.0996(0.0015) b 0.0985(0.0018) bc 0.0972(0.0015) c 0.1086(0.0022) a

Values in the bracket were standard deviation. Different lowercase letters (a, b, c) indicated significant difference
between models at 0.05 level.

3.2. Variable Importance Based on the Optimal RF and BRT Models

Relative importance of each variable as determined from the optimal RF and BRT models is
presented in Figure 5.
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Figure 5. Relative importance of each variable as determined from (A) random forest (RF), and (B)
boosted regression tree (BRT), which were normalized to 100%. The explanations of stand factors:
BAL is the sum of basal area larger than the subject tree, Dg is average DBH, BA is the basal area per
hectare, RD is the ratio of DBH of subject tree to average DBH, DL is the sum of square DBH in trees
which are larger than subject tree, D0 is the individual tree DBH at the beginning of 5-year interval,
DDM is the ratio of DBH of subject tree to the maximal DBH, TreeSpe_Code is the tree species, and N
is the number of trees per hectare. The explanations of site factors: Aspect is aspect, Slope is slope and
Altitude is altitude. The explanations of climate factors were presented in Table 2.

The RF model indicated that the variability in individual tree diameter growth was mainly
explained by stand factors (accumulating relative importance of 77.69%), followed by climate factors
(18.03%) and site factors (4.28%). Among nine stand factors, competition factors had 54.67% relative
importance—BAL (15.91%), BA (10.69%), RD (9.66%), DL (7.80%), DDM (6.86%) and N (3.75%)—size
factors had 19.02% relative importance—Dg (11.91%) and D0 (7.11%)—and tree species had 4.00%
relative importance (TreeSpe_Code). Among 44 climate factors, Asr (0.54%), gspgsrh (0.50%), pratio
(0.49%), Gssr (0.48%) and Map (0.48%) were the top five important variables, and the relative
importance of other 39 variables ranged from 0.45% to 0.33%. In addition, among 3 site factors,
aspect had the highest influence on individual tree diameter growth (relative importance of 2.38%),
followed by elevation (1.05%) and slope (0.85%).

On the other hand, stand factors, climate factors, and site factors had 82.89%, 12.57% and 4.54% of
individual tree diameter growth relative importance in the BRT model, respectively. Among nine stand
factors, competition factors had 59.77% relative importance—BAL (35.92%), BA (5.80%), RD (5.74%),
DL (4.78%), DDM (4.19%) and N (3.34%). Size factors had 17.09 relative importance—Dg (12.76%)
and D0 (4.33%)—and tree species had 6.03% relative importance (TreeSpe_Code). Among 44 climate
factors, Asr (0.58%), gspgsrh (0.52%), Marh (0.48%), Amt (0.47), Sp (0.45%) were the top five important
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variables, and the relative importance of other 39 variables ranged from 0.45% to 0.00%. In addition,
among three site factors, aspect had the highest influence on individual tree diameter growth (relative
importance of 3.15%), secondly elevation (0.82%) and slope (0.57%).

Generally, it was shown that the relative importance of predictors as determined from the RF
model was basically identical with that from the BRT model: competition and size factors were the
most important variables (accumulating relative importance was over 73.00%), followed by climate
factors (not more than 18.03%) and site factors (not more than 4.54%).

4. Discussion

4.1. ML Model Development

In the process of ML model evaluation and selection, it is not only required to select suitable
learning algorithms, but also to set the corresponding parameters, which is commonly referred to as
“parameter tuning” [49]. The performance of models can vary drastically depending on the value
selected for the parameters. Therefore, parameter tuning was implemented and tested for the four
4 ML algorithms in the study.

In RF modeling, two parameters were required to be tuned: “ntree” and “mtry” [33]. The default
value of ntree is 500 and the overall error rate tends towards stability when the ntree is greater than
500 [34]. Breiman [30] proved that RF is less vulnerable to over-fitting and RF model will not be
negatively impacted even though a large ntree is set. Thus, the only limitation of ntree is computing
costs (both storage and time) [30]. In our study, the value of ntree was set to be 1000 in order to balance
model predictive performance and computing costs. The parameter mtry usually performed well at
the recommended value (one-third the number of total predictors for regression ) [33]. In addition,
both Kuhn and Johnson [27] and Liaw and Wiener [31] found that RF was relatively insensitive to the
selection of mtry. Our study found that the performance of RF would be adversely affected by the
selection of mtry when the mtry was small (model performance increased with the increasing of mtry
when mtry < 6). Whereas, mode performance of RF was relatively insensitive to the selection of mtry
when mtry was large (model performance stabilized at between 6 and 56 mtry). Recommended default
mtry of 18 was almost equivalent to that with mtry of 9 in the study in terms of model performance.
Our study supported the conclusion that recommended default mtry for regression tended to perform
well [27,33].

In BRT modeling, we tested parameters “shrinkage”, “n.trees” and “interaction.depth”.
The shrinkage controls the contribution of each tree on the optimal predictions [33,47], and contrary
results were found including lower and large shrinkage could improve model performance [27,38].
In our study, we found that shrinkage of 0.01 had better model performance than those of 0.001 and
0.005. The n.trees controls the total number of iterations. Our results were consistent with Kuhn
and Johnson [27] that RMSEcv decreased as n.trees increased and then stabilized at higher values.
The interaction.depth parameter controls the number of nodes in a tree [39]. Freeman et al. [33] found
that model performed better with a fairly large interaction.depth. Our results were in agreement
with them.

The maximal value of committees is limited to 100 in Cubist modeling [41]. The other parameter
neighbors, is an integer with 0–9 range [42]. We found that the RMSEcv initially significantly reduced
as the committees increased and then stabilized at a higher committees, and a model with neighbors
of 0 performed better than the model with neighbors of 1. These findings were consistent with the
previous study [27].

In MARS modeling, our study found that degree of 1 in predicting individual tree diameter
growth performed better than degree of 1 and 3 in terms of RMSEcv, MAEcv and R2

cv. Kuhn and
Johnson [27] noted that models with degree of 1 in predicting solubility were identical to models with
degree of 2 in terms of RMSEcv. The result that RMSEcv initially significantly reduced as the nprune
increased and then stabilized at a higher nprune in the literature [27] was also supported by our study.
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In general, as the RF, Cubist and MARS models had fewer parameters to be set by users and
were less sensitive to tuning of these parameters; they were more user-friendly than BRT which had
many parameters to be tuned. In contrast to RF, parameters of BRT had stronger influence on model
quality [33].

4.2. Performance Evaluations of Four Optimal Models

In this study, the four ML methods, including RF, BRT, Cubist and MARS, were developed
and compared for modelling individual tree periodical annual DBH increment with the inputs of
stand, climate and site factors of larch–spruce–fir mixed forests in China. Unlike traditional statistical
models, collinearity test and the filtering of predictors were not performed in our study. All four
models (the RF, BRT, Cubist and MARS models) have the ability to model complex and nonlinear
interactive relationship between the predictor variables and the response variable without statistical
assumptions and predetermined mathematical equations. In addition, these models are naturally
resistant to noninformative predictors due to the built-in feature selection mechanisms while the
number of predictors is high [27,28]. In addition, these models are insensitive to the collinearity
between independent variables, and model results are robust to unbalanced data and missing
data [27,28,50]. Based on the aforementioned advantages, Prasad et al. [28] evaluated the MARS
and RF models in reproducing current tree importance values distribution for four tree species without
pre-processing of the data. They noted that RF was superior in reproducing current tree importance
values distribution. Besides, Yang et al. [22] compared BRT and RF to predict soil organic carbon
content based on 12 environment variables, and found that BRT and RF had similar performance.
Based on our data, of all models, the RF, BRT and Cubist models had a distinct advantage over MARS
in predicting individual tree diameter growth (Table 3). The Cubist model ranked the highest in
terms of model performance (RMSEcv [0.1351 cm], MAEcv [0.0972 cm] and R2

cv [0.5734]), followed
by BRT and RF model, whereas the MARS ranked the lowest (RMSEcv [0.1462 cm], MAEcv [0.1086
cm] and R2

cv [0.4993]). In generally, RF, BRT and Cubist models had better generalization ability and
statistical reliability than MARS in our study. The reason is that the RF, BRT and Cubist models are
ensemble learning methods, which construct a set of base learners and then produce new predictions
by taking a weighted average of their predictions. Ensemble learning methods often obtain better
predictive performance than those obtained from any of the constituent base learners alone. In previous
study with the same data, Yu et al. [19] used generalized additive model (GAM) to investigate the
effects of stand factors and climate factors on individual tree periodical annual DBH increment of
larch–spruce–fir mixed forests in China. They found that the RMSE, MAE and R2 of GAM were 0.1500
cm, 0.1100 cm and 0.5080, respectively. Comparing the models performance between our study and Yu
et al. [19], we found that GAM was slightly better than MARS, but was far below RF, BRT and Cubist.
However, when these models were used in different research areas, it was noted that there was no
single model that would always do better than any other models. Moisen and Frescino [51] found
that MARS and GAM had similar performance for predicting forest characteristics. Aertsen et al. [52]
found that the GAM model performed better than BRT for the prediction of site index. On the other
hand, Leathwick et al. [53] found that BRT performed better than GAM for predicting variation in
demersal fish species richness.

Both the ML models and traditional statistical methods have strengths and weaknesses.
The traditional statistical methods can give clear model formulas and corresponding parameters
through predetermined mathematical equations (model form), and thus they are intuitive and easy
to be understood in terms of model form and the relationship between dependent and independent
variables. However, these models also have some limitations. They are often applied under certain
statistical assumptions, such as the data are normally distributed, homoscedastic and independent.
However, due to continuous observations, hierarchy and intrinsic variability of forest growth
data, the above assumptions are usually difficult to satisfy. What’s more, the selection of specific
mathematical equation (model form) and convergence is rather difficult when modelling individual
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tree growth in nonlinear form and with multiple variables. In contrast to the traditional statistical
models, the ML methods have the ability to model complex and nonlinear interactive relationship
between the predictor variables and the response variable without the test of statistical assumptions
and the selection of predetermined mathematical equations. As a data-driven method, it is considered
as “black box” model, however, the relative importance and partial dependence plot produced from
RF and BRT also provide a clear explanation as traditional methods. When there were a large number
of predictors, ML could help select the most important ones. The combinations between ML and
traditional statistical methods may be a better option.

4.3. Variable Importance in Predicating Individual Tree DBH Growth

Climate, site condition and competition factors interactively influence individual tree growth.
Meanwhile, these influences may vary with tree species and size [14]. In this study, nine stand
factors, three site condition factors and 44 climate variables were selected as predictors for predicting
individual tree diameter growth because these variables were frequently used as key predictors in
previous diameter growth research [5,9,19,54,55]. Our results showed that stand factors were the most
influential factors in BRT and RF models (Figure 5). More specially, both BRT and RF showed that
competition including stand- (N and BA) and tree-level competition indices (BAL, DL, RD, DDM)
was the primary factor affecting individual tree diameter growth, followed by tree size (including
D0 and Dg) and stand characteristic (including tree species). These findings were consistent with
Yu et al. [19] which found that stand factors were the main drivers to diameter growth. Similar results
have been found in other research, for example, Jiang et al. [14] found that competition indices were
the primary factors affected individual tree diameter growth for trembling aspen (Populus tremuloides
michx.), followed by tree size, and that diameter growth of white spruce (Picea glauca (Moench.) Voss)
was primarily influenced by tree size, followed by competition. Alam et al. [56] found for white spruce
that diameter growth of trees was primary constrained by competition. Our study showed that both
tree size and competition were the main drivers to diameter growth. Stand-level competition indices
can indicate the average crowding degree of the whole stand or the full utilization degree of the stand
to the site. The bigger the competition index of BA and N stands, the smaller average occupancy
of each tree to growth space is, so the smaller the average growth of DBH of individual trees [19].
Generally speaking, the growth space occupied by individual trees varied with trees sizes, and trees
with different sizes bear different competitive pressures. The bigger the competition index of BAL
and DL, the larger competition pressure is, so the smaller average DBH increment is. In contrast, the
bigger the competition index of RD and DDM, the smaller the competition pressure is, so the bigger
average DBH increment is. The Dg is a basic index reflecting the average size of a stand. The bigger
Dg, the smaller average occupancy of each tree to the growth space is, so the smaller the average DBH
increment is. The larger D0, the greater growth advantage of individual tree is. When D0 reaches a
certain maximum, tree growth gradually slows down. Tree growth is co-influenced by these factors.
Although age is one of the most important drivers of tree or stand growth, it was not included as an
input in our study since the measurement of tree age for uneven-aged mixed forest was difficult and
tree size could be as a proxy in terms of model application. All inputs in the ML methods in the study
only explain about 60% variation of tree DBH growth of larch–spruce–fir mixed forests, which showed
the complexity of uneven-aged mixed forests growth modelling, and thus more predictors or further
algorithms are needed in the future.

In our study, the relative importance of climate factors was less than that of stand factors.
This finding was consistent with Yu et al. [19], which showed climate factors had limited capacity in
explaining the variation in diameter growth, while stand factors were the main drivers to diameter
growth. Similar results have been found in other research [14,56,57], for example, Jiang et al. [14]
found for both trembling aspen and white spruce that the climate factors showed less effects on tree
growth than that of stand factors. Alam et al. [56] found for white spruce that diameter growth of trees
was primary constrained by competition with minor effects from climate factors. Besides, our results
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noted that the relative importance of site factors was less than that of stand factors and climate factors.
We found that aspect was a critical site factor in BRT and RF models, suggesting that aspect exerted a
larger influence on individual tree diameter growth than elevation and slope did.

At first sight the relative importance of each variable as determined from BRT seemed to have a
much steeper importance slope than that from RF (Figure 5). It is due to the fact that the base learners
from BRT are dependent on each other and hence will have correlated structures among base learners.
Thus, the same predictor will be selected across the base learners, increasing its contribution to the
variable importance [27].

5. Conclusions

Four ML methods were applied and compared for predicting the individual tree diameter growth
of larch–spruce–fir mixed forests in northeast China. Based on tenfold cross-validation resampling,
we found that the RF, BRT and Cubist models had a distinct advantage over MARS in predicting
individual tree diameter growth. The Cubist model ranked the highest in terms of model performance
(RMSEcv [0.1351 cm], MAEcv [0.0972 cm] and R2

cv [0.5734]), followed by the BRT and RF models,
whereas the MARS ranked the lowest (RMSEcv [0.1462 cm], MAEcv [0.1086 cm] and R2

cv [0.4993]).
In generally, the RF, BRT and Cubist models were effective and powerful modelling methods for
predicting the individual tree diameter growth. In addition, as the RF and Cubist models had fewer
parameters to be set by users and were less sensitive to tuning of these parameters, they were more
user-friendly than BRT.

Relative importance of each predictor variable was determined from the optimal RF model and
the optimal BRT model, respectively. Our results showed that both the RF and BRT models can be
used to reasonably analyze the complex relationship between predictor variables and individual tree
diameter growth, and to identify the dominant factors affecting tree growth. The stand factors were
the main drivers to diameter growth, while both site factors and climate factors had limited capacity in
explaining the variation in diameter growth at local scale.

Although the ML methods were examined in the case of individual tree DBH growth prediction
of larch–spruce–fir mixed forests in northeast China, they could be generally applicable to growth and
yield predictions of other forest types.
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