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Abstract: This paper presents novel hybrid machine learning models, namely Adaptive Neuro Fuzzy
Inference System optimized by Particle Swarm Optimization (PSOANFIS), Artificial Neural Networks
optimized by Particle Swarm Optimization (PSOANN), and Best First Decision Trees based Rotation
Forest (RFBFDT), for landslide spatial prediction. Landslide modeling of the study area of Van
Chan district, Yen Bai province (Vietnam) was carried out with the help of a spatial database of the
area, considering past landslides and 12 landslide conditioning factors. The proposed models were
validated using different methods such as Area under the Receiver Operating Characteristics (ROC)
curve (AUC), Mean Square Error (MSE), Root Mean Square Error (RMSE). Results indicate that the
RFBFDT (AUC = 0.826, MSE = 0.189, and RMSE = 0.434) is the best method in comparison to other
hybrid models, namely PSOANFIS (AUC = 0.76, MSE = 0.225, and RMSE = 0.474) and PSOANN
(AUC = 0.72, MSE = 0.312, and RMSE = 0.558). Thus, it is reasonably concluded that the RFBFDT is a
promising hybrid machine learning approach for landslide susceptibility modeling.

Keywords: GIS; hybrid models; machine learning; adaptive neuro fuzzy inference system;
landslide; Vietnam

1. Introduction

Landslides are gravitational movements of slope-framing materials caused by natural and
anthropogenic activities [1]. They are considered one of the major hazards affecting human life,
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property, infrastructure, and landscape [2]. A landslide susceptibility map is a fundamental tool for
landslide hazard management and land use planning. Assessment of landslide susceptibility gauges
the spatial probability of landslide occurrences considering a set of geo-environmental parameters [3].
As a landslide is a complex process related to geology, topography, and other geo-environmental
factors associated with different conditioning and triggering factors, modeling landslide susceptibility
is a difficult task. In recent years, many techniques have been developed for landslide modeling;
in general, these methods can be divided in to three main approaches namely expert system, physical
strategies, and information mining techniques [4]. Out of these approaches, information mining
strategies, which utilize machine learning and statistical methods, are considered the best for landslide
hazard assessment and prediction [5].

In the last 10 years, different information mining strategies have been adopted all over the
world. Bui et al. [6] applied Adaptive Neuro-Fuzzy Inference System (ANFIS) for torrential slide
mapping and modeling in the Hoa Binh area of Vietnam. Umar et al. [7] utilized an ensemble
technique of frequency ratio and logistic regression for landslide susceptibility mapping. Su et al. [8]
applied Support Vector Machines (SVM) for mapping precipitation accentuated landslide susceptibility
mapping in the Wencheng territory of Chan Province, China. Chen et al. [9] applied and compared
various data mining methods, namely Kernel Logistic Regression, Naive Bayes and RBF network
models. Youssef et al. [10] compared various models named Random Forest, Boosted Regression
Tree, Classification and Regression Tree, and General Linear models for landslide susceptibility
mapping. In addition, there are other models developed and applied for assessment of susceptibility
of landslide such as Artificial Neural Networks [11], Best First Decision Tree [12], and Kernel Logistic
Regression [13].

More recently, many researchers have combined different single methods and techniques to
develop various hybrid models for better assessment of landslide susceptibility. Abedini et al. [14]
developed a hybrid model that is a combination of Bayesian Logistic Regression and various ensemble
techniques, and stated that the hybrid models are promising techniques for the assessment of landslide
susceptibility. Zhang et al. [15] enhanced the prediction performance of landslide susceptibly model by
developing the novel hybrid approach of Entropy with Logistic Regression and the SVM, and claimed
that this developed hybrid model outperformed the singe Entropy model. Chen et al. [16] developed a
novel hybrid approach of Bagging Ensemble and Kernel Logistic Regression for modeling landslide
susceptibility, and proved that the novel developed model outperformed the benchmark SVM model.
Even though the mentioned methods performed well for landslide susceptibility modeling at a given
area, there is no conclusive information about which model is the best for other regions. Moreover,
the applicability of the developed new techniques and approaches for better assessment of predictive
capability of landslide susceptibility models needs to be further evaluated.

In this study, the main aim is to develop novel hybrid machine learning approaches such as
Adaptive Neuro Fuzzy Inference System optimized by Particle Swarm Optimization (PSOANFIS),
Artificial Neural Networks optimized by Particle Swarm Optimization (PSO) (PSOANN), and Best
First Decision Trees based Rotation Forest (RFBFDT) for the evaluation and selection of the best
landslide susceptibility model. More specifically, the PSOANFIS is a hybrid approach of ANFIS and
PSO, whereas the PSOANN is a hybrid approach of Artificial Neural Networks (ANN) and the PSO
and the RFBFDT is a hybrid model of Rotation Forest (RF) and Best First Decision Trees (BFDT).
The Van Chan district, Yen Bai province, a landslide-prone hilly area in Vietnam, was selected for
the present study. The Area under the Receiver Operating Characteristics (ROC) curve (AUC), Mean
Square Error (MSE), and Root Mean Square Error (RMSE) methods were used for the model validation.

2. Study Area

The study area is Van Chan district of Yen Bai Province, located between longitudes 104◦16′02′ ′

and 104◦54′43′ ′ and latitudes 21◦48′49′ ′ to 21◦19′34′ ′ in the northeast region of Vietnam (Figure 1).
The area of the district is approximately 1207 km2 and it has a population of about 144,201. The
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topography of the area is mountainous and midland type, with elevation ranges from 60 m to 2542 m.
High mountains, namely Tay Con Linh and Kieu Lieu Ti, are located on the western side. Bac Ha, Quan
Bạ, and Dong Van are the plateaus (highlands) located on the northern side, with an average elevation
of 1000–1200 m. Dong Van Plateau is the highest at 1600 m. The midlands (elevation 100–150 m) are on
the southwest side. The lowest elevation in the area is in the southeast.
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Figure 1. Location of the Van Chan district, Vietnam.

Hills and valleys are generally aligned in the northwest to southeast direction, parallel to the
orientation of geological faults. Drainage density in the area is high and most of the drainage is
structurally controlled. Hill slopes are very steep in places (up to 84◦). Narrow valleys and steep hill
slopes are some of the main factors causing landslides, besides heavy rains and anthropogenic activity.
Changes in the land use pattern for cultivation of rice on terraces and other developmental activities
increased the landslide occurrences in the area. Accumulation of irrigation water on the terraces
increases effective weight and reduces the strength of the slope-forming materials, thus adversely
affecting the stability of slopes.

Geologically, the study area is occupied by igneous, metamorphic, and sedimentary rocks
belonging to the Tu Le–Ngoi Thia complex (21.56%), Tram Tau formation (15.42%), and Ca Vinh
complex (13.17%). Rock mass in this area is highly weathered. Depth of weathering varies from 10 m to
18 m. Most of the landslides are observed in the weathered Tu Le–Ngoi Thia complex (10.78%), Tram
Tau formation (10.18%), and in gabbro and diabase rocks (11.38%) (Figure 2 and Table 1). Weathered
rocks have high permeability and low strength, resulting in slope failure.
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Table 1. Geological formations and complexes and the main characteristics of the research zone.

No Geological Formations and
Complexes Notation Area (%) Landslide

Pixels (%)
Thickness

(m)

1 Ban Cai Formation D3bc 0.76 1.18 810
2 Ban Nguon Formation D1bn 3.18 2.4 -
3 Ban Pap Formation D1-2bp 1.61 3.0 560
4 Bac Son Formation C-Pbs 4.62 1.2 360–770
5 Ba Vi Complex U/T1bv 0.04 0 -
6 Ben Khe Formation ∈-Obk 1.23 0 300–500
7 Ca Vinh Complex G/PP-MPcv 13.17 4.19 -
8 Cam Duong Formation ∈1cđ 4.72 4.79 500–700
9 Nghia Lo Formation T1-2nl 0.22 6.59 500–550
10 Phu Sa Phin Complex sG,Sy/Kpp 0.42 7.18 -
11 Quaternary - 4.18 7.78 2–18
12 Song Mua Formation D1sm 4.01 8.98 700–800
13 Da Dinh Formation NP-∈1đđ 0.98 0 200–400
14 Cha Pa Formation NPcp 3.07 5.39 500–700
15 Suoi Bang Formation T3n-rsb 8.40 9.58 990
16 Tu Le–Ngoi Thia Complex tR/Ktl–R/Knt 21.56 10.78 -
17 Tram Tau Formation J-Ktt 15.42 10.18 200–800
18 Unknown in age dykes and veins - 0.22 11.38 -
19 Van Yen Formation N1

2vy 0.04 0 100
20 Vien Nam Formation T1vn 0.45 0 800–1500
21 Xom Giau Complex G/NPxg 0.25 0 -
22 Sinh Quyen Formation PP-MPsq 9.89 8.38 1600–1800
23 Yen Chau Formation K2yc 1.58 0 300

3. Materials and Methods

3.1. Data Used

3.1.1. Landslide Inventory

A landslide inventory showing the location and type of landslides occurring in the area is
important for the development of landslide models. In this area, 167 landslides were identified
from Google Earth images and air photos checked against the available historical record and limited
field investigations. Based on these data, a landslide inventory map was constructed. Translational,
rotational, mixed, and debris flow types of landslides occur in the area. Translation type of landslides
are prominent in the study area, hence only these landslides were taken into account for modeling.
National Road No. 32 is most affected by landslide hazards (Figure 3). The size of landslides varies
from a few cubic meters to thousands of cubic meters. We selected the center of each scar (polygon)
of the landslide as one point with a cell size of 20 m for sampling as we considered that most of the
pixels of a landslide polygon have identical conditions for landslide occurrence in similar types of
slope-forming materials [17,18].

3.1.2. Landslide Influencing Parameters

In landslide modeling, it is very important to select the suitable affecting factors for landslide
assessment. In our study, the selection of factors is based on the analysis of the nature of landslide
occurrences in relation to the characteristics of geomorphology, geology, hydrology, meteorology,
and human impacts in the study area. Thus, we have selected 12 factors, namely slope, aspect,
elevation, curvature, slope length, valley depth, distance to rivers, distance to roads, distance to faults,
Topographic Wetness Index (TWI), and Terrain Ruggedness Index (TRI), for landslide analysis and
modeling. Each factor was classified into several classes based on the standard classification for
lithology and aspect, natural break method for slope and expert’s knowledge method for elevation,
curvature, slope length, valley depth, distance to rivers, distance to roads, distance to faults, TWI,
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and TRI [19–23]. In addition, the Frequency Ratio (FR) method, which is defined as the percentage
of the number of landslide pixels per the percentage of the number of class pixels in the study area,
was applied to assess the spatial relationship between the landslides and 12 conditioning factors
(Table 2).
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Slope is important in landslide susceptibility study [24]. A slope angle map of the study area
was generated from a Digital Elevation Model (DEM) with 20 m spatial resolution, which was
generated from the topographic map of 1:50000 scale. A total of six classes (0–7.92, 7.92–17.82,
17.82–26.07, 26.07–34.65, 34.65–44.88, and 44.88–84.16◦) were obtained on the slope map using the
natural break method in GIS application (Figure 4a). According to the FR analysis, slopes in this area
between 7.92◦and 34.65◦ had the high FR values, ranging from 1.13 to 1.69, which indicate the highest
susceptibility to landslide occurrences in these three classes.
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Aspect is a significant factor in the development of landslide susceptibility maps [25]. A map of
aspect was extracted from the DEM with nine slope aspect classes: north (0–22.5◦; 337.5–360◦), flat
(−1◦), east (67.5–112.5◦), northeast (22.5–67.5◦), southeast (112.5–157.5◦), south (157.5–202.5◦), west
(247.5–292.5◦), southwest (202.5–247.5◦), and northwest (292.5–337.5◦) (Figure 4b). The FR analysis
showed that slopes facing north, northeast, east, south, and southeast are generally prone to landslides
as their FR values are 1.15, 1.12, 1.41, 1.27, and 1.22, respectively.

Elevation is one of the important factors in the occurrence of landslides as height affects the
loading on the slope and thus enhances the chances of landslides when the sliding plain has a dip
(orientation) towards the open excavation [26]. The weathering profile also depends on the elevation of
the area. An elevation map was extracted from the DEM 20 m including seven classes (0–200, 200–400,
400–600, 600–800, 800–1000, 1000–1200, 1200–1400, 1400–1600, 1600–1800, and 1800–2542 m) (Figure 4c).
The FR analysis indicated that the class of 400–600 m above sea level is the most susceptible (FR = 1.66),
whereas above elevation 1400 m the frequency of occurrence of landslide susceptibility is the lowest.
This might be due to more weathering on the middle height slope in comparison to higher levels.

Curvature is an important landslide affecting factors such as the runoff or accumulation of water
on the slope, depending on the type of curvature [27]. In this study, a curvature map was extracted
from the DEM 20 m and classified as concave, convex, or flat depending on its value either below,
above, or equal to 0.05, respectively (Figure 4d). The FR analysis showed that 55.69% of landslides
occurred in concave class curvature slopes, which occupy 41.71% of the area. The occurrence of more
landslides on a concave surface can be related to the accumulation of more water on such slopes.

Slope length is the distance from the origin of the landslide’s flow along its flow path to the
place of its runout distance or end. The parameters that control the runout distance of a landslide are
geometry, physical property, and frictional coefficients. A slope length map was constructed from the
DEM 20 m using SAGA tool with six classes (0–20, 20–50, 50–100, 100–150, 150–200, and 200–2501 m)
(Figure 4e). The FR analysis based on the slope length map showed that the highest susceptibility to
landslide incidence is in the 200–500 m slope length class (Table 2). This may be due to the topography
and structure of the area.

Valley depth controls the weathering process and water transportation and accumulation; thus,
it affects landslide occurrences. In this area, a total valley depth map was constructed from the
DEM 20 m using SAGA tool considering six classes of depth (0–5, 5–30, 30–60, 60–100, 100–150, and
150–656 m) (Figure 4f). The FR analysis showed that the most landslide-susceptible class is at 100–150 m
(FR = −1.62), whereas the lowest FR value (0.47) was obtained for valley depth >150 m.

Distance to rivers is one of the most important factors for the stability as distance from a river
affects the saturation degree of the slope-forming materials (Dai et al., 2001; Saha et al., 2002). A distance
to rivers map was constructed on the basis of buffering the rivers extracted from the topographic
map (1: 50,000) with five classes (0–100, 100–200, 200–300, 300–400, and >400 m) (Figure 4g). The FR
analysis indicated that with the increase of the distance to the rivers, the probability of landslide
occurrence is decreased. Specifically, most of the landslides are located within the 100-200m distance
class (FR = 1.56).

Distance to roads is one of the factors that most affects landslide occurrences as most of the
landslides are observed close to roads [28]. In this study, a distance to roads map was constructed
on the basis of buffering the roads extracted from the topographic map (1: 50,000) and divided into
five different buffer class (0–100, 100–200, 200–300, 300–400, and >400 m) (Figure 4h). The FR analysis
indicated that most landslides occurred within 0–100 m from roads.

Distance to faults is one of the most important affecting factors as slope may fail along faults
depending on the nature and orientation of faults [29]. Faults with clay gouge and dipping towards
the slope face are the most unfavorable features for slope stability. In the study area, a distance
to faults map was constructed with five different buffer classes on the basis of buffering the faults
extracted from the geological map (1: 50,000) (0–250, 250–500, 500–750, 750–900, and >900 m) (Figure 4i).
The FR analysis indicated that with increasing distance from the faults, the probability of landslides
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is decreased. In this area, fault distance between 250 m and 500 m was most vulnerable to landslide
occurrence (FR = 1.56).

Lithology plays a very important role in landslide occurrences as soft and weathered rocks are
more vulnerable than hard unjointed rocks, thus lithological units have different vulnerability to
landslides [30]. In the study area, a lithology map was extracted from the Geological and Mineral
Recourses Map on a scale of 1:50,000 with seven major lithological units (A, B, C, D, E, F, and G)
(Figure 4j and Table 3). The FR analysis indicated that group A has the highest FR value (1.46), while
group C has the lowest value (0.26) (Table 2).

Topographic Wetness Index (TWI) is a secondary geomorphometric parameter used to describe
and quantify local relief [31] as it reveals the diversity and complexity of landslide topographic surface.
As the slope-forming material moves, the TWI range increases. In this study, a TWI map was generated
from the DEM 20 m using the SAGA tool with different classes (0–8, 8–9, 9–10, 10–11, and 11–24)
(Figure 4k). The FR analysis indicated that the class of 9–10 of TWI is the most susceptible (FR = 0.99)
(Table 2).

Terrain Ruggedness Index (TRI) proves capable of differentiating landslide population into
smaller groups, consistent with their variable origin and mechanism of displacement. As the slope
surface moves, the TRI range decreases. However, in the case of slump and rockslide, the calculation is
different. In this study, a TRI map was generated from the DEM using the SAGA tool with different
classes (0–1, 1–3, 3–5, 5–7, and >7) (Figure 4l). The FR analysis indicated that the class of 3–5 of TRI is
the most susceptible class (Table 2).
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Figure 4. Thematic maps of the study area: (A) Slope, (B) distance to faults, (C) curvature, (D) slope
aspect map, (E) slope length, (F) distance to rivers, (G) elevation, (H) distance to roads, (I) lithology,
(J) valley depth, (K) TWI, and (L) TRI.

Table 2. Analysis of frequency of landslides on the thematic maps.

No. Parameter Attribute Class
Number
of Pixels
in Class

No. of
Landslide
in Pixels

% Class
Pixels

%
Landslide

Pixels
FR

1 Slope (o)

1 0–7.92 515,596 0 17.18 0 0.00
2 7.92–17.82 541,470 51 18.04 30.54 1.69
3 17.82–26.07 711,557 57 23.71 34.13 1.44
4 26.07–34.65 668,546 42 22.27 25.15 1.13
5 34.65–44.88 431,726 14 14.38 8.38 0.58
6 44.88–84.16 132,683 3 4.42 1.8 0.41

2 Aspect

1 Flat 143,317 0 4.77 0 0.00
2 North 327,283 21 10.9 12.57 1.15
3 Northeast 418,241 26 13.93 15.57 1.12
4 East 395,523 31 13.18 18.56 1.41
5 Southeast 325,218 22 10.83 13.17 1.22
6 South 339,844 24 11.32 14.37 1.27
7 Southwest 388,176 18 12.93 10.78 0.83
8 West 349,264 13 11.64 7.78 0.67
9 Northwest 314,712 12 10.48 7.19 0.69

3
Elevation

(m)

1 0–200 311,586 11 10.38 6.59 0.63
2 200–400 822,680 53 27.41 31.74 1.16
3 400–600 583,190 54 19.43 32.34 1.66
4 600–800 474,387 26 15.8 15.57 0.99
5 800–1000 328,800 16 10.95 9.58 0.87
6 1000–1200 218,799 5 7.29 2.99 0.41
7 1200–1400 122,496 2 4.08 1.2 0.29
8 1400–1600 65,695 0 2.19 0 0.00
9 1600–1800 35,632 0 1.19 0 0.00

10 1800–2542 38,313 0 1.28 0 0.00

4 Curvature
1 Concave (<−0.05) 1,251,973 93 41.71 55.69 1.34
2 Flat (−0.05–0.05) 477,452 0 15.91 0 0.00
3 Convex (>0.05) 1,272,153 74 42.38 44.31 1.05

5 Lithology

1 Group A 1,156,217 94 38.52 56.29 1.46
2 Group B 253,577 17 8.45 10.18 1.20
3 Group C 208,547 3 6.95 1.8 0.26
4 Group D 335,011 18 11.16 10.78 0.97
5 Group E 419,594 9 13.98 5.39 0.39
6 Group F 124,353 4 4.14 2.4 0.58
7 Group G 504,270 22 16.8 13.17 0.78
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Table 2. Cont.

No. Parameter Attribute Class
Number
of Pixels
in Class

No. of
Landslide
in Pixels

% Class
Pixels

%
Landslide

Pixels
FR

6
Slope length

(m)

1 0–20 917,077 36 30.55 21.56 0.71
2 20–50 440,296 20 14.67 11.98 0.82
3 50–100 586,102 33 19.53 19.76 1.01
4 100–150 343,241 25 11.44 14.97 1.31
5 150–200 227,146 21 7.57 12.57 1.66
6 200–2501 487,716 32 16.25 19.16 1.18

7
Valley depth

(m)

1 0–5 1,379,429 80 45.96 47.9 1.04
2 5–30 538,948 34 17.96 20.36 1.13
3 30–60 320,995 16 10.69 9.58 0.90
4 60–100 272,900 10 9.09 5.99 0.66
5 100–150 221,974 20 7.4 11.98 1.62
6 150–656 267,332 7 8.91 4.19 0.47

8
Distance

(Roads) (m)

1 0–100 528,102 80 17.59 47.9 2.72
2 100–200 402,641 19 13.41 11.38 0.85
3 200–300 300,834 15 10.02 8.98 0.90
4 300–400 235,154 10 7.83 5.99 0.76
5 >400 1,534,838 43 51.13 25.75 0.50

9
Distance

(Rivers) (m)

1 0–100 692,491 32 23.07 19.16 0.83
2 100–200 599,333 52 19.97 31.14 1.56
3 200–300 469,911 29 15.66 17.37 1.11
4 300–400 342,122 19 11.4 11.38 1.00
5 >400 897,712 35 29.91 20.96 0.70

10
Distance

(Faults) (m)

1 0–250 442,100 30 14.73 17.96 1.22
2 250–500 393,956 28 13.13 16.77 1.28
3 500–750 342,641 21 11.42 12.57 1.10
4 750–900 179,677 9 5.99 5.39 0.90
5 >900 1,643,195 79 54.74 47.31 0.86

11 TWI

1 0–8 800,751 22 26.7 13.17 0.49
2 8–9 86,528 2 2.89 1.2 0.42
3 9–10 240,496 17 8.02 10.18 1.27
4 10–11 360,506 23 12.02 13.77 1.15
5 11–24 1,510,529 103 50.37 61.68 1.22

12 TRI

1 0–1 366,542 0 12.21 0 0.00
2 1–3 274,886 12 9.16 7.19 0.78
3 3–5 460,466 46 15.34 27.54 1.80
4 5–7 596,576 49 19.88 29.34 1.48
5 >7 1,303,108 60 43.41 35.93 0.83

Table 3. Lithology groups and their characteristics.

No. Group Name Characteristics of Rock Types

1 A Acid-neutral igneous magmatic rocks Dacite, felsite, rhyolite, and andesite rocks

2 B Terrigenous sedimentary rocks with
rich aluminosilicate components

Rhyolites, gritstone, siltstone, carbonates, claystone, alternated
dacites, sandstone, and andesite sediments

3 C
Terrigenous sedimentary and
transformative rocks with rich

quartz segments

Quartz–mica sandstone, gritstone, sandstone, claystone, siltstone,
alternated rhyolites, dacites, carbonates, quartzitic sandstone,

andesite sediments, cherty shale

4 D Carbonate rocks Cherty limestone, clayish limestone, and dolomitized limestone

5 E Acid-neutral intrusive
magmatic rocks

Plagioclase–granite, rhyolite, felsite, dacite, andesite rocks,
granophyre, granodiorite, granosyenite, diorite, and quartz-diorite

6 F Quaternary deposits Pluvial and alluvial sedimentary: pebbles, cobble, stone, sand, silt

7 G Metamorphic rocks with rich
aluminosilicate components

Quartz sericite–schist, quartz mica–schist, quartzite,
sericite–quartzite
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3.2. Methods Used

3.2.1. Adaptive Neuro Fuzzy Inference System (ANFIS)

The ANFIS was first introduced by Roger Jang [32]. It consists of two parts, a neural network
(ANN) and a reasoning capability of Fuzzy Inference System (FIS) in order to enhance the power
prediction for comparing the use of a single model [33]. In other word, the ANFIS is able to train FIS
membership function (MF) parameters on a training dataset using a combination of back-propagation
gradient descent and least-squares methods [34]. The FIS performed is based on the concepts of
fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning [35]. Among all FIS membership function,
the Sugeno fuzzy model has been widely used due to high interpretability and computational efficiency,
and built-in optimal and adaptive techniques [36]. The flowchart of ANFIS architecture is shown in
Figure 5.Forests 2018, 9, x FOR PEER REVIEW  12 of 27 
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Figure 5. The architecture of ANFIS.

In this figure, a circle indicates a node and rectangles denote adaptive nodes. We assumed that
there are two FIS, including x and y and one input, z. At first, using the Sugeno fuzzy model, four
fuzzy “if-then rules” can be developed;

R1 : If x is A1 and y is B1, then z1= p1x + q1y + r1
R2 : If x is A1 and y is B2, then z2= p2x + q2y + r2
R3 : If x is A2 and y is B1, then z3= p3x + q3y + r3
R4 : If x is A2 and y is B2, then z4= p4x + q4y + r4

(1)

where, Ai and Bi are the fuzzy sets, and pi, qi, and ri are the parameters obtained during the training
process. The ANFIS consists of five layers as follows (Figure 5):

Layer 1 (fuzzification): In this layer, the amount of the input variables will fuzzify and each node
employs a node function by:

O1
i = µAi(x), i = 1, 2

O1
i = µBi−2(x), i = 3, 4

, (2)

where any fuzzy membership function (MFs) can be adopted on µAi(x) and µBi − 2(y) such as Triangle,
Generalized bell (Gbell), and Gaussian.
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Layer 2 (fuzzy AND): in this layer, each node calculates the firing strength of a rule
via multiplication.

O2
k = ωk= µAi(x)µBj(y), i = 1, 2; j = 1, 2; k = 2(i− 1) + j (3)

Layer 3 (normalization): In this layer, the firing strength of each node will be normalized using
the ratio of firing strength of every node to the total value of each node.

O3
i = ωi =

ωi

ω1+ω2+ω3+ω4
, i = 1, 2, 3, 4, (4)

whereωi is the normalized firing strength.
Layer 4 (fuzzy inference): In this layer, each node has the following function:

O4
i = ωizi = ωi(p ixi + qiy + ri), i = 1, 2, 3, 4, (5)

whereωi is the output of layer 3 and (pi; qi; ri) is the consequent parameters set.
Layer 5 (defuzzification): The overall outputs of all the rules will be obtained in this layer using

the defuzzification process of the FIS, which is formulated as follows:

O5
i =

4

∑
i=1
ωizi =

ω1z1 +ω2z2 +ω3z3 +ω4z4

ω1+ω2+ω3+ω4
(6)

In addition, the details of the ANFIS model can be observed in various studies including those by
Chen, Panahi, and Pourghasemi [34], Jang [32], and Aghdam et al. [37].

3.2.2. Multilayer Perceptron Neural Networks

Artificial Neural Networks (ANNs), as a branch of Artificial Intelligence (AI), are nonlinear
function approximation algorithms that can be used as a proper approach for classification and
prediction problems such as landslides based on the degree of membership value of each pixel over the
study area [38]. It indicates that with increasing the value of membership of each pixel, the probability
of landslide occurrence will be increased. The ANNs have two functions, Multi-Layer-Perceptron
(MLP) and Radial Base Function (RBF). Some researchers that have used the ANNs for landslide
susceptibility mapping reported that the MLP is better than the RBF function in the detection of
landslide locations [27,39].

The MLP consists of input, one and more hidden layers, and one output so that its complexity will
increase when increasing the number of hidden layers [27]. In the landslide susceptibility assessment
using the MLP, the condition factors are input layer, the result of landslide modeling, landslide and
non-landslide, is output layer, and the classifying layers are the hidden layer [40].

This approach, based on the two main datasets, including training and testing datasets,
was performed. A training dataset is applied for the training process, which it performs in two
steps; firstly, the hidden layers propagate forward the input layer to output value and consequently
the error is computed to compare the pre-value and target value. Secondly, during the training process,
the weights will be regulated for achieving the best results with the least difference [41]. Moreover,
in the testing phase, the validity of the obtained results (target values) based on some error criteria will
be checked for future samples.

Consider that x = xi, i = 1, 2, . . . , n is the vector of landslide conditioning factors, y = yi, i = 1, 2
that indicates landslide and non-landslide classes. The MLP neural network function in the landslide
modeling can be expressed as follows:

y = f (x) + b, (7)
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where b is bias and f (x) is an unknown function that is optimized by the adjustable network weights
during the training process for a given network architecture [40].

3.2.3. Particle Swarm Optimization (Pso)

The PSO is one of the evolutionary algorithms (meta-heuristic) developed by Kennedy et al.
(1995). Design of the PSO is based on the nearest route to find food using the movement of biological
organisms such as flocks and fish [42]. In recent years, it has been most popular in the optimization
of nonlinear problems [34]. In this algorithm, a swarm of particles denotes a potential answer to the
problem that searches for the best position based on the best solution. The fitness function can be used
to assess the merit of the particles for calculating the fitness values. The particles in the PSO move
along the feature space using a set of the following updated equations [42]:

vi(t + 1) = wvi(t) + c1rand1(pbest − xi(t))
+c2rand2(gbest − xi(t))xi(t + 1)
= xi(t) + vi(t + 1)

, (8)

where xi and vi are the position and velocity of the ith particle in the feature space, respectively; w is
the inertial weight coefficients; c1 and c2 are learning factors, and rand1 and rand2 are positive random
numbers from 0 to 1. pbest is the personal best position of particle i, and gbest is the best among all of the
particles. In this study, the PSO method is used to optimize the ANFIS and ANN modeling parameters
to construct the PSOANFIS and PSOANN prediction models for landslide susceptibility assessment.

3.2.4. Rotation Forest

Rotation Forest (RF) is one of the meta ensemble algorithms that was first introduced by Rodriguez
et al. [43] to enhance the power prediction of a weak individual classifier in comparing with using
a weak individual classifier alone and also increasing the diversity of base classifiers [44]. In this
approach, feature space of training dataset are divided into some subsets based on the Principal
Component Analysis [45] for learning base classifiers. The Meta classifiers generally create higher
prediction accuracy in comparison with single-based classifiers [46].

In this study, the RF as a Meta classifier in order to detect landslide occurrence locations has been
applied. Consider x = x(x1, x2, . . . , x12) is the vector of 11 landslide conditioning factors, y = (y1, y2)

is the vector of landslide and no-landslide occurrence class, and D indicates the training dataset.
C1, C2, . . . , CL are the number of classifiers for learning, and φ is a set of landslide conditioning factors.
In the first step, φ are divided into k training subsets in which 10/k landslide conditioning factors in
each training subset are created. Let φi,j be j-th (j = 1, 2, . . . , k) subset of landslide conditioning factors
Ci and Pi,j is landslide conditioning factor in φi,j from D. According to the bootstrap algorithm, P’i,j
with 75% sized randomly selected from Pi,j.

In the next step, to calculate the coefficients of z(1)i,1 , z(2)i,2 , . . . , z(Ki)
i,1 , the P’i,j will be transformed with

the size z’i,1 equals to T × 1. In fact, the RF is constituted using base classifier and the rotation matrix
(Za

i ) by transformation technique (rearranging the matrix of Zi), which is observed as follows [40]:
z(1)i1, . . . , z(M1)

i1 {0} . . . {0}
{0}
. . .

z(2)i2, . . . , z(M2)
i2 . . .

. . .
{0}
. . .

{0} · · · z(K)iK, . . . , z(MK)
iK

. (9)

Then, the columns of Zi are rearranged using the original feature set. In the next step, the
(
θZM

i
)

value will be transformed on a training dataset using classifier Di. Consequently, all classifiers after
training with parallel manner will be summed [43].
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The classification phase, using the testing dataset of x, will be evaluated when dij
(
θZa

i
)

is the
probability value determined by classifier Di based on the hypothesis that x belongs to class y. Then,
the average combination method of a class is obtained as follows:

mj(θ) =
1
L

L

∑
i=1

dij(θZa
i ), y = 1, . . . , c. (10)

Lastly, the largest confidence of the class will be assigned by θ.

3.2.5. Best First Decision Trees

The main idea of the expansion of decision tree nodes of Best First Decision Trees (BFDT) algorithm
was introduced by Friedman et al. (2000). In this algorithm, the best node expanded in depth-first
order as compared to C4.5 and CART [47]. The best node among all nodes to split is a node that leads
to maximum reduction of impurity such as Gini index or information gain. The BFDT creates a binary
tree in which each internal node is assigned two outgoing edges.

The growth of the tree will continue until the internal nodes reach maximum homogeneity. This
means that a terminal node does not split further when it will be pureed so that all cases have the
same value for the dependent variable (landslide and non-landslide). To assess the impurity in this
algorithm, information gain and Gini index measures based on the entropy are used. In this study,
Information Gain (IG) is used for assessing the impurity. Moreover, the entropy specifies the purity
of any sample set. Consider D as the training dataset, A as a conditioning factor such as slope angle,
and “i” a class label (landslide and non-landslide). The following equation can obtain the IG values of
factors (e.g., slope angle):

Entropy(D) = −∑
i=1

pi log2 pi, (11)

where pi is the proportion of D belonging to class i. The IG leads to splitting the training dataset by a
reduction in entropy using the following equation:

Information Gain(D, A) = Entropy(D)− ∑
i∈value(A)

|Di|
|D| Entropy(Di), (12)

where values (A) is the set of all possible values for slope angle factor (A) and Di is the subset of D
for which attribute A has value i. The tree in the BFDT algorithm will be stopped when all instances
belonging to a landslide or non-landslide as a target feature or the best value of IG value are less than
zero [48].

3.2.6. Validation Assessment

In this study, mean square error (MSE), root mean square error (RMSE), and area under the
receiver operative characteristic (AUC) curve were used to validate the performance of the developed
models. The MSE estimates the generalization error of the model, whereas the RMSE measures the
forecasting errors of the models [49]. The MSE and RMSE can be expressed as follows:

MSE =
∑N

i=1 (Xobs − Xest)
2

n
(13)

RMSE =

√
∑N

i=1 (Xobs − Xest)
2

n
, (14)

where Xobs denotes the observed values in the training dataset or validation dataset, Xest represents
the estimated (output) values from the landslide susceptibility models, and n is the total number of
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samples in the training or validation datasets [50]. The result of modeling is effective when the values
of RMSE and MSE are small [51].

In addition, another standard and applicable technique that has been utilized in almost all
landslide susceptibility assessments is the Area under the Receiver Operative Characteristic (AUC)
Curve [52]. Generally, the ROC curve is plotted based on the sensitivity as the y-axis and the
1-specificity as the x-axis [53]. The AUC pinpoints the performance of a model so that a higher
AUC indicates better model performance [52]. It has a range between 0.5 (random model) and 1 (ideal
model) [54,55]. The AUC can be formulated as follows:

AUC =
∑ TP + ∑ TN

R
, (15)

where TP and TN are the number of correctly and incorrectly classified as landslides, respectively; R is
the total number of landslides and non-landslides [53].

4. Methodology Adopted for Developing Landslide Susceptibility Maps

The methodology of the present study includes four main steps: (1) generation of training
and testing dataset, (2) building of the hybrid models, (3) validation of the hybrid models, and (4)
development of landslide susceptibility map (Figure 6). A brief description of methodology is below:
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Step 1: Training and testing datasets were generated using landslide data of the study area.
A training dataset was generated with 70% of landslide inventory (117 locations), whereas a testing
dataset was constructed with the 30% remaining landslide inventory (50 locations). In the datasets,
non-landslide locations were also taken into account as landslide prediction is considered a binary
classification problem. Non-landslide locations were identified based on the study of the area. Out
of these, 117 non-landslide locations were used for the training dataset while 50 non-landslide
locations were used for testing datasets. For modeling, landslide instances were assigned “1” whereas
non-landslide instances were assigned “0”.

Step 2: Using the training dataset, the hybrid models (RFBDFT, PSOANFIS, and PSOANN) were
constructed for spatial prediction of landslides at the study area. More specifically, the RFBDFT was
constructed by combining the RF ensemble and the BDFT classifier. In the RFBDFT, the RF was trained
with 25 iterations and the BDFT was trained with 10 folds in internal cross-validation. The PSOANFIS
was constructed by combining the PSO optimization and the ANFIS classifier, while the PSOANN was
constructed by combining the PSO and the ANN classifier. In the PSOANFIS, the model was trained
with 1500 iterations, 0.99 inertia weight, and 25 populations. In the PSOANN, the number of hidden
layers was set to nine.
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Step 3: The hybrid models was validated using several criteria, namely MEA, RMSE, and AUC.
In this step, the models were validated in goodness-of-fit using the training dataset and predictive
capability using the testing dataset.

Step 4: Mapping landslide susceptibility started with generation of Landslide Susceptibility
Index (LSI) values for each pixel of the study area using the hybrid models. Thereafter, the LSIs
were assigned to each pixel in the GIS environment and were reclassified using the natural break
classification method [19].

5. Results and Discussion

Goodness-of-fit and prediction accuracy of the RFBFDT model are given in Figure 7. This figure
has three parts including outputs and targets versus number of samples, errors versus number of
samples, and frequency versus errors. In first part, the hybrid model graphically predicts the value
of landslide and non-landslide, as output values, according to landside and non-landslide locations,
as target values, overlaid with normalized conditioning factors.

The predictive values range between 0 and 1. The error part of this figure specifies the values of
MSE and RMSE. The frequency versus errors depicts the values of error mean and standard deviation
(SD). Results indicate that in the training phase using the RFBFDT model, the values of RMSE, RMSE,
error mean, and error SD are 0.172, 0.414, −1.7 × 10−0.8, and 0.415, respectively. In the validation
phase, these values are 0.189, 0.434, 0.017, and 0.436, respectively. In the PSOANFIS model, Figure 8
shows the results of goodness of fit and prediction accuracy using training and validation datasets.
The results indicate that using the training dataset the values of RMSE, RMSE, error mean, and error
SD are 0.14, 0.374, 0.005, and 0.375, respectively. These values using the validation dataset are 0.225,
0.474, −0.0298, and 0.476, respectively. Moreover, the results expressed that in the PSOANN model,
the values of RMSE, RMSE, error mean, and error SD using training dataset are 0.168, 0.41, −0.0005,
and 0.411, respectively. In the validation process, the results stated that the values of 0.312, 0.558,
0.0003, and 0.561 acquired for RMSE, RMSE, error mean, and error SD, respectively (Figure 9).

Landslide hybrid models were then evaluated through the ROC curve analysis. The results are
given in Figure 10. The results of performance of the ensemble models exhibited that the RFBFDT
model acquired the highest of AUC value (0.891), followed by the PSOANFIS model (0.890) and the
PSOANN model (0.850). Additionally, the validation dataset confirmed that the RFBFDT ensemble
models had the highest prediction accuracy, with an AUC value of 0.826. This is followed by the
PSOANFIS model (AUC = 0.760) and the PSOANN model (AUC = 0.720). The results of AUC are
completely in agreement with the results of model validation using MSE, RMSE, error mean, and error
SD values in the training and validation phases. Overall, the RFBFDT ensemble model is the best
model for predicting landslide locations compared to the other models (PSOANFIS and PSOANN).

Landslide susceptibility is assessed based on the landslide susceptibility index (LSI), which was
generated from the model construction process. Thereafter, the obtained LSI was transferred to all
pixels of the study area and they were classified for determining the susceptibility levels of landslides
in the study area. Landslide susceptibility maps of the study area were finally constructed with
five susceptibility classes including very low, low, moderate, high, and very high (Figure 11). The
distribution of these susceptibility classes on the maps was calculated and shown in Figure 12. A map
generated by the RFBDFT model indicated that 48% of the study area falls into the low class, 42% in
the moderate class, and 11% in the high class, whereas, in the map generated by the PSOANFIS model,
25% of the study area is covered by the low class, 44% by the moderate class, and 31% by the high
class. A further map generated by the PSOANN model indicated that 25% of the study area falls in the
low class, 63% in the moderate class, and 13% in the high class.
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6. Conclusions

In this study, three novel hybrid machine learning approaches, namely PSOANFIS, PSOANN,
and RFBFDT, were applied for the development of landslide susceptibility maps. A spatial database of
167 past landslides of Van Chan district, Yen Bai province, Vietnam was used to generate the datasets
for modeling, considering 12 landslide conditioning factors. Validation of the models was done using
the AUC, MSE, and RMSE methods. The results show that the RFBFDT (AUC = 0.826, MSE = 0.189,
RMSE = 0.434) is the best model in comparison to other hybrid models, namely PSOANFIS (AUC
= 0.76, MSE = 0.225, RMSE = 0.474) and PSOANN (AUC = 0.72, MSE = 0.312, RMSE = 0.558). Thus,
it can be reasonably concluded that the RFBFDT model can be used for better landslide susceptibility
assessment, land use planning, and hazard management in landslide-prone areas. However, as these
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proposed models were applied in only one of the areas of Vietnam, their applicability must be tested
in other hilly areas of Vietnam as well as other parts of the world. Moreover, another limitation of this
research is that we considered a fixed combination of conditioning factors for modeling; therefore,
it would be better to test the effectiveness of the models with different combinations of conditioning
factors to explore the possibility of further improvement of the models.
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