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Abstract: Accurate estimates of tree component and aboveground biomass strongly depend on robust
and precise allometric equations. However, site-specific and suitable biomass equations are currently
scarce for natural Larix gmelinii forests in the western Daxing’anling Mountains, northeastern China.
This study aimed to evaluate the biomass allocation patterns within tree components and develop
additive allometric biomass equations for species of L. gmelinii. A total of 58 trees were destructively
sampled and measured for wood (inside bark), bark, branch and leaf biomass. For each component,
we assessed the share of biomass allocated to different components by computing its ratio; we also
tested two allometric equations based on diameter at breast height (dbh) alone, and dbh fitted with
height (h) as independent variables. Seemingly unrelated regression methodology was used to fit an
additive system of biomass allometric equations. We performed an independent dataset to evaluate
the predictive ability of the best model system. The results revealed that wood biomass accounted
for approximately 60% of the aboveground biomass. Wood and branch biomass ratios increased
with increasing dbh, while a reverse trend was observed for bark and leaf biomass ratios. All models
showed good fitting results with Adj.R2 = 0.958–0.995. Tree dbh provided the lowest estimation errors
in the regressions associated with branches and leaves, while dbh2 × h generated the most precise
models for stems (wood and bark). We conclude that these allometric equations will accurately
predict biomass for Larix trees in the western Daxing’anling Mountains.

Keywords: additive allometric equations; aboveground biomass; biomass allocation; Larix gmelinii

1. Introduction

The boreal forest, the world’s second largest forest biome, covers around 15% of the earth’s land
surface and contains approximately 50% of the carbon in the atmosphere, playing an important role in
the global carbon dynamics [1–3]. Some studies suggest that mid- and high-latitude forest ecosystems,
such as the boreal forests, act as a significant carbon sink [4–6]. The boreal forests in China are mainly
distributed in Daxing’anling mountains encompassing Heilongjiang Province (eastern part) and Inner
Mongolia (western part), forming the southern boundary of the boreal forests. The dominant species is
the deciduous conifer Larix gmelinii, which is well known for its economic benefits of timber production.
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The natural L. gmelinii forests are regarded as a southeastern extension of the Siberian Taiga forests,
making the study of carbon stocks and fluxes a key issue.

Biomass estimates are a prerequisite for precisely quantifying forest carbon stocks and their
dynamics [7,8], and accurate quantification of forest biomass is therefore of great importance.
Estimating tree and forest biomass is also essential for informing greenhouse gas mitigation [9,10], and
forest ecosystem services such as wildlife habitat and timber [11,12]. Furthermore, it is fundamental to
analyze matter and energy flows in forest ecosystems [13,14].

The most accurate and direct method to determine tree-level biomass is to harvest the whole
tree, further dividing it into separate components. Then, each component needs to be weighed
to obtain the actual fresh weight and dry weight using the relevant moisture content of different
component [15,16]. However, destructive biomass sampling is labor-intensive. In addition, the use of
destructive sampling methods is limited to small trees or small sample size; it is also not recommended
in nature reserves and for endangered tree species [17]. To avoid these limitations, allometric biomass
equations, which are regressions linking the biomass to some predictor variables, are considered a
better and still reliable approach to assess tree dry mass [18–20]. In the initial stage, an extensive
destructive sampling is required when fitting allometric equations. But then the developed equations
can serve as a non-destructive method to estimate biomass [21].

To date, various model forms have been proposed for developing biomass equations [7,22–25],
and the most common and widely used form is power function [26–28]. The logarithmic transformation
of the power function has been generally used to accommodate for the heteroscedasticity [29–31].
However, the logarithmic form of the allometric equation produces a systematic bias when converting
predicted logarithmic values back to their original untransformed scale [32]. Several correction factors
for the anti-logarithm transformation have been suggested during the past decades [33–36].

In general, allometric biomass models relate total and component dry mass to dendrometric
variables of trees; most published studies used diameter at breast height (dbh) alone as an independent
variable to predict biomass [18,20], with many studies also using height (h) as an additional
predictor [25,26,37,38]. Also tree age, crown area, crown length, and wood density have been used as
predictors in uni- or multivariate biomass models [31,39,40].

For each sampled tree, the sum of separate component biomass produces the total biomass. When
fitting biomass models separately, the inherent correlations among different components may be
ignored, so that the sum of the predicted values from the separate biomass models of components may
not equal the predicted value from the biomass model for the whole tree [41]. Therefore, the additive
property between the whole tree and its components should be taken into account during model
fitting [41–44]. To achieve additivity in a set of equations, several methods have been proposed, such
as adjustment in proportion and nonlinear joint estimate [45], the generalized method of moments
(GMM), and seemingly unrelated regression (SUR) [43]. In particular, SUR has been considered more
general and flexible [41,46], giving an appreciable improvement in estimation accuracy [47]. Although
each component’s equation derived from the additive equation system is not necessarily the best,
SUR considers the existence of intrinsic correlations among components’ equation errors and ensures
high efficiency of additivity, thus resulting in more efficient parameter estimates and lower overall
variance [47,48].

So far, several studies have developed allometric biomass equations for L. gmelinii, mainly
conducted in Heilongjiang, Jilin, and Liaoning Province [18,49–51]. However, there are few validated
additive allometric biomass equations for estimating aboveground biomass specifically for the studied
species in the western Daxing’anling Mountains. The lack of reliable or site-specific regression
equations may lead to overestimate or underestimate carbon sequestration [17]. In addition, tree
biomass allocation among different components may also differ according to forest origin, site
conditions, and other management treatments.

In this study, we performed destructive sampling and collected dendrometric data of live and
natural L. gmelinii trees in the western Daxing’anling Mountains, aiming to evaluate biomass allocation
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patterns within tree components and develop additive allometric biomass equations for the species.
The specific aims were to (1) assess the biomass allocation patterns and component biomass proportions
variation with tree diameter; (2) construct an additive systems of biomass equations using SUR and
determine the best predictor variables; (3) validate the newly developed allometric equations with
previous biomass equations published in the literature.

2. Materials and Methods

2.1. Study Area

We conducted this study in the western Daxing’anling Mountains, Inner Mongolia
(47◦3′40”–53◦20′35” N, 119◦36′20”–125◦19′50” E), northeastern China (Figure 1). The area has a distinct
cold temperate continental monsoon climate; the mean annual temperature is −3.2 ◦C, with extreme
minimum and maximum temperatures of −52 ◦C and 40 ◦C, respectively. The annual precipitation
ranges from 350 mm to 500 mm and is mainly distributed from May to October. The total area is around
11 million hectares and the elevation varies between 425 m and 1760 m above sea level. The substrate
is predominantly brown coniferous forest soil. L. gmelinii is the dominant tree species. Besides, Betula
platyphylla, Populus davidiana, B. dahurica, and Pinus sylvestris var. mongolica, among others, are common
tree species. The shrub layer mainly includes Vaccinium vitis-idaea, Rhododendron simsii Planch and
Ledum palustre, among others.
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large trees were harvested in the last few decades, the sample trees basically represent the whole 
diameter range of larch at Daxing’anling Mountains. Dbh and total h were measured after felling 
(Figure 2). 

Figure 1. The location of the study area and sampling sites in the western Daxing’anling Mountains,
northeastern China.

2.2. Tree Biomass Data

A destructive method with direct field measurements was applied to collect biomass data of
wood, bark, branch and leaf components separately. A total of 58 trees were randomly selected across
all occurring diameter classes (2-cm intervals) from five forest bureaus (Figure 1). Since many large
trees were harvested in the last few decades, the sample trees basically represent the whole diameter
range of larch at Daxing’anling Mountains. Dbh and total h were measured after felling (Figure 2).

The basal diameters of all branches directly protruding from the tree stem were measured. The
volume of branches and the number of leaves were determined according to a nested regression
method [52,53] that regards tree crowns as a deducible branch system. Subsequently, the stem was cut
into sections at the position of 1, 3, 5 m, . . . , from base to treetop, and we took discs from the stem at
each cut. Diameter outside and inside bark of each disc were measured with a tape. The stem volume
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was determined by adopting the sectional method with a section length of 2 m, for which the top log
was considered as a small cone. Volume was calculated by the following function:

V = l
m

∑
i=1

gi +
1
3

g′l′ (1)

where gi is the central area of section i, l is the section length, m is the number of sections, g′ is the basal
area of the top log, and l′ is the length of the top log. Bark volume was then calculated by subtracting
the volume inside bark from the over-bark volume.

Sub-samples of wood, bark, branch, and leaf were collected and taken to the laboratory for basic
attributes measurement. Three thin discs, including bark, were taken from the breast height, middle
and end sections of the stem. Similarly, three discs were collected from the branches at the base,
middle, and end. Leaf fascicles were randomly collected from different branches, up to a total of
1000. In the laboratory, fresh volumes of wood, bark, and branch were initially determined by water
displacement. Dry weight of each sample was measured after oven-drying at 75 ◦C. Basic density, the
ratio of dry weight to fresh volume, was then used to convert volume to dry mass for wood, bark, and
branches [54,55]. The total dry mass of leaves for individual trees was calculated based on the average
dry mass per leaf fascicle.Forests 2019, 10, 150 4 of 16 
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Figure 2. Tree h against dbh for destructively sampled trees. The vertical bars represent the sample
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Four biomass compartments were recognized: wood (inside bark), bark, branch, and leaf. For
each sampled tree, the sum of these separate compartments produced the total aboveground biomass
(Table 1).

Table 1. Descriptive statistics of sampled trees for biomass equations development.

Statistics Mean Min Max SD

dbh (cm) 21.5 3.2 52.0 12.98
h (m) 16.96 4.91 27.72 6.35

Basic density of branch (g/cm3) 0.456 0.395 0.515 0.049
Basic density of wood (g/cm3) 0.498 0.393 0.513 0.033

Basic density of stem bark (g/cm3) 0.372 0.346 0.389 0.012
average mass per leaf fascicle (g) 0.0210 0.0163 0.0241 0.0027

average area per needle (cm2) 0.134 0.066 0.184 0.032
average mass per short shoot (g) 0.0060 0.0035 0.0075 0.0021

Stem biomass (kg) 189.95 0.73 896.66 228.98
Bark biomass (kg) 44.47 0.47 195.40 49.33

Branch biomass (kg) 40.43 0.15 317.71 63.11
Leaf biomass (kg) 21.78 0.63 108.47 23.02

Aboveground biomass (kg) 296.63 2.21 1360.47 357.44

Min: minimum; Max: maximum; SD: standard deviation.
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2.3. Data Analysis

Aboveground biomass allocation to wood, bark, branch, and leaf was assessed by computing the
proportion of each component to aboveground biomass. Allometric models relating aboveground
component biomass (Wi) against dbh and h were generated based on two models (Equations (2) and (3)).

ln Wi = ln α + β· ln(dbh) (2)

ln Wi = ln α + β· ln
(

dbh2 × h
)

(3)

Tree dbh and h were combined as a compound predictor to solve the problem of collinearity
and account for within-species variarion of h for a given dbh [17,56]. SUR takes into account
the cross-equation constraints on the structural parameters and cross-equation error correlations
for aboveground biomass and its separate components [57]. The total, subtotal, and component
biomass are simultaneously fitted, ensuring additivity [41,43,44]. In addition, SUR considers the
intrinsic correlation among biomass components, and no individual component model is developed
separately from the total [50]. Following the model structure specified by [43], the additive systems of
allometric equations for separate biomass components and their aggregate were established based
on log-transformed Equations (2) and (3) respectively, as specified in the following forms. The two
systems of equations were estimated by use of the PROC MODEL procedure of SAS 9.3 (SAS Institute
Inc, Cary, NC, USA).

ln Wwd = ln αwd + βwd· ln(dbh)
ln Wbk = ln αbk + βbk· ln(dbh)
ln Wbr = ln αbr + βbr· ln(dbh)
ln Wl f = ln αl f + βl f · ln(dbh)

ln Wcw = ln
(

αbr·dbhβbr + αl f ·dbhβl f
)

ln Wag = ln
(

αwd·dbhβwd + αbk·dbhβbk + αbr·dbhβbr + αl f ·dbhβl f
)

(4)

ln Wwd = ln αwd + βwd· ln
(
dbh2 × h

)
ln Wbk = ln αbk + βbk· ln

(
dbh2 × h

)
ln Wbr = ln αbr + βbr· ln

(
dbh2 × h

)
ln Wl f = ln αl f + βl f · ln

(
dbh2 × h

)
ln Wcw = ln

(
αbr·

(
dbh2 × h

)βbr + αl f ·
(
dbh2 × h

)βl f
)

ln Wag = ln
(

αwd·
(
dbh2 × h

)βwd + αbk·
(
dbh2 × h

)βbk + αbr·
(
dbh2 × h

)βbr + αl f ·
(
dbh2 × h

)βl f
)

(5)

where Wwd, Wbk, Wbr, Wlf, Wcw, and Wag represent the wood, bark, branch, leaf, crown and aboveground
biomass (in kg), respectively; αi and βi are coefficients.

2.4. Model Evaluation and Reconstruction

The two candidate additive systems of biomass equations were fitted to the entire dataset. The
model fitting was evaluated by three goodness-of-fit statistics: root mean square error (RMSE), mean
absolute error (MAE), and adjusted coefficient of determination (Adj.R2). The most appropriate
equation was the one with the lowest RMSE and MAE, and with the highest Adj.R2. The mathematical
expressions for calculating these statistics were as follows:

Root mean squared error RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n− k
(6)
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Adjusted coefficient of determination Adj.R2 = 1−

1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

n− 1
n− k

(7)

Mean absolute error MAE =

n
∑

i=1
|yi − ŷi|

n
(8)

where yi is the i-th log-transformed observed biomass value; ŷi is the i-th log value predicted by the
model; y is the mean of the log-transformed observed value; n is the total number of observations used
for model fitting; k represents the number of parameters included in the model.

The total and component biomass equations may have different optimum predictor variables.
After fitting Equations (4) and (5), the best model for each biomass component was selected according
to the three mentioned statistics. Then, we reconstructed the best additive system of biomass equations
using variables extracted from the selected models.

2.5. Model Validation

A dataset of ten individual tree biomass measurements (Table 2) compiled from a study [58]
conducted in Tahe forest bureau (north of Daxing’anling Mountains) was used to validate the additive
model system. Tree biomass was separated into two components, stems and crowns, and weighed the
fresh weights directly in the field. Dry biomass was transformed through water content. Graphical
analyses of predicted versus observed components biomass were plotted. Validation was carried out
by statistically comparing fitted values against independent biomass observations (t-test).

Table 2. Observed biomass data for model validation gathered from [58].

Biomass (kg)

dbh (cm) h (m) Stem Crown Aboveground

4.0 4.50 1.41 1.06 2.47
6.0 6.23 3.34 2.47 5.81
8.0 7.00 7.16 5.96 13.12

12.0 15.75 41.66 8.07 49.73
15.6 9.00 36.98 21.54 58.52
16.4 15.30 73.54 13.17 86.71
19.8 16.45 115.68 28.93 144.61
26.0 19.00 221.49 61.42 282.91
31.2 18.70 330.49 99.74 430.23
38.0 20.00 527.73 71.57 599.30

2.6. Antilogarithm Transformation Correction

Using the log-transformed allometric biomass equations may produce systematic bias when
converting predicted logarithmic values back to original arithmetic units. To correct this bias, a
multiplicative correction factor (CF) based on the standard error of the estimates [33,34] was usually
applied to each regression equation as follows:

CF = exp

(
RMSE2

2

)
(9)

2.7. Evaluation of Existing Biomass Equations

The performance of an independent set of existing biomass equations [18,49–51] was evaluated
and compared using the mensuration data of 58 sampled trees in this study. For each equation,
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we determined the percent relative error (RE) between observed and predicted values (Table 3).
We emphasized that these equations are only valid over the range of the independent variables.

RE =
1
n

n

∑
i=1

(
Ŵi −Wi

Wi

)
× 100% (10)

where Ŵi and Wi are the i-th tree predicted and observed biomass, respectively.

Table 3. Comparison of some existing biomass equations for L. gmelinii distributed in
northeastern China.

Source Site Origin dbh Range (cm) Sample Size Predictor RE (%)

This study IM Natural 3.2–52.0 58
Wang [18] HLJ Plantation 13.7–41.4 10 dbh −9.46

Dong et al. [49] HLJ, JL Natural 6.5–38.1 122 dbh −8.56

Zeng [51] HLJ, LN, IM
Natural,

plantation 2.0–38.8 50
dbh −5.84

dbh, h −2.07

Dong et al. [50] HLJ Plantation 7.6–35.7 90
dbh −13.04

dbh, h −14.19

IM: Inner Mongolia autonomous region; HLJ: Heilongjiang Province; JL: Jilin Province; LN: Liaoning Province.

3. Results

3.1. Biomass Allocation

The contribution of different components to the aboveground biomass varied greatly for the
studied species. Stem accounted for most of the aboveground biomass (approximately 79%), with
wood and bark contributing 61% and 18% to aboveground biomass, respectively. In contrast, crown
biomass represented a small proportion of aboveground biomass, with a mean value of 12% and 9%
for branch and leaf, respectively. In general, the proportion of bark and leaf biomass decreased with
increasing dbh, while a reverse trend (increasing biomass ratio-dbh lines) was observed for the wood
and branch fraction (Figure 3).
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3.2. Allometric Models

The non-linear trend in observed values of wood, bark, branch, and leaf biomass as a function of
dbh and h is displayed in Figure 4. All model regression coefficients were statistically highly significant
(p < 0.001), and the biomass equation for each component performed well, with RMSE and MAE
ranging from 0.130 to 0.373 and from 0.104 to 0.287 kg, respectively, while and Adj.R2 ranged from
0.950 to 0.995. Wood and bark biomass models had better fitting results (Adj.R2 > 0.987). In addition,
the wood component biomass was better predicted when using dbh2 × h as an independent variable,
yielding higher Adj.R2 (0.995) and lower RMSE (0.130 kg) and MAE (0.104 kg). Similarly, stem bark
biomass was better predicted from dbh2 × h, which produced a higher Adj.R2 (0.991). On the contrary,
branch and leaf biomass showed smaller estimation errors when dbh was used, compared to equations
using both dbh and h; the corresponding Adj.R2, RMSE, and MAE for branch and leaf components
were 0.968 and 0.958, 0.334 and 0.273 kg, 0.244 and 0.212 kg, respectively (Table 4).Forests 2019, 10, 150 9 of 16 
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Table 4. Coefficients with standard error (SE) and goodness-of-fit statistics of the two systems of
additive equations for the wood, bark, branch, and leaf components of the studied species through
SUR methodology. α and β are model coefficients, while RMSE, MAE, and Adj.R2 are the root mean
square error, mean absolute error, and adjusted coefficient of determination.

Model Predictor Component Regression Coefficients Fitting Statistics

lnα(SE) β(SE) RMSE MAE Adj.R2

4 dbh Wood −3.374 *** (0.099) 2.644 *** (0.034) 0.208 0.167 0.987
5 dbh2 × h Wood −4.262 *** (0.075) 1.000 *** (0.009) 0.130 0.104 0.995
4 dbh Bark −3.302 *** (0.105) 2.188 *** (0.036) 0.197 0.164 0.984
5 dbh2 × h Bark −4.031 *** (0.086) 0.827 *** (0.010) 0.147 0.117 0.991
4 dbh Branch −4.770 *** (0.156) 2.585 *** (0.053) 0.334 0.244 0.968
5 dbh2 × h Branch −5.623 *** (0.186) 0.975 *** (0.022) 0.373 0.287 0.960
4 dbh Leaf −3.025 *** (0.141) 1.819 *** (0.048) 0.273 0.212 0.958
5 dbh2 × h Leaf −3.611 *** (0.163) 0.683 *** (0.019) 0.296 0.235 0.950

*** Significance level: p < 0.001; The final selected models for each component are given in bold.

Additive biomass equations were reconstructed by combining the best-fitting component
equations (Table 5). The fit of branch and leaf models showed a slight improvement, while there
was no obvious change for wood and bark. Correction factors for all equations (Table 5) were small,
meaning that little variation could arise from the conversion of logarithmic values to original units,
especially for wood, bark, and aboveground biomass equations (CF < 1.02). For branch, leaf, and
crown biomass, the CFs presented relatively larger values (CF < 1.06).

Table 5. Selected biomass equations simultaneously fitted through SUR methodology. CF is the
correction factor.

Component Biomass Equations RMSE MAE Adj.R2 CF

Wood lnWwd = −4.270 + 1.001ln(dbh2 × h) 0.130 0.104 0.995 1.008
Bark lnWbk = −4.016 + 0.825ln(dbh2 × h) 0.147 0.117 0.991 1.011

Branch lnWbr = −4.832 + 2.601ln(dbh) 0.331 0.243 0.969 1.056
Leaf lnWlf = −3.080 + 1.833ln(dbh) 0.272 0.211 0.958 1.038

Crown lnWcw = ln(e−4.832dbh2.601 + e−3.080dbh1.833) 0.297 0.221 0.968 1.045

Aboveground
lnWag = ln(e−4.270(dbh2 × h)1.001 + e–4.016(dbh2

× h)0.825 + e−4.832dbh2.601 + e−3.080dbh1.833)
0.129 0.101 0.995 1.008

3.3. Model Validation for the Best Model System

The validity of the best system of log-transformed additive biomass equations was assessed
against an independent dataset (Figure 5). Stem (wood plus bark) and total aboveground biomass
equations produced small prediction errors (the scatters were close to the 1:1 line), whereas relatively
larger errors were generated for the crown model, especially for the largest tree with a relatively small
canopy (see Table 2). We found no significant differences between the predicted values and observed
values of stem (t = 0.89, p-value = 0.40), crown (t = −0.70, p-value = 0.50), and aboveground (t = −0.36,
p-value = 0.73) biomass.
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4. Discussion

Accurate biomass models are key for estimating forest carbon stocks from forest inventories and
provide comparable and verifiable information to policymakers and stakeholders [59,60].

The share of components on the aboveground biomass varies across species [61,62]. The results
in this study showed that wood biomass had the largest contribution to aboveground biomass, and
tree stem (wood plus bark) contributed for approximately 80%, whereas leaf represented the smallest
portion, which is consistent with several published studies related to larch [50,63]. As the trees grow
larger, the relative contribution of the stem and branch to the aboveground biomass increases, while
that of leaf and bark decreases. This pattern is consistent with previously published studies showing
that woody biomass usually accumulates at the expense of leaf biomass [62,64]. Allocating more
resources to wood and branch as the size increases is aimed to promote height and crown growth to
increase the competitiveness for light relative to neighbor trees. Leaf biomass proportion decreased
with increasing dbh, which could be explained by the fact that leaves are grown on younger branches
rather than on older ones, which imply that leaf mass per unit branch mass decreases as trees get
larger [17].

There is general agreement that biomass additivity is a desirable characteristic when estimating
tree components and total biomass through a system of equations [17,43,46], since it reduces
uncertainties between the sum of the predictions for the tree components obtained from allometric
equations and the prediction for the whole tree [42,44]. However, many biomass models in previous
studies were non-additive as they were developed using ordinary least-squares regression [18,61]. The
use of SUR improves biomass models by setting constraints on the regression coefficients during the
fitting process, guaranteeing the additive property [65]. Furthermore, an additive system of biomass
equations that takes into account the inherent correlation among the tree biomass components has
higher statistical efficiency than separately fitted equations for individual biomass components, and
reduces the confidence and prediction intervals for biomass estimates [41,43].

Dependent and independent variables were transformed by taking the natural logarithm
since dendrometric measurements usually exhibit non-constant variance [61]. As expected, the
log-transformed equation is simple and accurate for estimating biomass of aboveground and individual
components. The relationships between components biomass and dendrometrics were highly
significant. Tree dbh is the most prominent and commonly used predictor of biomass [31,66]. Some
studies reported that the inclusion of h as an additional predictor significantly improved model
fit [24,67]. In this study, the use of dbh alone as a predictor provided the best fit for branch and leaf
models while including h as an additional predictor appeared to be the most suitable strategy for stem
(wood plus bark) components, which is consistent with previous studies [38,68,69]. However, since
dbh also provided satisfactory model fitting for wood and bark, if tree height is missing in some forest
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inventory data, then the additive system of biomass equations using dbh only should provide accurate
predictions all the same.

The logarithmic CF is a simple and straightforward statistical tool for removing systematic bias
produced by converting the estimated logarithmic value back to the original untransformed scale [33].
However, previous studies reported that the CF is usually small compared to the overall variation
generated by biomass estimation and can, therefore, be omitted [34,70]. In the present study, the CF
values for all components biomass equations were relatively small (<1.06), especially for wood, bark,
and aboveground allometric equations (<1.02). Consequently, our results indicated that few errors
were introduced when using logarithmic transformation to fit allometric equations to biomass data.
Furthermore, if the CF was used, additivity among different biomass components would not occur.

Since the predictive ability of a model cannot be thoroughly reflected by fitting results, the use of
a new independent dataset is the most preferred way to make an appropriate validation [71]. It must
be pointed out that the new dataset is taken from a separate population, which is different from the
model construction data [72]. However, in many studies, no independent dataset was available and
alternative approaches were therefore commonly employed for this purpose, such as splitting the
original dataset into two parts or the jackknifing technique [49,73], although, they do not provide
any additional information about the authentic predictive ability [72]. Fortunately, we collected an
independent dataset from a study and used it to validate the developed model in this study, yielding
satisfactory predictive effects.

Other equations have been established for estimation of aboveground biomass of L. gmelinii in
northeastern China (Table 3). Overall, the performance of independent models against observed data
used in this study varied across different equations. Our study focused on the tree biomass in the
western Daxing’anling Mountains, Inner Mongolia. However, only [51] collected some data here;
others conducted their studies in Heilongjiang and Jilin Province. The six aboveground biomass
models from previous studies all underestimated biomass, but four of them could keep the REs under
−10%. Among all these models, the allometric equation developed by [51] performed better, and
the best model had a RE less than −3% (Table 3, Figure 6c,d). The two biomass models developed
by [50] produced a large error, both using a single predictor dbh and dbh plus h (Figure 6e,f). The
biomass model developed by [18] also had a poor performance (Figure 6a), but it was calibrated on
L. gmelinii plantations. The small sample sizes might also affect model performance [18]. In contrast,
the biomass model developed by [49] was based on a relatively large number of samples, but was in
Heilongjiang and Jilin Province, which could cause poor performance when evaluated in a different
province (Figure 6b).

Since allometric relationships between biomass and dendrometric variables are not constant and
can vary with forest type, size, and age, the use of the models outside their specific regions is not
suggested [31,46]. Finally the reported equations were fitted on a relatively narrow dbh range, and
larger prediction errors could be produced when applying these models to large trees outside of the
modeling data range. Therefore, our site-specific biomass equations are more suitable for natural
L. gmelinii forests dominated in the western Daxing’anling Mountains, Inner Mongolia.
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belongs to the model application range measured in this study. Predictions errors were calculated
for the six models displayed in Table 3: (a) equation by Wang [18], (b) equation by Dong et al. [49],
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predictor, (e) equation by Dong et al. [50] using only dbh as predictor, (f) equation by Dong et al. [50]
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5. Conclusions

L. gmelinii allocates more biomass in woody parts, especially in wood, possibly due to the
mechanism that promotes individual competitiveness compared with other trees in the stand. Dbh
alone is a good predictor for branch and leaf biomass estimation, while introducing h as an additional
predictor can improve accuracies of wood and bark biomass models. SUR realizes the additivity
property between tree components and total aboveground biomass. The antilog correction can be
ignored due to the small CF values. Since the state government has established a comprehensive ban
on harvesting natural forests, the allometric biomass models developed in this study can be readily and
accurately applied to natural L. gmelinii forests in the western Daxing’anling mountains, primarily for
carbon accounting purpose. The availability of different component biomass estimates can also provide
references for formulating conservation strategies. The newly developed allometric models must be
used with caution when estimating biomass of trees outside of their range of data and site conditions.
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